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Abstract

Background: In vitro cell observation has been widely used by biologists and pharmacologists for screening molecule-
induced effects on cancer cells. Computer-assisted time-lapse microscopy enables automated live cell imaging in vitro,
enabling cell behavior characterization through image analysis, in particular regarding cell migration. In this context, 3D cell
assays in transparent matrix gels have been developed to provide more realistic in vitro 3D environments for monitoring cell
migration (fundamentally different from cell motility behavior observed in 2D), which is related to the spread of cancer and
metastases.

Methodology/Principal Findings: In this paper we propose an improved automated tracking method that is designed to
robustly and individually follow a large number of unlabeled cells observed under phase-contrast microscopy in 3D gels.
The method automatically detects and tracks individual cells across a sequence of acquired volumes, using a template
matching filtering method that in turn allows for robust detection and mean-shift tracking. The robustness of the method
results from detecting and managing the cases where two cell (mean-shift) trackers converge to the same point. The
resulting trajectories quantify cell migration through statistical analysis of 3D trajectory descriptors. We manually validated
the method and observed efficient cell detection and a low tracking error rate (6%). We also applied the method in a real
biological experiment where the pro-migratory effects of hyaluronic acid (HA) were analyzed on brain cancer cells. Using
collagen gels with increased HA proportions, we were able to evidence a dose-response effect on cell migration abilities.

Conclusions/Significance: The developed method enables biomedical researchers to automatically and robustly quantify
the pro- or anti-migratory effects of different experimental conditions on unlabeled cell cultures in a 3D environment.
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Introduction

The recent advances and developments in microscopy, cell

labeling and time-lapse imaging technologies, now allow dynamic

monitoring of cells or molecules in 3D environments (in vitro and

in vivo). The purpose of a given biological assay guides the choice

of the imaging approach. Migration of unlabeled live cells can be

observed in 3D gels in vitro under contrast enhancing microscopy

[1,2], digital holography microscopy [3,4] or optical coherence

tomography [5]. Other imaging techniques (such as fluorescence-

based microscopy) that require cell labeling allow the study of cell

migration as well as the analysis of dynamic cellular and

molecular events inside living cells in vitro. These techniques

include wide-field fluorescence microscopy combined with

adapted deconvolution methods [6,7], confocal microscopy

[8,9,10] and multiphoton techniques [9,11,12]. In vitro tests are

generally used to provide a range of initial information and in

vivo tests, which are both more difficult to perform and more

time- and money-consuming, are preferably used as the ultimate

stage to confirm information provided by in vitro assays. To this

end, some imaging techniques, such as multiphoton [13] and

magnetic resonance imaging (MRI) [14], have been adapted to

small animal research and enables in vivo long-term tracking of

labeled cells in living animal.

While a large number of these studies focus on the visualization

of real-time behavior of cells or molecular events, only few of them

present specific image analysis methods adapted to their imaging

technique in order to extract quantitative information. As detailed

below the present paper focuses on the quantitative characteriza-

tion of cell migration in vitro using 3D cell assays in transparent

matrix gels for the purpose of screening anti-migratory drugs on

cancer cells. In the following introductory sections we present the

needs dictated by this drug screening application and a

comparative analysis of automated 3D cell tracking methods

(involving both unlabeled and labeled cells), highlighting their

advantages and drawbacks regarding those needs.
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Needs of tools for automated 3D cell tracking
In vitro cell observation has been widely used by biologists and

pharmacologists for screening molecule-induced effects on cancer

cells. In this context, 3D cell assays in transparent matrix gels have

been developed to provide more realistic in vitro 3D environments

for monitoring cell behavior and cell migration in particular [15–

18].

In this paper we propose an improved automated tracking

method that is designed to robustly and individually follow a large

number of unlabeled cells in 3D gels observed under phase-

contrast microscopy. The method automatically detects and tracks

individual cells evolving in a sequence of acquired volumes, using a

template matching filtering method that in turn allows for robust

detection and mean-shift tracking. The resulting trajectories

quantify cell migration through statistical analysis of 3D trajectory

descriptors.

This kind of information is important because cancer cell

migration is related to the spread of cancer and metastasis and is

an actual target in anti-cancer drug development. Confirming the

impact of environment on cell behavior, comparative observations

of 2D and 3D cell cultures have shown that cells can exhibit

different phenotypes in terms of gene expression, proliferation,

shape, locomotion and multi-cellular organization [19,20]. More

recently an important study [21] showed that the way cells move

inside a 3D environment is fundamentally different from the

motility behavior observed in 2D (i.e., in conventional flat culture

dishes), even if the support is coated by the same matrix than that

used to constitute 3D gels. This later study highlighted that the

shape and mode of movement for cells in 2D are merely an artifact

of their environment, which could produce misleading results

when testing the effects of different drugs on cell migration. This

evidence thus shows that observing 2D cell migration behavior

may be a poor indicator of the abilities of the same cells to move in

their natural 3D environments.

While there exist many 2D assays to monitor cell motility,

markedly fewer studies consider 3D experiments [15,16,22]. The

focus of the present study is the quantification of cell migration in

3D matrix through tracking individual cells. Our goal was to

create convenient tools for biologists and pharmacologists that

allow them to automatically extract statistically robust 3D

migration descriptors of the observed cell population from

individual cell trajectories. The comparison between the trajectory

descriptors of cell populations submitted to different experimental

conditions or treatments allows to establish whether a statistically

significant pro- or anti-migratory effect is observed. Our method is

adapted to assays where cells are relatively sparsely seeded, as we

are interested in measuring individual cells’ motion without

previously labeling cells, as detailed below. Our developments do

not address 3D assays that involve multicellular aggregates, such as

cell spheroids invading a matrix gel or other 3D substrates [23].

These latter assays usually consist of end-point studies evaluating

global invasion distances after a time period (1 or several days) but

do not consider individual cell migration. As previously discussed

in [15,16], the analysis of individual cell trajectories offers a

number of advantages such as (i) the distinction between cell

migration and cell growth (both involved in the invading process),

(ii) the identification of subpopulations of cells presenting different

migratory characteristics and/or different responses to a treat-

ment, and (iii) the possibility of detecting preferential directions

followed by moving cells (e.g., in a chemo-attraction assay). It

should be also noted that collective cell motion can be efficiently

quantified without identifying single cells, e.g., by optical flow

techniques [24].

As detailed in the next section, a few methods based on

fluorescent microscopy were developed to track a reduced number

of cells migrating in 3D gels. However, the needs of the application

dictate a large amount of data. As a 3D cell culture assay is more

difficult to set-up and observe than a 2D cell culture, it is

preferable to exploit as much available information as possible

from each 3D migration assay. Many cells thus need to be

individually and simultaneously tracked to provide statistically

valid descriptors. Consequently, large volumes have to be

observed, requiring relatively low magnification (e.g., 106
objective) and deep gel scanning (e.g., several hundred mm)

through the acquisition of 3D image stacks. In this context,

interactive tracking solutions are too tedious and fully automatic

methods are required. To be robust, the automatic method should

overcome the problems usually encountered in tracking a large

amount of cells, such as cells touching, dividing, entering and

exiting the observed field. While a number methods were

developed for tracking large populations of cells in 2D environ-

ments, comparatively few automatic 3D tracking methods are

proposed, as described in the following section. A comprehensive

review of the literature on both 2D and 3D cell tracking can be

found in [15,16,22,25].

Related studies
Usually, live cells are observed under either fluorescence-based

microscopy or contrast enhancing microscopy (such as phase-

contrast). Fluorescence-based microscopy requires cell labeling

and more complex and costly microscopes and image acquisition

systems. Various difficulties are also inherent to this technology

such as cell toxicity due to repetitive fluorophore excitations,

marker fading and problematic marker transfer during cell division

[16]. These difficulties motivated us to focus our own develop-

ments on unlabeled cells observed under phase-contrast micros-

copy. This option was little investigated in previous studies (see

Table 1)

Table 1 summarizes the few studies describing automatic 3D

cell tracking methods which are related to 3D cell culture assays. It

does not include works related to 3D reconstruction of cells

moving on 2D substrates (such as [26]). In this Table, we consider

each method using different criteria in relation with the needs

dictated by the drug screening application in focus in the present

paper (details on this analysis are provided in File S1).

As indicated in Table 1, very few methods were designed and

tested for large cell population tracking. Although very robust in

their own applications addressing biological research, the methods

proposed by [9] and [10] were designed for higher resolution cell

tracking under fluorescence microscopy (essentially targeting cell

nuclei, see S1). The approach of [12] is also designed for

fluorescence microscopy and makes use of semi-supervised

approach of dealing with errors (see S1). Besides being applied

to fluorescence microscopy, the method developed in [27] is an

online method (implemented as a microscope guiding macro) that

moves the microscope stage to track individual cells. Although [1]

handles unmarked cells, the spatio-temporal resolution used in the

reported experiments does not allow to reach conclusions about

the algorithm’s robustness in tests with standard cell density

environments. In a preliminary study [2] we presented a method

that could track a large amount of cells and detect errors when a

tracker drifted on a neighboring tracked cell. However, to be

optimally efficient this error detection scheme requires that all cells

be tracked. This was not the case in [2] because each time a

tracker drift was detected one cell was lost, thereby continually

decreasing the tracked cell count. In addition to these abandoned

cells, new cells resulting from cell divisions or cells entering the

Automatic Cell Populations Tracking in 3D Volumes
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observed volume after the tracker initialization step in the first

frame were not tracked.

In light of all these observations, we propose an improved

method that is designed to robustly follow large populations of

unlabeled cells which are observed under phase-contrast micros-

copy through small magnification (i.e., 106). This new method is

described in detail in the following section and is then validated

and applied on a real experimental application (see Results),

before concluding with a discussion.

Methods

Principles of the new method
Although based on a preliminary study [2], the new method

improves tracking performance by integrating automatic cell

detection and tracker collision management (gray boxes in

Figure 1), thereby reducing the risk of tracking errors. The cell

detection step allows to track all cells and hence to recover those

which were lost in [2], i.e., cells whose trackers drifted away or

new cells that appear in the observed volume during the

experiment. This translates practically into an increased number

of tracked cells and an improved detection ability of tracker

collisions, resulting in more accurate tracking results (see Results).

In our method we adopted the model evolution tracking

paradigm, using classic mean-shift tracking [29] because of its

simplicity (relatively few parameters to set up) and efficiency in

tracking many small objects in a large volume. Each cell is

assigned a single mean-shift kernel that is left to converge on the

data from one time step to the next, thereby establishing the

trajectories of its underlying cells.

Before starting the tracking, the entire sequence of volumes is

preprocessed by a template matching step to smooth the volume

artifacts in order to improve the convergence of the mean-shift

kernels. Smoothing the volumes addresses the difficulties of low

magnification and phase-contrast microscopy (i.e., gel and phase-

contrast cell off-focus artifacts) and makes cell detection through

segmentation possible.

Each preprocessed volume thus is segmented to detect

untracked cells and assign them new mean-shift kernels, so to

ensure all cells are tracked. Tracking all cells helps to solve the

problem of kernel drifting onto a neighboring cell because it

assures the detection of two kernels converging onto one cell.

Furthermore, the segmentation allows to initiate tracking in the

first image stack as well as of new cells that enter the volume later

or arise from cell division, and thus constitutes significant

improvement over the data reported previously [2].

Furthermore, an additional step of tracker collision manage-

ment enhances algorithm robustness regarding cell oversegmenta-

tion and tracking difficulties encountered when two cells become

too close.

Finally, we compute trajectory descriptors (e.g., cell speed and

the largest traveled distance) which are normalized by the

trajectory duration to allow comparison [16]. These descriptors

are then used to compare the migration abilities of the studied cell

populations subjected to different treatment conditions.

Acquisition of volume sequences
As previously detailed [2], the sequences of volumes in which we

track the cells are produced in the following way. A 3D migration

chamber [28], including cancer cells mixed in a collagen gel, is

Figure 1. A schematic representation of the tracking algorithm steps. The gray boxes are significant improvements with regards to our
preliminary work [2].
doi:10.1371/journal.pone.0022263.g001

Table 1. Related works on 3D cell tracking.

Authors
Cell labeling/
microscopy type Magnification Tracking technique

Developed for large
population tracking

Demou et al. 2002 [1] Unlabeled/Hoffman m. 106 Threshold-based detection and
nearest neighbour association

Yes

Rabut et al. 2004 [27] Labeled/unspecified
fluorescence m.

636 Center of mass adjustment guiding
on-line microscope stage centering

No

Dufour et al. 2005 [9] Labeled/two-photon
and confocal m.

N/A (apparently large from
illustrations)

Adapted level set No

Chen et al. 2009 [12] Labeled/
two-photon m.

N/A (field size: 2566256 mm) Mean-shift segmentation and
multihypothesis association method

No

Dzyubachyk et al. 2010 [10] Labeled/confocal m. 106/636 Adapted level set No

Adanja et al. 2010 [2] Unlabeled/phase-contrast m. 106 Pattern correlation and
mean-shift tracking

Yes

Details of the analysis are provided in File S1.
doi:10.1371/journal.pone.0022263.t001
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placed in a 37uC-heated incubator and is observed with a standard

inverted phase-contrast microscope equipped with a 106
objective, a Z-motorized stage and a megapixel digital camera.

Every 4 minutes during a period of 24 h to 48 h, a stack of 60

images is acquired, covering an observed volume with sides of

1250 mm6930 mm and 480 mm in depth, with an anisotropic

resolution of 0.78 mm along the X and Y directions, and 8 mm

along the Z direction (according to the depth resolution defined by

the numerical aperture of the microscope objective). Figures 2a–b

illustrate the acquisition process and the resulting image aspect.

Algorithm outline and tracking method details
Initially, two preprocessing steps are performed to facilitate the

rest of the tracking steps. First, we boost the contrast of the images

to remove the background noise (mostly artifacts of the collagen

gel that appear in phase-contrast microscopy, see Figure 2).

Second and more importantly, each volume is correlated with a

cell template (cf. Correlation preprocessing section). The correlation is

essentially a template matching step that provides smoother

intensity peaks coinciding with cells. The smoother gradient

around the cell peaks render the mean-shift convergence more

robust [2]. All the following steps (segmentation and tracking)

happen in the correlated volume.

The tracking is initialized in the algorithm loop by detecting all

cells. In fact, this detection stage is used at every time step to

identify new (untracked) cells. The volume is segmented using a

morphological soft maximum filter. All distinguishable intensity

peaks, i.e., isolated cells or conjoined cells, are detected in this step

(cf. Segmentation section). Each object detected as a cell is assigned a

mean-shift kernel.

At every time-step t, the mean-shift kernels are left to converge

in the current correlated volume from their previous position

identified in the t-1 volume, thereby establishing the cell trajectory

(cf Mean-shift tracking section). Kernel drifting onto a neighboring

cell can be detected when two kernels converge to the same point,

which we call a ‘‘tracker collision’’. Specific management rules

allow to distinguish the case of cells touching from that resulting

from cell oversegmentation, both causing tracker collisions (cf.

Detecting untracked objects and managing risks of tracking error section).

Detecting potential tracking errors due to cell proximity (very

small distance between two or more cells) requires that all the cells

be tracked in order that all tracker collisions, caused by the mean-

shift drift of neighboring cells, are detected.

Algorithm outline
Preprocessing step:

1) For a given microscopic setup, the user designates an isolated

cell as the cell template

2) For every volume I perform correlation with the cell template

to obtain the correlated volume Ic (Correlation preprocessing

section)

Tracking (in the correlated volume sequence):

3) If there are mean-shift trackers, let them converge in the

current volume (Mean-shift tracking section)

4) Determine the trackers that converged to the same location

(i.e., tracker collision) and remove both or only one (Detecting

untracked objects and managing risks of tracking error section)

Figure 2. Cell appearance in 3D collagen gels. (a) Cell and collagen gel aspects in an original phase-contrast Z-slice with a zoom showing the
collagen fibers. (b) Schematic presentation of the 3D time-lapse sequence acquisition. Detailed cell aspect in (c) the original phase-contrast volume
(after contrast enhancement) and (d) the correlated volume, illustrated by several Z-slices, a XZ cut plane (vertical slice) and an intensity isosurface 3D
view.
doi:10.1371/journal.pone.0022263.g002
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5) Detect all cells by segmenting the correlated volume

(Segmentation section)

6) Add a mean-shift tracker on any cell that has been detected

and does not have one yet (Detecting untracked objects and

managing risks of tracking error section)

7) Load the next volume and jump to step 3 with all the

trackers

Correlation preprocessing
The cancer cells appear in 3D gels as small bright disks in their

focal slice with growing off-focus phase-contrast interference rings.

The 3D cell pattern consists in a pair of cones squashed into each

other as illustrated in Figure 2c. The goal of the correlation is

using the principle of template matching in order to eliminate the

irregular phase-contrast artifacts around the cell and create a

smooth gradient to aid the mean-shift convergence (Mean-shift

tracking section).

Correlation was chosen over deconvolution (usual in fluores-

cence microscopy) because the latter is difficult in phase-contrast

microscopy. The reason is that the phase-contrast images result

from a non-linear optical process (merging both phase and

intensity signals) for which no linear point spread function exists

that could be used in a deconvolution process.

The correlation process is the following: a manually chosen

subvolume cropped around an isolated cell is used as a template

which is correlated with each volume of the sequence. In essence

this correlation step transforms each original volume into a volume

of correlation blobs, where the highest intensity level (i.e.,

correlation peak) inside each blob coincides with the center of

the corresponding cell in the original volume (Figure 2d).

The following equation expresses correlation volume:

Ic~(I0T)(x,y,z)~
XM

j~{M

XN

k~{N

XP

l~{P

T(j,k,l)I(xzj,yzk,zzl)

where Ic is the correlated volume, I the original volume and T the

template of size (2Mz1):(2Nz1):(2Pz1). Such a correlation is

computed using the Fast Fourier Transform algorithm.

Experiments previously reported in [2] showed that mean-shift

convergence was not significantly influenced by the choice of the

template used in the correlation step. This property also concern

cells with dramatically different morphologies from the cell

template because all cell patterns present relatively higher

intensities on their central Z-slice. This point is further illustrated

below in the case of an elongated cell. Other simpler templates

were tested, such as 3D Gaussian balls, which did not filter out the

phase-contrast rings as well as the cell template did. This is why

that approach was not investigated further.

In practice this step is a preprocessing stage performed before

the tracking and all correlated volumes are stored on disk.

Segmentation
Detecting the cells is done in each correlated volume (Ic) with a

segmentation technique based on the local maximum filter.

Detecting local maxima is necessary because the cell peak

intensities vary in the correlated volume, making a simple

thresholding inadequate. The different segmentation steps are

illustrated in Figure 3.

First, the method performs a soft maximum filter on Ic that

results in a binary mask of all local maxima. This maxima mask is

then applied to Ic. Finally, thresholding the masked Ic volume

yields a binary volume where each cell is a distinct object.

A soft maximum filter is used to isolate the intensity peaks by

setting to 1 the pixels that are close enough to their neighborhood’s

maximum intensity. It is applied to Ic pð Þ in the following three

steps (where p is the voxel coordinate vector in Ic):

m pð Þ~max Ic nð Þ n [ Np

��� �
ð1Þ

d pð Þ~m pð Þ{Ic pð Þ ð2Þ

mask pð Þ~d pð ÞvsoftThresh ð3Þ

The maximum filter (1) assigns the maximum intensity value of 3-

D neighborhood, Np, to its central voxel, resulting in m pð Þ. An

Figure 3. Cell detection in a correlated volume. Illustration of (a part of) a single Z-slice containing 3 cells in focus (pointed by arrows)
submitted to the different segmentation steps (correlated phase-contrast, mask, softMax and the final segmented volume). The magnified region of
interest shown in the upper left corner of each image is centered on the cell located in the middle of the image.
doi:10.1371/journal.pone.0022263.g003
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anisotropic 3-D neighborhood (set to 20620610 voxels), which

corresponds to a cell volume, is used to fit the anisotropic

resolution of our data.

The softThresh in (3) is the softness of the maximum filter, i.e., the

leniency (set to 5 in our 8-bit volume) with which an intensity value

is considered to be close enough to its neighborhood’s maximum.

mask pð Þ thus defines the regions where the intensities are close

enough, i.e., within softThresh, to the maximum neighboring

intensity.

By applying the mask to Ic we obtain the softMax volume in (4),

which contains all local maxima including low intensity ones

present in the background. To distinguish these later from the

actual cells in (5) we threshold softMax with noiseThresh (set to 120 in

our 8-bit volume), dictated by the minimal cell intensity in Ic.

softMax pð Þ~Ic pð Þ:mask pð Þ ð4Þ

segmented pð Þ~softMax pð ÞwnoiseThresh ð5Þ

The three parameters of the method are: neighborhood size Np,

softThresh and noiseThresh. The latter two parameters have to be

tuned with regards to the Ic volume intensities as mentioned

above. Np was set relative to cell size, so that any conjoined cells

that are close enough to merge their trackers also appear as a

single detected object. This approach allows us to detect

correlation peaks corresponding to either isolated cells or

conjoined cells. A detected peak defines a new object if there is

no tracker on it (see Detecting untracked objects and managing risks of

tracking error section). A cell tracker, i.e., a mean-shift kernel (see the

following section), is then initialized on each new object.

Mean-shift tracking
Mean-shift is an iterative procedure that seeks a local peak in a

value distribution [29]. In a grayscale volume, such as a correlated

volume, a mean-shift process converges to the nearest intensity

peak from its initial position. By this way, the mean-shift process

constructs the cell trajectory from one convergence point to the

next one (in the next volume).

More formally, let S be a data set constituted by three-dimensional

voxels, labeled s, weighted by their grayscale value, g sð Þ. Let K .ð Þ
be a kernel, centered on the origin in the n-dimensional Euclidian

space. The kernel mean is then defined as [29]:

m xð Þ~

X

s[S

K s{xð Þ:g sð Þ:s
X

s[S

s{xð Þ:g sð Þ

The mean-shift is defined as the difference m xð Þ{xð Þ, i.e., the shift

of the kernel’s current center towards its mean vector. The mean-

shift is iterated until the kernel stabilizes, i.e., the kernel shift falls

below a small distance (set to 0.01 voxel in our experiments). In our

experiments, the tracking of a cell was automatically stopped when

the cell center comes near the borders of the observed volume. The

boundaries were fixed to 10 pixels in XY (2D slice) and 5 slices in Z.

For the present application, we use a flat kernel with a size (of 7

voxels) chosen relatively to the cell size and the time-lapse

sampling interval. The average cell diameter observed on slice

images is around 15 pixels (corresponding to about 20 mm) and the

observed inter-frame cell speed is very rarely more than a cell

radius. In addition, the 3D cell appearance covers 10 to 15

Z-slices. Our previous experiments in [2] showed that mean-shift

convergence was not significantly influenced by small variations in

the kernel size (3 to 9 voxels by side), whereas an over-sized kernel

is prone to be attracted to adjacent cells.

Detecting untracked objects and managing risks of
tracking error

Tracking errors are automatically detected when two trackers

merge or exhibit strong proximity. In this latter case, the two cell

trajectories are stopped and the trackers removed because it is very

difficult, even under user supervision, to detect with certainty

which one is which. After that the volume is segmented to detect

all the distinguishable objects (see Segmentation section). By labeling

the segmented volume we can associate each tracker to its

underlying label at that position. All the labels that do not have

associated trackers are determined to be untracked. We then

initiate a new trajectory on each untracked object by creating a

new tracker in its geometrical center.

Figure 4 presents a schematized situation of two cells touching

and parting. Initially at t1 two trackers (A and B) are correctly

tracking their respective cells. At t2 the cells come too close and the

trackers collide. As opposed to the initial method in [2] we do not

automatically create a new tracker to start a sole trajectory there,

but only stop the former two. The next step in the algorithm is the

object detection. The newly conjoined cells are detected as one

object and determined to be untracked, since there is no active

tracker on it. A new tracker (C) is automatically created and will

follow the conjoined cells as one. Some time later (t3) the cells part

and the (C) tracker will stay on one of them. In the same loop, the

other untracked cell will be detected and thus assigned a new

tracker (D), thereby starting its own trajectory. The situation of

dividing cells and cells entering the volume are handled similarly

as illustrated in Figure 5 (frames 2 and 3 respectively).

However, we choose to unstop the two cell trajectories after the

collision of their tracker if one of them presents an extremely short

‘‘lifetime’’ (1–5 time frames) when it collides with a tracker

associated with a longer trajectory. The ‘‘short’’ tracker is

considered to be a ‘‘parasite’’ and is removed without affecting

the longer cell trajectory which keeps its tracker. These special

situations can result from false cell detection or cell over-

segmentation causing the erroneous initialization of a tracker

near and immediately converging to an already tracked cell. As

illustrated in Figure 6 a large number of these cell detection errors

are automatically corrected by mean-shift convergence and the

tracker collision management rules. This point is further illustrated

in File S5 which shows the successful tracking of an elongated cell.

Figure 4. Schematic illustration of tracker management when
two cell paths intersect. The timeline bellow the schematic frames
presents the start and end points of the 4 trajectories obtained in this
situation.
doi:10.1371/journal.pone.0022263.g004
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We also sometimes observe cells that move together, while

remaining close to each other and causing a succession of

trajectory intersections. These cases result in many short trajectory

parts. These trajectories are often too short to be considered in the

statistical analysis of the normalized features (see next section).

Even though these short trajectories would not impact the

statistical analyses, the cells are actually tracked and therefore

allow us to detect potential collisions with others.

Analyzing trajectories
When the tracking is done, we summarize each trajectory by

features such as the maximum relative distance covered by the cell

from its origin (MRDO) or the average cell speed [2,30]. The

value distribution of such a feature characterizes a cell population.

The goal in migration studies is to confront the feature

distributions of cell populations submitted to different experimen-

tal conditions and to detect significant differences among them.

The usual migration indicators, such as MRDO and average

speed, are relative, i.e., they are distances normalized by the

trajectory durations in order to make them comparable. The

corollary is that short cell follow-ups increase the risk that the

trajectory features are noisy and exhibit outlying values. To avoid

this problem and to be biologically relevant for applications of drug

screening, trajectories with too short follow-ups are filtered out by

arbitrary fixing a minimal trajectory duration (i.e., at least 3h, i.e.,

45 frames, of cell follow-up in our experiments). The chosen

threshold allows to discard the outliers directly related to short cell

follow-ups in the feature value distributions (data not shown).

Results

This section begins by validating our new tracking approach on

real biological sequences in 3D collagen gels. First, we validate the

efficiency of the cell detection step. This first verification is

important because the premise of our error detection step is that

all cells are tracked. Second, we validate the complete tracking

process by (i) showing that detecting (nearly) all cells improves

automatic error detection with regards to our previous method [2]

and (ii) quantifying the number of remaining tracking errors

through manual supervision. Finally, we applied our approach on

real biological experiments testing the impact of matrix compo-

nents on cell migration abilities. All the analyzed sequences were

recorded with the setup described above (see Acquisition of volume

sequences).

Cell detection validation and collision management
First, we manually identified 283 cells as test cells across 12

volumes and checked whether they were detected by our

automatic phase-contrast based detection scheme. Of them, 27

(i.e., 9.5%) were not detected because their intensities in the

correlated volume were below the detection threshold (c.f.

noiseThresh in equation (5)). These weaker cell peaks are less

prone to cause tracking errors because less able to attract a mean-

shift kernel tracking a neighboring cell exhibiting a stronger peak.

It should be noted that a cell being undetected at time t (because of

its weak intensity peak) will be detected as soon as the signal

intensity rises above the detection threshold.

Second, we validated that the detected objects by our method

are indeed cells. We extracted the images of 366 objects detected

as cells by our method and inspected them manually. All of them

were confirmed to be cells.

In a subsequent validation step, we monitored cases of cell

tracker collision and observed very few detection errors. These

errors either consist in cells detected twice or are due to artifacts

occurring between neighboring cells. As illustrated in Figure 6, the

Figure 5. Detection of new cells in a volume sequence. The new cells result from (frame 2) a cell division or (frame 3) a cell entry into the
observed volume. The trajectories are rendered on (1a–3a) the average intensity Z projections from the correlated volumes and (1b–3b) the
corresponding intensity isosurfaces (3D view).
doi:10.1371/journal.pone.0022263.g005
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situation where an elongated cell is detected twice is often and

rapidly solved by the tracking process because the two peaks

usually do not last long. This figure illustrates the best case where

the secondary tracker (red dot) has a short trajectory before

merging with the primary one (blue dot) on the cell body and is

thus dealt as a parasite. In the worst scenario the secondary tracker

has a longer life span and therefore prematurely stops the longer

trajectory which correctly tracked the cell body. In rare other

circumstances phase-contrast artifacts of two neighboring cells

optically interact and reinforce the signal to create an intensity

peak in the correlated volume at several Z-slices off focus. This

peak is sometimes bright enough to be detected as a cell (see

Figure 7). When the cells move away, the falsely detected tracker is

attracted to one of the neighboring cells. This error is detected and

the trajectories are stopped. Because these false trajectories are

short they are either dealt as parasites or (if a bit longer)

automatically filtered out the statistical analysis.

All this data shows that our new method is able to accurately

detect cells in phase-contrast volumes as well as to correct

detection errors by collision management.

The new tracking method successfully tracks numerous
cells and detects error risks

In this section we highlight the improvements brought by our

new method with regards to [2]. More particularly, we show that

the cell detection step strongly increases the number of tracked

cells in a volume sequence. In addition to improve the statistical

power of the extracted trajectory data, this increase also enhances

the method ability to automatically detect close cells which risk to

cause tracking errors. Finally, we globally validate our new method

by quantifying its error rate based on the manual inspection of a

subset of 100 trajectories.

Improvement of cell tracking quality due to the cell

detection method. As quantified above, our cell detection

method is very efficient and thus ensures that the tracker drifts are

detected. In comparison, the absence of this detection step in [2]

causes the systematic decrease of the number of tracked cells with

each collision (due to the loss of one of the two interacting cells) in

addition to missing new ones that appear in the observed volume

after the first frame. All these aspects strongly reduced the capacity

to detect collisions and therefore potential tracking errors.

To quantify the benefit of the new method, we tracked the cells

in a given volume sequence and divided the obtained cell

trajectories in two sets. Set1 is the set of the trajectories generated

without using the additional cell detection step (like in [2]). It is

thus constituted of the trajectories initialized in the first frame and

those emerging from a collision between two Set1 trajectories (only

one new trajectory was initialized after a collision). Set2 collects all

the other cell trajectories which are initialized later in the sequence

thanks to cell detection. There were 98 trajectories in Set1 and 507

in Set2.

Out of the 98 trajectories in Set1, 33 of them had a collision

with a Set2 trajectory. These collisions represent 33 possible mean-

shift tracker drifts that would be missed without the use of the

segmentation step because only one of the two interacting cells was

tracked. Throughout the sequence, these collisions progressively

decreased the amount of unstopped trajectories in Set1 (i.e., those

without risk of tracking error), as illustrated in Figure 8. This figure

also shows that in Set2 the trajectories are initiated equally

throughout the sequence, causing a progressive increase in the

Figure 6. Tracking of an elongated cell. An elongated cell (blue dot) spawns a second parasite tracker (red dot) on a body extension (on the cell
tail before its retraction when migrating). The secondary tracker is discarded as it converges onto the cell’s original tracker within a couple of frames.
The images show Z-slices centered on the cell in the phase-contrast (1st row) and correlated (2nd row) volumes. The timeline below the images is
similar to that in figure 4.
doi:10.1371/journal.pone.0022263.g006
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total number of tracked cells. These results clearly show the benefit

brought by continuous cell detection in our new method.

Performance evaluated from a posteriori supervised

trajectories. In a global way, we verify that the cell trajectories

extracted by our new method have a low error rate by manually

inspecting a set of automatically provided trajectories. We randomly

took 100 trajectories from a pool of cell trajectories that were

tracked for at least 3 h (long enough to be considered for statistical

analysis). Based on the extracted cell trajectories, we generated a

film centered on each cell position and inspected it manually to find

whether the cell was correctly tracked. Examples of these movies are

shown in supporting information and illustrate that our method

successfully tracks cells, even in the case of a cell close to another

(File S2). Supervision evidenced that only 6 trajectories of the 100

had errors. Those errors consist of either the tracker erroneously

following an artifact (2 cases) or close cells incorrectly followed (4

cases).

Real application
As an illustration of real applications of large cell population

tracking, we present a biological experiment aiming to evaluate

the impact of the matrix composition on brain cancer cell

migration. Different studies have suggested that hyaluronic acid

(HA) is a critical factor in the extracellular matrix of the brain for

cancer cell invasion [31,32] and could be a potential pharmaco-

logical target [33]. In order to evaluate the impact of HA on 3D

migration of brain cancer cells, four experimental conditions of 3D

collagen gels were set up with increasing proportion of HA, as

described in Table 2, all supplemented with fetal calf serum (10%)

and culture medium (48%). Human U373 glioblastoma cells

(glioblastoma is one of the most invasive types of brain cancer)

were mixed in these liquid gels before polymerization in 3D

migration chamber, as previously detailed [2].

The volume sequences (of 323 frames, i.e., about 1 day, for

practical reasons) extracted from the different gel conditions were

tracked using our new method. Figure 9a illustrates the trajectories

obtained in control (p42h0) and an HA condition (p24h18).

Further video illustrations of the latter condition can be found in

File S3 and File S4. Trajectories longer than 3 h were used to

extract the average speed and the MRDO features. Their

distributions displayed per condition are shown in Figure 9b

which evidence significant dose-response cell migration behavior

(Kruskall-Wallis test: p,0.001). These data validate the expected

pro-migratory effect induced on U373 cells by increased levels of

HA in the cell microenvironments

Discussion

We have presented a method that automatically and efficiently

tracks large populations of unmarked cells in phase-contrast

volume sequences. Our approach was motivated by the biologists’

and pharmacologists’ needs for a videomicroscopic assay in a 3D

environment that would provide statistically relevant amounts of

cell migration data. This is the reason why we opted for a method

able to efficiently track individual cells in sequences of low

magnification phase-contrast volumes.

Based on a previous work [2], the essential novelty of the

presented method is the significantly improved robustness due to

the addition of both continuous cell detection and tracker collision

management that directly impact tracking quality. As described in

the method, trajectories are successfully extracted until cells cross

paths, whereby trajectory collisions are automatically detected and

the trajectories are intentionally stopped to preserve validity

(except in special cases of ‘‘parasites’’). Manual tracking in low

magnification sequences showed us that in a lot of tracker collision

cases expert inspection could not discern trajectories (or did with

great difficulty) after cells were mangled. There are probabilistic

approaches that rebuild trajectory trees (e.g., [34]) from sets of

partial trajectories. However we did not use such a trajectory post-

processing method because we deemed that the improvement

would not outweigh the added inaccuracy (based on reports of

80% accuracy in [9]).

Having been developed for labeled cells observed under

confocal (or two-photon) microscopy, other methods using level

set tracking [9,10] appeared to be inappropriate in our use cases.

The level-set methods define object boundaries, which are not

clearly determined in phase-contrast volumes (due to the presence

of off-focus artifacts). Furthermore, in situations of cell proximity,

level-set approaches require accurate cell segmentation to avoid

the level-sets from degenerating onto neighboring cells [10]. Such

accurate segmentation is not possible in low resolution phase-

contrast volumes and would thus cause error accumulation in a

cell tracking process.

Another alternative approach, combining cell segmentation

and inter-frame association [1], relies on flawless object detection

Figure 7. False cell detection due to phase-contrast interfer-
ences. The Z-slices of the phase-contrast (top) and correlated (bottom)
volumes are centered on phase-contrast interferences falsely detected
as a cell (blue dot). The actual cells are visible in the phase-contrast slice
as dark elongations touching.
doi:10.1371/journal.pone.0022263.g007

Automatic Cell Populations Tracking in 3D Volumes

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e22263



and thus requires very sparse cell seeding to be efficient. Failing

to detect a cell or cell oversegmentation at a given time-step

would directly impact the inter-frame association, causing

tracking errors. Including cell features into the inter-frame

association can help improve association robustness as far as

these cell features exhibit a certain level of inter-frame stability

[12]. No such stable feature was identified in our correlated

volume sequences. We project to extend this kind of investigation

in initial phase-contrast volumes (see below), as well as on the

extracted cell trajectories, in order to possibly identify stable cell

features. These features could enable tracker collision manage-

ment to be improved in case of cell crossing, i.e., without

requiring trajectory stopping.

In our approach, the detection step in correlated volumes is only

used to initiate mean-shift trackers when none are present. Our

detection scheme does not provide flawless detection: cell

intensities may fall bellow detection threshold, two cells in close

proximity may be detected as one object or one cell may be

detected as two objects. We solved these problems by using a

mean-shift process, which robustly follows the cell intensity peaks

and thereby performs inter-frame association, combined with

tracker collision management in order to extract valid cell

trajectories.

In view of the quality of the obtained trajectories, it is possible to

extract small 2D image sequences centered on a single cell

migrating in a 3D environment (as illustrated in Files S5, S6 and

S7). This method output allows biologists to easily observe cell

behavior as well as cellular morphology and their variations with

time. One of our future research goals is to automatically extract

and analyze the cell shape and its dynamics to enrich the

quantitative comparison of cell population behavior with mor-

phological descriptors. Even though cell segmentation is a complex

task in 3D phase-contrast image stacks, we can reasonably expect

that the 3D cell center locations provided by our tracking method

should strongly help to extract cell boundaries and thus

morphology features. In this way, we could also identify stable

cell features which would allow to improve cell tracking, as

mentioned above in this discussion.

Our tracking method could also be adapted to analyze volumes

acquired with digital holography microscopy (DHM). This

relatively new microscopy technology is able to produce volumes

Figure 8. Number of active cell trajectories across a sequence. Set1 collects trajectories which are generated from the 1st volume without
additional use of the cell detection step in the next volumes. Set2 collects all the other cell trajectories which are initialized later in the sequence
thanks to this detection step. The graph shows the number of active trajectories (i.e., which are not stopped because of a collision with another cell
tracker) in each set, and their union, over time.
doi:10.1371/journal.pone.0022263.g008

Table 2. 3D gel compositions in the different experiments.

Experiment name Collagen (3 mg/ml) Hyaluronic acid (3 mg/ml)

p42h0 42% 0%

p38h4 38% 4%

p30h12 30% 12%

p24h18 24% 18%

Collagen was provided by PureColTM (Nutacon, Netherlands) and hyaluronic
acid was kindly provided by Auriga International (Braine-l’Alleud, Belgium).
doi:10.1371/journal.pone.0022263.t002
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similar to the phase-contrast microscopy ones, without requiring

optical Z-sectioning, thanks to a computer-based in depth

refocusing ability [3]. A sample hologram recorded with a CCD

camera is numerically reconstructed to provide a stack of slice

images refocused at incremental depths. The main advantages are

a reduction in the amount of data to be stored, the time required

to record the full 3D information and strong Z-resolution

improvement [3]. Studies have shown that DHM enables

marker-free 3D cell tracking [3,4]. However, this technology is

not widely used yet and requires tests and validation in the context

of robust automatic tracking of large cell populations moving in

3D volumes.

Finally, our algorithm was developed in Python using its

standard scientific libraries. In the present version, the total

processing time (on a modern desktop computer) of one volume

with hundreds of trackers is around 2 minutes, which is half of the

4 minutes time-lapse step used for acquisition. A refactored

version of our source code is under development and is not yet

publicly available. We will publish it under a free software license

as soon as it is ready for public use (with an API and usage

examples).

Supporting Information

File S1 The detailed analysis of the related works
summarized in Table 1.
(DOC)

File S2 Video of tracked cells showing trajectories when
cells cross paths and then part (Z projection computed
using the mean intensity).
(AVI)

File S3 Video of a tracked volume sequence (Z projec-
tion computed using the mean intensity).
(AVI)

File S4 Video of trajectories rendered in a volume (the
aspect ratios of the volume size are not respected).
(AVI)

File S5 Video showing volume (dimension in voxels:
100610065) centered on tracked cells, allowing the
observation of the cell morphology (Z projection com-
puted using the mean intensity).
(AVI)

Figure 9. U373 cancer cell trajectories and the extracted features characterizing 3D migration behavior. (a) These trajectories are
observed on the complete sequences in the absence (p42h0) or presence (p24h18) of 24% of HA in the collagen gel (b) The features (labeled on the Y
axes) quantify the migration abilities of U373 cells in 3D gels which included a progressive increase of HA amount (see Table 2). The data distributions
are presented by their median (square), inter-quartile range (box) and non-outlier range (bars).
doi:10.1371/journal.pone.0022263.g009
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File S6 Video showing volume (dimension in voxels:
100610065) centered on tracked cells, allowing the
observation of the cell morphology (Z projection com-
puted using the mean intensity).
(AVI)

File S7 Video showing volume (dimension in voxels:
100610065) centered on tracked cells, allowing the
observation of the cell morphology (Z projection com-
puted using the mean intensity).
(AVI)
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