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Abstract: The use of assistive technologies can mitigate or reduce the challenges faced by individuals
with motor disabilities to use computer systems. However, those who feature severe involuntary
movements often have fewer options at hand. This work describes an application that can recog-
nize the user’s head using a conventional webcam, track its motion, model the desired functional
movement, and recognize it to enable the use of a virtual keyboard. The proposed classifier features a
flexible structure and may be personalized for different user need. Experimental results obtained
with participants with no neurological disorders have shown that classifiers based on Hidden Markov
Models provided similar or better performance than a classifier based on position threshold. However,
motion segmentation and interpretation modules were sensitive to involuntary movements featured
by participants with cerebral palsy that took part in the study.

Keywords: human–computer interface; human movement analysis; cerebral palsy; hidden Markov
model; assistive technology

1. Introduction

The use of computers, tablets, and similar devices is generalized in society. By enabling
people to expand their communication possibilities and improve productivity at work,
such systems are increasingly part of our daily lives. Nevertheless, to operate conventional
keyboards and mouses on computers and laptops, and touchscreen interfaces on smart
mobile devices, finger dexterity and range of movement is often a requirement. Hence,
millions of individuals worldwide, who lack the ability to control the upper limbs, may not
fully experience the functions provided by these devices. The implications of this may be
particularly important for children and young adults [1].

Solutions that allow the use of computer systems by a person with disability in
order to communicate are referred to as Augmentative and Alternative Communication
(AAC). Each individual will adapt himself and use a AAC device based on assessment of
cognitive and physical condition. Mechanical switches, switch activated mouses, and sip-
and-puff devices are examples of popular systems that deliver input to human–computer
interfaces (HCI) that control virtual keyboards and other applications providing means to
communication (written or with synthesized speech). In addition to enable use of computer
systems, these sensor modalities may also enable control of powered wheelchairs and
smart environments, for instance [2]. Nonetheless, despite their ease-of-use, robustness,
and reduced cost, mechanical switches present limitations, such as the need to re-position
the sensor if the body posture changes, and the requirement of complex mounting structures
fixed to the wheelchair [2].
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For those conditions in which the individual presents only head and facial functional
movements, systems based on eye and head tracking are valuable alternatives, particularly
if no markers are required. Among the markerless solutions already available for the user,
some require specialized hardware in order to track eye movement, such the Tobii eye
tracking systems (Tobii, Sweden). However, despite positive evaluation from parents [3]
in a pilot study, they require the user to maintain firm sitting position and avoid gross
head movements for suitable operation. Hence, for some individuals, such as those with
dystonia, spasticity, or pathological tremor, these solutions are not functional. Furthermore,
since most computer systems currently feature onboard cameras and thus enabling the
design of an AAC device with no additional hardware, such AAC systems are costly when
compared to other alternatives.

Concerning markerless systems that employ a conventional webcam, software is also
available that enables head tracking and estimating the corresponding cursor movement.
Indeed, systems that rely on cameras to enable HCI using head tracking feature additional
advantages, mostly related to the wide availability of cameras in modern devices. However,
they share similar limitations to eye tracking systems. Hence, solutions, such as the
Headmouse (Universitat de Lleida, Spain) [4] require fine control of head movements.
These limitations may likely persist even if novel sensing technologies (e.g., Kinect, as in [5])
or computer vision tracking tools (e.g., [6–8]) are used with this purpose.

Based on the literature, for users who feature involuntary movements or disability
that interfere with head movement, there is no viable alternative to the best of authors
knowledge of computer vision based systems enabling effective AAC. In this scenario,
in this work we propose applying head tracking using computer vision alongside gesture
recognition methods for enabling robust detection of specific head movements that are
then used for AAC. In particular, two user intent detection approaches are proposed and
compared experimentally in this paper: while one relies on simple position thresholds,
the other is based on Markov modeling to characterize and recognize appropriate move-
ments. Experimental studies have been conducted in two groups, namely participants with
disabilities and participants presenting no neurological impairments. The experimental
protocol has been designed to enable evaluating the overall feasibility of the method, as well
as its performance, particularly in terms of minimizing false positives.

This paper is organized as follows. Section 2 presents the method, including infor-
mation on participants and experimental protocol, as well as a detailed description of the
proposed HCI system based on computer vision and intention classification. Experimental
evaluation is presented in Section 3, including data from individuals with cerebral palsy
(CP) and participants with no neurological disorder. These results are discussed in Section 4.
Finally, we draw conclusions and discuss future works in Section 5.

2. Materials and Methods

The AAC system proposed in this paper relies on the coordinated performance of
distinct methods, which are described in this Section. Information regarding recruitment
and experimental protocol are also provided here.

2.1. Subjects and Protocol

Six subjects in total were recruited for this study, four participants with no neurological
disorder (group A, three males) and two participants with cerebral palsy (group B, two
males). The research was approved by the Ethics Committee at the SARAH Network
of Rehabilitation Hospitals and registered in Brazilian National Committee in Research
Ethics (CONEP) with CAAE number 15055513.6.0000.0022, in accordance with the Helsinki
Declaration. All volunteers signed an informed consent form.

Participants from group B who participated in the study presented heterogeneous
features in terms of movement disorder. Although participant B1 featured involuntary
movement mostly described as choreodystonia, participant B2 presented mostly choreoa-
thetosis. Both participants had previous experience in using mechanical switches for AAC.
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Group B participants were explicitly recruited to evaluate system performance when users
present intense dystonia. Group A participants were selected to enable assessing system
performance when users present no involuntary movement, a condition that represents
several targeted clinical populations.

The study consisted of trials in which participants were given explanatory information
on the protocol and then seated comfortably in front of a computer screen with a webcam
(640 × 480 pixels resolution). A mechanical switch was positioned next to the participant’s
head, in order to control a virtual keyboard with scanning control scheme. Each participant
then performed head movements that triggered the mechanical switch in order to write
a predefined sentence. Sentences were defined such that the expected duration to type it
was similar for participants in groups A and B. Participants were instructed to focus on
head movements, particularly side-bending and flexion, but trunk movements were also
allowed. Group A participants executed complementary movements guided by a orange
sphere randomly placed next to the participant’s head by the researcher conducting the
experiment. This additional step was included to enable evaluating head detection and
tracking performance in the presence of head motion that should not generate writing
(i.e., invalid movements). All movement was registered, as well the reference valid
movements obtained from the mechanical switch activation, for further analyzing the
proposed HCI system.

2.2. Head Detection and Tracking

Face detection is the first stage within the head tracking method employed in this
work. Its implementation is obtained using a Viola–Jones classifier trained to vertical face
recognition [9].

Among the candidates for the user’s face, only the largest rectangle is analyzed. We
assume that the user is positioned in front of the webcam and thus he is the person closer to
the camera. This approach allows multiple individuals to be present in the image, with no
compromise to function.

At the end of this stage, both the rectangle dimensions that delimits the user’s face,
sh0 = (wh0, hh0), and the corresponding position of this rectangle, ph0 = (xh0, yh0), are
obtained. For each different position of the user in the image, either in the plane (x, y) or
in relation to distance from the camera, different sh0 and ph0 may be obtained. However,
this variability is unsuitable for tracking. For this reason, two additional operation are
performed on the reference image: scaling and centering. The scale factor is calculated
to generate a region of interest whose width is three times wh0. Both operations are then
performed for every frame of the acquired video.

Head tracking is then implemented using primarily the mean shift algorithm, particu-
larly employing the posterior probability measure as a similarity measure [10] modified to
work with colored images coded in HSV domain. Among the implementation choices in
this stage, the rectangle dimensions are reduced in 20% to partially remove the user’s hair
and the search region is defined as 50% larger than the original scaled rectangle.

Furthermore, since this estimate will often be affected by noise and other error sources
related to lighting and inherent limitations of the method, a Kalman filter is used for addi-
tional filtering. In this case, a constant-velocity model is employed, and the corresponding
covariance matrices were selected empirically to improve motion segmentation perfor-
mance. Figure 1 illustrates both reference detected position and estimated tracked position.

2.3. Motion Segmentation and Classification

Motion segmentation is used with the goal of reducing the amount of data that require
classification and also to determine the segments candidates that represent functional
movements. Our approach was conceived based on the methods proposed in [11,12].
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Considering head velocity estimates provided by the Kalman filter, segmentation
is performed based on a zero velocity cross approach, where the following quantity is
calculated to combine the effects of x and y trajectories:

ε = ẋ2
h + ẏ2

h. (1)

In this work, only reaching movements followed by return to the reference position are
considered as potential input to the system. Hence, we have implemented a finite-state ma-
chine to detect, based on ε, one peak detected between two valleys, which then represents
the segmented movement.

Two different methods were used to classify a movement as functional (also referred
to as valid in this context). Although one method is based on a x-axis position threshold,
the other is based on Markov modeling, which potentially enables more complex and
accurate modeling of the functional movement.

For implementing the first method, i.e., detecting the functional reaching movement
based on a horizontal threshold xt, motion segmentation is not required. xt, which is defined
in relation to the reference head position xh0, is calculated during an initial calibration phase
based on maximum displacements when performing the reaching movement, max (xh).
In this works, we have used the average when performing 10 reaching movements. The
threshold xt is defined as 20 pixels closer to the reference position, as illustrated in Figure 1.
Since the user may perform reaching movements towards any direction, both positive and
negative xt are possible.

(a) (b) (c)

Figure 1. Illustration of head tracking and threshold-based movement classification. The green
rectangle represents the reference position, denoted by sh0 and ph0, while the red rectangle illustrates
the current estimated position. (a) illustrates the initial position, (b) the definition of a position
threshold xt (yellow line) based on max (xh) (red line), and (c) the user moving his head to control
the virtual keyboard.

The second method is based on the understanding that the reaching movements
are composed of stages. The approach firstly involves obtaining the Hidden Markov
Model (HMM) using segments representing valid movements. Based on these segments,
clustering using k-means was employed to obtain the statistics of each stage that compose
the functional movement sequence. Four-state HMMs were chosen to represent the desired
movements, and hence the number of possible clusters was set to four. Next, the probability
density functions of each cluster were used as an initial estimate of the state observation
matrix B. Finally, the corresponding transition matrix A and the initial distribution π are
estimated using the Baum-Welch algorithm. This procedure was applied for three different
feature vectors evaluated in this work: head position (HMM-P), velocity (HMM-V), or both
(HMM-PV).

Identifying valid movements using the HMM-based method is primarily accomplished
using the log-likelihood, ls. Furthermore, early trials indicated influence of the segment
length, ns. This joint measure ψ = [ls ns]T is the basis for detecting valid segments.



Sensors 2022, 22, 435 5 of 10

The normal distribution of ψ obtained using valid segments is calculated, and the corre-
sponding Mahalanobis distance to ψ given by a measured segment is used for classification.

2.4. Data Analysis

The main outcome measure in this work was obtained using the receiver operating
characteristic curve, or ROC curve. In a ROC curve, the corresponding threshold is varied
to generate the corresponding true positive rate (TPR) against the false positive rate (FPR) ,
which were both calculated based on the ground truth (i.e., activation of the mechanical
switch). In the HMM-based method, the threshold refers to confidence level employed
on the null hypothesis testing using the Mahalanobis distance. Finally, the area under the
curve (AUC) is used to provide a quantitative measure of each classifier.

Furthermore, regarding the HMM-based method, evaluation of preliminary results
generated in this study was performed using 3-fold cross-validation, where a third of
collected data were used for validation at each iteration.

3. Results

Table 1 lists the main result in this proof-of-concept study. The AUC calculated
for every participant using both movement intent detection methods are listed. For the
HMM-based method, results obtained for each evaluated feature vector are included.

Table 1. AUC for each participant and every user intent detection method.

Participant HMM-PV HMM-P HMM-V Position Threshold

A1 0.997 ± 0.008 0.997 ± 0.007 0.997 ± 0.008 0.964 ± 0.030
A2 0.916 ± 0.061 0.846 ± 0.132 0.976 ± 0.03 0.94 ± 0.146
A3 0.981 ± 0.055 0.829 ± 0.281 0.982 ± 0.017 0.995 ± 0.021
A4 0.866 ± 0.198 0.817 ± 0.236 0.853 ± 0.18 0.926 ± 0.146
B1 0.657 ± 0.096 0.642 ± 0.315 0.62 ± 0.348 0.892 ± 0.163
B2 0.772 ± 0.389 0.78 ± 0.425 0.779 ± 0.599 0.947 ± 0.016

Additionally, Figures 2–5 illustrate intermediate signals and ROC curves generated
with the experimental data. In particular, Figure 2 serves to illustrate the performance
obtained using the head tracking method proposed in this work.

Figures 3 and 4 depict, respectively, the motion segmentation method and the threshold-
based classification method. In Figure 3, the detection of each segment (described in
Section 2.3) is illustrated by the segment counter, which is incremented once the finite-
state machine detects a peak between two valleys in ε. Regarding the threshold-based
method, Figure 4a illustrates cases where the threshold-based method performs satisfacto-
rily, while in Figure 4b one false positive occurs (first positive movement) among a total of
six detected segments.

Considering the Table 1 and Figure 5, while the performance between HMM-based
and threshold-based classifiers may seem similar at first, in some cases the HMM (and
in particular HMM-PV and HMM-V) performance in terms of low FPR stands out an
important feature.

Table 1 also shows similar AUC was obtained for participants A1, A2, and A3. For par-
ticipant A3, the lower performance by HMM-P possibly is due to the lack of velocity-
dependent features. The corresponding transition matrices have shown that HMM-PV and
HMM-V often generate classifiers with higher capacity of generalization.

For users A4, B1, and B2, issues were observed in the generation of training segments
with a substantial number of samples. For A4 the main problem was possibly the proximity
of the mechanical switch to the user’s face. For B1 and B2, the presence of involuntary
movements prevented the acquisition of longer segments, deteriorating the performance of
the HMM-based method for all features (as illustrated in Figure 5b. Nevertheless, it may
also be observed that the performance of the threshold-based classifier also deteriorated
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due to variations in range of valid motions. For participants in group B, this often occurred
because the switch was often pushed with intense force, shifting its position. Since partici-
pant B2 featured a more controlled movement, a better performance was obtained for all
classifiers when compared to participant B1.
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Figure 2. Illustration of head tracking performance, both in terms of position (top) and velocity
(middle). Corresponding activation of mechanical switch is also depicted (bottom).
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Figure 3. Example of motion segmentation based on ε, including corresponding segment counter.
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Figure 4. Sample classification results when using the threshold-based method. In (a) four succes-
sive reaching movement are successfully detected, while in (b) false positives due to involuntary
movements are depicted.
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Figure 5. ROC curves obtained for participants (a) A2 and (b) B1. All classifiers are compared using
3-fold cross-validation.

4. Discussion

To the best of the authors knowledge, this paper presents a first attempt to implement
an AAC system using head tracking and user intent recognition based on HMM. Neverthe-
less, while the proof-of-concept experiments helped us to evaluate the overall usability of
the system, some of the potential limitations became evident.

The group of people who activate mechanical switches employing head movements
to use a computer is the target population in this study, particularly the subgroup that
also features involuntary head movements. This is also an important advantage of the
approach proposed in this paper, since little training is expected to use the system, since
similar movements as those required to operate the switch are employed as input in this
work. Another fundamental feature of our solution regards the low technical requirements.
Indeed, the two hardware elements required in the system are a simple webcam to acquire
images of the user and a basic computer to run the software application that interprets the
head movements to enable control of virtual keyboard.

One specific challenge in systems that enable control of virtual keyboards, particularly
when sweep scanning mode is used, refers to false positives (e.g., selecting a wrong
character when using a virtual keyboard). Indeed, often a high number of additional steps
need to be performed by the user in virtual keyboards or general AAC software whenever
a false positive occurs. This issue becomes a larger concern if we consider that voluntary
activation often demands a high level of user concentration, as well as being physically



Sensors 2022, 22, 435 8 of 10

demanding. These are the fundamental reasons of our concern to reduce the number of
false positives generated by the system.

In this work, evaluation of performance was based on tests where participants were
instructed to type predefined sentences using mechanical switches activated by their head
movements. Video was also recorded, which enabled comparison between the various
methods based on computer vision proposed in this work with the assistive device that is
commonly used by this population (i.e., mechanical switches). Nevertheless, it also means
that we have not formally evaluated each individual component of our algorithm, such as
the tracking and segmentation routines. Although preliminary data indicating satisfactory
tracking performance is presented in Section 3, analysis of segmentation performance is
indirect, based on final classification results.

Regarding the classification in this work, we have proposed two different user inten-
tion detection systems. The first is based on a head position threshold, while the second
is based on Markov models. Both systems are trained from movements labeled as valid,
which are identified when the user is writing a sentence using a mechanical switch and an
on-screen keyboard using sweep scanning mode. The threshold-based method draws clear
inspiration on mechanical switches. The modeling of functional movement is performed
based on the expected range of motion alone. However, involuntary movements of the
same range are treated in the same way (e.g., Figure 4b), effectively limiting the usability
of the method for certain populations who present levels of involuntary movement that
overlap the assigned threshold.

Although the threshold-based method may rely on the horizontal estimate of head
position only, this is not the same for the HMM-based method. Clearly, computer vision
tracking systems can provide further information in addition to the x-axis position of an
object. Using the Meanshift algorithm based on the PPM similarity measure, we estimated
the user head position, estimating velocity and position in two dimensions. Although other
techniques could be used to enable head tracking, often providing other variables, such as
head orientation, in this work we hypothesized that a simple but robust tracking would
provide sufficient performance.

The application of a Markov chain proved to be extremely flexible, while simulta-
neously requiring few initialization parameters. The main parameters defined were the
number of states, i.e., four, and the use of observable data sampled from a continuous
distribution. The model training employs data from valid movements alone, and the
classification of a given movement by the model is performed using a continuous variable
that represents the probability of this movement being represented by the chain.

For participants who do not experience involuntary movement (i.e., group A), the per-
formance of the HMM classifiers surpassed in some cases the threshold-based classifier.
That may have occurred due to the incorporation of an actual model of the valid movement,
which is the basis for disregarding involuntary movements of similar amplitude. However,
participants from group A who featured very small functional movements generated valid
segments with few samples (e.g., A4). In these cases, the resulting model often presented
more than one state that do not allow transition to others states.

For participants who present involuntary movements (i.e., group B), the training of
the Markov model was affected by limitations in the segmentation algorithm employed
in this work. Functional movements were split due to the sudden change in speed, such
as depicted in Figure 4, generating once again segments of valid movement with few
samples. The higher number of invalid segments generated by involuntary movements
finally increased the number of false positives obtained for these data. We can infer that,
based on these results, this use of this specific classifier for this population is unfeasible.

Based on these factors, one possible conclusion is that in this work we could not fully
assess the hypothesis that the higher-dimensional representation of movement in HMM-
based classifiers (i.e., displacement and speed in x and y, in comparison to displacement in
x only) generates improved AAC systems. Involuntary movement not only compromised
the performance of the threshold-based method, but also the HMM-based method, demon-
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strating how the modeling adopted in this work may have been insufficient to detect the
volitional movement. Indeed, users with disabilities featured head movement patterns that
were barely perceptible to the naked eye, which also lead us to infer a higher-dimensional
model might be required to provide correct classification.

In order to minimize the issues related to the segmentation performance, we under-
stand that solutions that allow the creation of segments with a larger number of samples
may enhance the classification accuracy of HMM-based methods, particularly decreasing
the rate of false positives. Nevertheless, given the issues discussed here, further methods to
take into account the effect involuntary movements should be considered to enable robust
replacement of AAC based on mechanical switches, particularly for those individuals with
severe movement disorders. One of such methods would involve modeling the involuntary
movement itself, such as in [13,14], while another approach would involve providing a more
comprehensive framework for defining head movements to operate the HCI, such as in [15].

Lastly, while a writing task was used in this work to evaluate the feasibility of the
proposed HCI system, in our research group we are interested in evaluating similar methods
in other AT scenarios. Some examples applications involve human–robot interaction [16,17]
and wearable systems [18].

5. Conclusions

The availability of easy-to-use AAC systems based on tools from computer vision may
produce a high impact on the quality of life of individual with severe motor disabilities.
Nevertheless, alternatives are scarce for those who feature intense dystonia, a common
manifestation on children and young adults with CP. In this work, we have presented a
self-contained method developed using open-source libraries that enables tracking head
movements and detecting user’s intent, which may then be used to control a virtual key-
board or other system. An experimental proof-of-concept study was conducted involving
participants with CP and subjects with no neurological disorders. The obtained results
have indicated satisfactory outcome for both techniques compared in this paper, whereas
the performance was reduced whenever intense involuntary movement occurred.
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