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Abstract: Submerged macrophyte restoration and in situ phosphorus (P) passivation are effective
methods for the control of internal P loading from sediments. This study explored the synergistic
effects of Vallisneria natans and iron (Fe)-oxidizing bacteria (IOB) on internal P loading from eutrophic
freshwater lake sediments by taking into account Fe-bound P (FeP) formation and associated bacte-
rial community structures. Sediment samples were prepared in glass tanks under four treatments,
namely no V. natans planting or IOB inoculation (control), planting V. natans without IOB inoculation
(Va), planting V. natans with IOB inoculation (Va-IOB), and planting V. natans with autoclaved IOB
inoculation (Va-IOB[A]). Compared with the control, all three treatments with V. natans (Va, Va-IOB,
and Va-IOB[A]) had significantly decreased organic matter contents and increased redox potential
in sediments (p < 0.05), at the rapid growth and mature stages of V. natans. Planting V. natans with
and without IOB inoculation also decreased the total P (TP) and Fe–P concentrations in sediments.
Conversely, Fe3+ concentrations, Fe3+/Fe2+ ratios, and the proportions of Fe–P in TP all increased
in sediments planted with V. natans, especially under the Va-IOB treatment (p < 0.05). Furthermore,
bacterial community diversity increased in sediments due to the presence of V. natans. The relative
abundances of IOB (including Acidovorax and Chlorobium) increased from the transplanting to the
rapid growth stage of V. natans and then decreased afterwards. In the later stages, the relative
abundances of IOB and their ratios to Fe-reducing bacteria were the highest under the Va-IOB treat-
ment. Accordingly, synergistic interactions between V. natans and IOB could enhance Fe–P formation
and reduce TP concentrations in eutrophic lake sediments by altering sediment physicochemical
properties and Fe oxidation-related bacterial community structures.

Keywords: bacterial community structure; bacterially mediated iron oxidation; eutrophic lake sediments;
iron-bound phosphorus; Vallisneria natans

1. Introduction

Eutrophication of freshwater bodies is caused primarily by excess nutrient inputs, espe-
cially phosphorus (P). P is considered the key limiting nutrient in the water eutrophication
process, with nitrogen (N) being the second most important element [1]. Controlling external P
input has been proposed as one of the main strategies of mitigating eutrophication in lakes [2].
However, P release from surface sediments often leads to delayed recovery of freshwater from
eutrophication following the reduction of external P input [3]. Consequently, the control of
internal P loading from sediments has increasingly attracted the attention of researchers and
stakeholders in eutrophication management in freshwater ecosystems.

Among the numerous water remediation technologies, submerged macrophyte restora-
tion and in situ P passivation are two effective methods of controlling internal P loading.
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For example, the common macrophyte Vallisneria natans (eelgrass) can absorb P and N
from the water column and surface sediments [4–6]. In addition, submerged macrophytes
increase sediment redox potential (Eh), which in turn enhances P retention in sediments
and reduces its release into the water column [7]. Submerged macrophytes are distributed
extensively in freshwater environments and can be obtained relatively easily; consequently,
they represent ideal natural materials for controlling internal P loading from sediments. In
addition, the efficiency of submerged macrophytes in controlling internal P loading may be
enhanced by integration with in situ P passivation [8,9].

The adsorption technique has shown tremendous potential for in situ P passivation
in sediments, with widespread use and simple operation [6,10]. Adding absorbents such
as iron (Fe) compounds could enhance P retention in the sediment and limit the increase
in dissolved P concentration in the water column. Li et al. [11] found that the addition
of ferric chloride could convert P into more stable organic forms and could effectively
inhibit the release of internal P from the sediment. Furthermore, Fe-modified calcite, as an
adsorption material, could remove 91.7% of P from the water column and maintain 90.8%
of sediment P in a stable state, reducing the potential of P release from sediments [12]. In
situ P passivation techniques, however, have some limitations. For example, large-scale
applications of adsorbents for passivizing P in sediments often have high manufacturing
and transportation costs.

Microbial remediation of polluted environments has broad application prospects
considering its simple operation, low cost, high efficiency, and minimal impacts on the
environment [13,14]. An improved in situ P passivation method involves inoculation of
sediment with functional microorganisms that participate in Fe redox transformation; in
this way, Fe redox speciation can be used to regulate P transfer between the sediment and
water column [7]. In shallow eutrophic lakes, P retention in sediments has been reported to
be controlled mainly by the oxidation of Fe2+ [15]. Iron-oxidizing bacteria (IOB) can oxidize
Fe2+ into Fe3+ and form Fe oxides such as ferric hydroxide (FeOOH) colloids. The FeOOH
colloids have a high PO4

3− absorption capacity and promote the formation of Fe-bound P
(Fe–P) [16].

Generally, Fe–P refers to the P adsorbed on the surface of FeOOH by physical or
chemical actions [17], and its release process is influenced by multiple environmental
factors, such as pH and Eh [18,19]. When Eh decreases, Fe3+ is reduced to Fe2+, leading to
FeOOH dissolution and the subsequent release of Fe–P; conversely, high Eh results in Fe2+

oxidation into Fe3+ and facilitates Fe–P formation [20]. Numerous studies have focused
either on the reduction in P concentration (by submerged macrophyte restoration) [4–6]
or the passivation of P (by microbial inoculation) in sediments [7,13–15]. However, few
studies have explored the synergistic effects of submerged macrophyte restoration and
microbial inoculation on Fe–P formation and P retention in sediments.

In the present study, sediments were sampled from a highly eutrophic freshwater lake
and subjected to combinations of V. natans planting and IOB inoculation treatments. The
objective was to explore the synergistic effects of V. natans and IOB on Fe–P distribution and
to reveal the mechanisms of Fe–P formation in eutrophic lake sediments. Our hypotheses
were as follows: (1) synergistic interactions between V. natans growth and IOB activity
enhance Fe–P formation and reduce P concentrations in sediments; and (2) the introduction
of V. natans and IOB alters the structure of sediment bacterial communities that mediate P
retention. The results of the present study provide scientific evidence that could facilitate
the control of internal P loading from freshwater sediments based on an integrated and
environmentally friendly technology.

2. Materials and Methods
2.1. Experimental Materials

We selected V. natans, a widely distributed submersed macrophyte, as the experimental
material. V. natans seedlings were collected from Qinhu Lake (32◦37′ N, 120◦09′ E) in
Taizhou (Jiangsu Province, China), a eutrophic lake under ecological restoration. After
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15 days of acclimation in a simulated lake system, the seedlings were rinsed thoroughly
with distilled water.

Glass tanks (30 cm high × 15 cm wide × 15 cm long) were used to simulate the lake
system (Figure 1), using sediment and water samples collected from the sampling site of
V. natans seedlings. On 9 September 2020, surface water was collected from the lake at a
depth of 0–20 cm, and 20 replicate sediment cores (15 cm inner diameter× 30 cm long) were
collected using a gravity corer (15 cm diameter × 50 cm long; Rigo Co., Saitama, Japan). All
of the sediment samples were mixed thoroughly with appropriate amounts of lake water
and filtered through a 0.2 cm sieve to remove coarse debris. After homogenization, the
sediment was transferred into glass tanks followed by lake water, yielding a 10 cm layer of
sediment and 15 cm of overlying water.
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ing or iron-oxidizing bacteria (IOB) inoculation; Va, planting V. natans without IOB inoculation;
Va-IOB, planting V. natans with IOB inoculation; Va-IOB(A), planting V. natans with autoclaved
IOB inoculation.

An improved gradient tube method was used to obtain IOB [21]. First, the in-
oculum was prepared by vortexing a mixture containing 10 mL of sterilized deionized
water and 1 g of sediment sample from Qinhu Lake for approximately 30 min. Subse-
quently, an opposite gradient of oxygen and Fe2+ (as FeS) was generated in glass bottles
(50 mm high × 16 mm diameter). The inoculum (100 µL each) was inoculated along the
vertical axis of the gradient tubes at serial dilutions (10−1 to 10−5) to allow for the growth
of IOB at the artificial oxic–anoxic interface. The gradient tubes were incubated at 25 ◦C
in the dark. On the second day after the formation of solid-phase Fe oxide bands (1st
generation), approximately 10% of the band was extracted from the gradient tubes with the
highest dilution of inoculum and then inoculated into a fresh gradient tube. The process
was repeated over a two-week period for six generations to enrich IOB.

2.2. Experimental Design

There were four experimental treatments (Figure 1), namely no V. natans planting or
IOB inoculation (control), V. natans planting without IOB inoculation (Va), V. natans planting
with IOB inoculation (Va-IOB), and V. natans planting with autoclaved IOB inoculation
(Va-IOB[A]). Each treatment had four replicates (glass tanks).

Acclimated V. natans seedlings were transplanted into glass tanks on 12 September
2020. With the exception of the control treatment, three plants were transplanted to the
center of each tank after filling with water. All tanks were set up in an open room with a
transparent roof and were exposed to natural sunlight. During the experimental period
(12 September 2020–25 December 2020), the indoor temperature was maintained at 18 ◦C
on average. An appropriate amount of sterilized deionized water was added to each tank
once every three days to maintain the initial water level.

IOB inoculation was conducted in the early rapid growth stage of V. natans (four
weeks after transplanting). In brief, IOB-containing bands were collected from one-week-
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old culture in gradient tubes with a sterile syringe (20 mL), thoroughly mixed, and divided
into two portions. One portion was used directly for Va-IOB treatment, while the other
portion was autoclaved at 121 ◦C for 30 min to kill the bacteria and then used for Va-
IOB(A) treatment. The colloidal solution containing IOB (autoclaved or not, 5 mL each)
was inoculated into the sediment layer in glass tanks at a 5 cm depth through a sterilized
syringe (10 mL).

2.3. Sediment Physicochemical Analysis

Sediment samples (30 g each) were collected from each glass tank using a custom-made
columnar mud collector (1 cm diameter) on the transplanting day (12 September 2020),
rapid growth stage (28 October 2020), and mature stage of V. natans (25 December 2020).
Each sediment sample was immediately divided into three subsamples. One subsample was
air-dried and passed through a 0.15 mm sieve for use in the determination of conventional
physicochemical properties. The second subsample was vacuum freeze-dried at –50 ◦C for
use in the determination of Fe content. The third subsample was immediately stored in a
refrigerator at –80 ◦C until use for bacterial community analysis.

Sediment pH and Eh were measured in situ using a portable pH meter (PHB-4; Leici,
Shanghai, China) and an Eh meter (SX712; Ruisun, Chengdu, China), respectively [9].
Organic matter (OM) content in sediments was determined based on wet combustion
with K2Cr2O7, and measured through titration with (NH4)2Fe(SO4)2·6H2O [22]. The
dissolved Fe2+ and Fe3+ concentrations in sediments were measured using o-phenanthroline
spectrophotometry [23]. The total P (TP) concentration in sediments was determined using
the ascorbic acid method [24]. Fe–P was graded according to the harmonized protocol of
the Standards, Measurements, and Testing Programme of the European Commission [17]
and was determined by molybdenum-antimony anti-spectrophotometry [24].

2.4. Bacterial Community Analysis

Total genomic DNA was extracted from 0.5 g frozen sediment samples using a Power-
Soil DNA extraction kit (Qiagen Inc., Valencia, CA, USA) according to the manufacturer’s
instructions. Universal primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) were used to amplify the V3–V4 region of the bacterial
16S rRNA gene [25]. PCR reactions were carried out in a total volume of 25 µL on an Applied
Biosystems MiniAmp Plus Thermal Cycler (Thermo Fisher Scientific, Waltham, MA, USA).
After purification and quantification, the PCR products were sequenced on an Illumina MiSeq
platform (Illumina, San Diego, CA, USA) using a 468 bp paired-end protocol.

2.5. Data Analysis

Bioinformatics analysis of high-throughput sequencing data was performed on the
Majorbio I-Sanger Cloud Platform (http://www.i-sanger.com; accessed on 11 May 2021).
The effective sequences were clustered into operational taxonomic units (OTUs) at 97%
sequence similarity [26]. The species of each OTU were annotated using the bacterial 16S
rRNA Silva database (Release132, http://www.arb-silva.de; accessed on 14 May 2021)
to obtain bacterial taxonomic information of each sample and the community species
composition at each classification level. The OTU data were normalized, and the bacterial
community diversity of each sample was analyzed in terms of observed number of species
(Sobs), abundance-based coverage estimator (ACE), and Shannon diversity index, using
Mothur [27].

Hierarchical clustering analysis of bacterial communities at the OTU level was per-
formed in PRIMER 5 (PRIMER-E Limited, UK) based on the unweighted pair group method
with arithmetic mean (UPGMA) method. Key bacterial taxa associated with Fe redox trans-
formation were identified by comparing the results with data available in the National
Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov;
accessed on 20 November 2021) and previously published articles [28,29]. Functional
annotation of prokaryotic taxa (FAPROTAX) was carried out (http://www.zoology.ubc.ca/

http://www.i-sanger.com
http://www.arb-silva.de
https://www.ncbi.nlm.nih.gov
http://www.zoology.ubc.ca/louca/FAPROTAX/
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louca/FAPROTAX/; accessed on 28 December 2021) to predict the potential functions of
bacterial communities based on the 16S rRNA gene data [30].

Statistical analyses were performed in IBM SPSS Statistics 26 (IBM Corp., Armonk, NY,
USA). Differences in sediment physicochemical properties, bacterial α-diversity indexes,
and dominant taxa abundance between samples were determined using one-way analysis
of variance and Tukey’s multiple comparison tests. p < 0.05 was considered an indication
of statistical significance. Redundancy analysis (RDA) was carried out using Canoco 5.02
(Microcomputer Power, Ithaca, NY, USA) to determine the environmental variables that
best explained variation in bacterial community structure in sediments treated with V.
natans planting and IOB inoculation.

3. Results
3.1. Sediment pH, Organic Matter Content, and Redox Potential

The pH in sediments of all treatments decreased from the transplanting to rapid
growth and then mature stages of V. natans, with mean values of 7.92, 7.34, and 7.01, re-
spectively (Figure 2a). In the later growth stages, pH exhibited decreasing trends under the
three V. natans treatments (Va, Va-IOB, and Va-IOB[A]); however, there was no significant
difference with the pH of the control treatment.
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Figure 2. (a) pH, (b) organic matter (OM) content, and (c) redox potential (Eh) trends in sediments
under different treatments during V. natans growth. Values are means ± standard deviation. For
each stage, different lowercase letters above or below bars indicate significant differences at the
0.05 significance level by Tukey’s test.

The OM contents in sediments of all treatments also decreased from the transplanting
stage to the mature stage (Figure 2b; p < 0.05). Sediment OM contents of the V. natans
treatments were all significantly lower than that of the control treatment. In particular, the
OM contents under the Va-IOB treatment were the lowest, in both the rapid growth and
mature stages (p < 0.05).

Eh in sediments of the control treatment decreased significantly in the rapid growth
and mature stages when compared with that in the transplanting stage (p < 0.05; Figure 2c).
However, after V. natans planting, Eh increased significantly from the transplanting to rapid
growth stage (p < 0.05), followed by a slight drop thereafter. No significant difference in Eh
was observed between the treatments with and without IOB inoculation.

3.2. Sediment Iron, Phosphorus, and Iron-Bound Phosphorus Concentrations

With the exception of the control treatment, Fe2+ concentrations in sediments decreased
from the transplanting stage to the mature stage (p < 0.05; Figure 3a). In the rapid growth
and mature stages, Fe2+ concentrations under the Va-IOB treatment (3.31 and 1.90 mg kg−1,
respectively) were significantly lower than those under the Va and Va-IOB(A) treatments
(p < 0.05). Conversely, Fe3+ concentrations in sediments treated with V. natans increased
significantly from transplantation to maturity, with the highest values observed under
the Va-IOB treatment in the later growth stages (p < 0.05; Figure 3b). In the rapid growth

http://www.zoology.ubc.ca/louca/FAPROTAX/
http://www.zoology.ubc.ca/louca/FAPROTAX/
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and mature stages, the ratios between Fe3+ and Fe2+ concentrations increased markedly in
sediments treated with V. natans, especially under the Va-IOB treatment (p < 0.05; Figure 3c).
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Figure 3. Iron and phosphorus concentrations in sediments under different treatments. (a) Dissolved
Fe2+; (b) dissolved Fe3+; (c) ratios between Fe3+ and Fe2+; (d) total phosphorus (TP); (e) iron-bound
phosphorus (Fe–P); and (f) proportions of Fe–P in TP (Fe–P/TP). Values are means ± standard
deviation. For each stage, different lowercase letters above bars indicate significant differences at the
0.05 significance level by Tukey’s test.

Compared with the control treatment, TP concentrations in sediments treated with
V. natans decreased significantly during the rapid growth and mature stages (p < 0.05;
Figure 3d). However, there were no significant differences in TP concentrations among the
Va, Va-IOB, and Va-IOB(A) treatments. Similarly, Fe–P concentrations had no significant
differences between the Va and Va-IOB(A) treatments in the later growth stages, with mean
values of 92.75 and 83.65 mg kg−1, respectively, lower than that of the Va-IOB treatment
(Figure 3e). During the later growth stages, the proportions of Fe–P in TP significantly
increased in sediments treated with V. natans, and the highest value was observed under
the Va-IOB treatment (p < 0.05; Figure 3f).

3.3. Sediment Bacterial Diversity and Community Composition

The calculated α-diversity indexes of bacterial communities in sediment samples under
different treatments are listed in Table 1. The Sobs and ACE indexes represent bacterial
species richness, while the Shannon index represents bacterial species evenness; higher
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values of the α-diversity indexes suggest greater bacterial richness and lower heterogeneity.
Overall, the mean coverage among all the samples was 97.3% (range: 95.1–98.7%). From
the transplanting to mature stages of V. natans, the Sobs and ACE indexes decreased under
the control treatment but increased under the other treatments with V. natans. The patterns
of the Shannon index among different stages and treatments were similar to those of the
species richness indexes. In the rapid growth and mature stages, the lowest Sobs, ACE, and
Shannon index values were observed under the control treatment, while the highest ACE
and Shannon index values were observed under the Va-IOB treatment.

Table 1. α-diversity of sediment bacterial communities evaluated based on operational taxonomic
units (OTUs) clustered at the 97% similarity level.

Stage Treatment Observed Number
of Species

Abundance-Based
Coverage Estimator Shannon Index Coverage

Transplanting Ctrl 1259.43 a 1409.15 a 5.27 a 0.980
Va 1248.37 a 1418.30 a 5.32 a 0.966

Va-IOB 1251.13 a 1397.05 a 5.24 a 0.987
Va-IOB(A) 1251.40 a 1398.93 a 5.26 a 0.967

Rapid growth Ctrl 1190.53 b 1335.38 c 5.04 c 0.980
Va 1291.61 a 1456.95 b 5.48 b 0.951

Va-IOB 1335.27 a 1481.73 a 6.06 a 0.958
Va-IOB(A) 1284.31 a 1451.00 b 5.45 b 0.973

Mature Ctrl 1112.28 b 1276.74 c 4.97 c 0.980
Va 1294.71 a 1459.42 b 6.18 b 0.977

Va-IOB 1319.32 a 1513.28 a 6.27 a 0.983
Va-IOB(A) 1296.41 a 1452.00 b 6.11 b 0.979

Note: Ctrl, no V. natans planting or iron-oxidizing bacteria (IOB) inoculation; Va, planting V. natans without IOB
inoculation; Va-IOB, planting V. natans with IOB inoculation; Va-IOB(A), planting V. natans with autoclaved IOB
inoculation. For each stage, different lowercase letters in the same column indicate significant differences among
the treatments based on Tukey’s test (p < 0.05).

Based on the results of unweighted UniFrac distance analysis, sediment bacteria were
clustered into three groups (p < 0.05; Figure 4). Excluding the control, all samples were
clearly separated in groups corresponding to V. natans growth stages. Group I contained
Va, Va-IOB, and Va-IOB(A) samples of the rapid growth stage and control samples of
the mature stage; group II contained the control, Va, Va-IOB, and Va-IOB(A) samples
of the transplanting stage and control samples of the rapid growth stage; and group III
contained Va, Va-IOB, and Va-IOB(A) samples of the mature stage. Among the retrieved
OTUs, 86.0–91.5% were classified among the top 10 most abundant bacterial phyla. The
most abundant phylum was Proteobacteria in group I (38.7% of the total sequences),
Proteobacteria in group II (48.9%), and Firmicutes in group III (38.7%). From transplanting
to maturity, the relative abundance of Proteobacteria decreased substantially, while an
increasing trend was observed for Firmicutes in all treatments. Compared with the control
treatment, a higher relative abundance of Firmicutes was observed under the V. natans
treatments (Va, Va-IOB, and Va-IOB[A]) in both the rapid growth and mature stages.

RDA was performed to explore the correlations between the relative abundances of
bacterial phyla and sediment physicochemical properties. The model attributed 94.8%
of the variance to phyla-environment correlations (Figure 5). The first and second axes
accounted for 67.5% and 22.3% of the variation, respectively. In addition, Fe–P, TP, pH, and
OM were the key factors significantly influencing bacterial community structure (p < 0.05).
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Figure 4. Clustering analysis of bacterial communities at the operational taxanomic unit (OTU) level
(left) and bacterial community composition at the phylum level (right) in sediments under different
treatments. T-, R-, and M- denote the transplanting, rapid growth, and mature stages of V. natans,
respectively. Hierarchical clustering analysis was performed using unweighted pair group method
with arithmetic mean (UPGMA) based on unweighted UniFrac distances from taxa tables and OTU
number. The top 10 most abundant bacterial phyla are shown.
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Figure 5. Redundancy analysis (RDA) ordination bi-plot showing the relationships between bacterial
community structure (phylum level) and sediment environmental variables. OM, organic matter;
Eh, redox potential; TP, total phosphorus; Fe–P, iron-bound phosphorus. Black circles represent
treatments at different V. natans growth stages: T, transplanting; R, rapid growth; M, mature.

3.4. Bacterial Taxa and Functional Genes Related to Iron Oxidation and Reduction

The dominant IOB at the genus level in all treatments included Acidovorax and Chloro-
bium, especially in the rapid growth stage. The relative abundances of IOB increased
markedly from the transplanting to rapid growth stage and then decreased toward the ma-
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ture stage (Figure 6a). In the later growth stages, the highest relative abundance of IOB was
observed under the Va-IOB treatment. In contrast, the relative abundances of Fe3+-reducing
bacteria (IRB) decreased substantially from transplantation to maturity (Figure 6b). In
the rapid growth and mature stages, the relative abundances of IRB under the Va-IOB
treatment were lower than those of other treatments. In addition, the IOB/IRB ratios in
sediments treated with V. natans considerably increased in the later growth stages, and the
highest ratio was observed under the Va-IOB treatment (Figure 6c).
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Figure 6. Key bacterial genera related to (a) iron oxidation and (b) iron reduction, (c) the ratio between
iron-oxidizing bacteria (IOB) and iron-reducing bacteria (IRB), and (d) FAPROTAX-based functional
prediction of sediment bacteria related to iron respiration under different treatments.

Potentially related functions among bacterial communities were predicted using
FAPROTAX 1.1, and the relative contributions of each functional bacterial group were
explored (Figure 6d). The relative abundances of genes related to Fe reduction decreased
considerably from transplantation to maturity. In particular, the relative abundances of Fe
reduction-related genes were distinctively lower under the Va-IOB treatment compared
with the other treatments at maturity. However, key ecological functions related to Fe
oxidation were not predicted in any treatments.

4. Discussion
4.1. Synergistic Interactions of V. natans and Iron-Oxidizing Bacteria Enhance Iron-Bound
Phosphorus Formation in Sediments

In the present study, we investigated the combined effects of V. natans growth and
IOB inoculation on internal P loading from eutrophic lake sediments. We observed that
TP concentrations in sediments decreased remarkably after the planting of V. natans with
and without IOB inoculation. The results indicate that V. natans could control internal
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P loading by absorbing P from sediments. Our finding is consistent with the results of
previous studies where only treatments with submerged macrophyte plantations could
control internal P loading [4–6]. In another study, compared with the unplanted control, TP
concentrations in sediments planted with V. natans and Ceratophyllum demersum decreased
by 10.7% and 9.9%, respectively [31].

P migration in shallow eutrophic lake sediments is mainly regulated by redox transfor-
mation of Fe [32]. On the one hand, restoration of submerged macrophytes has the potential
to increase sediment Eh and to enhance the oxidation of Fe2+ to Fe3+, leading to Fe–P for-
mation and ultimately facilitating sediment P retention [33]. On the other hand, labile root
exudates from submerged macrophytes could activate anaerobic organic matter-degrading
bacteria, which might participate in biological reduction of Fe3+ or provide substrates for a
chemical reduction of Fe3+, resulting in an increase in P release [15]. Here, planting V. natans
with and without IOB inoculation enhanced Fe–P formation and increased the proportions
of Fe–P in TP in sediments, indicating that Fe oxidation, rather than Fe reduction, is the
dominant process.

In addition to chemical Fe oxidation, bacterially mediated Fe oxidation considerably
enhanced Fe–P formation in the sediments. The biological effect was demonstrated by
increases in the concentrations of Fe–P and proportions of Fe–P in TP under the Va-IOB
treatment compared with the Va and Va-IOB(A) treatments. Multiple factors including OM,
Eh, and dissolved oxygen influence the dynamics of IOB and IRB [34]. A previous study
reported that higher Eh conditions are favorable for bacterially mediated Fe oxidation; the
resulting FeOOH colloids can strongly absorb PO4

3− and can enhance Fe–P formation [35].
Similarly, we detected relatively high Eh, Fe3+ concentrations, and Fe3+/Fe2+ ratios un-
der the Va-IOB treatment. This was probably caused by rapid Fe redox transformations
mediated by the introduction of the IOB consortium, which thus enhanced the forma-
tion of Fe-bound P precipitates [36]. In summary, the results indicate that the synergistic
interactions between V. natans and IOB enhanced Fe–P formation in sediments.

4.2. Synergistic Interactions of V. natans and Iron-Oxidizing Bacteria Increase Diversity of
Sediment Bacterial Community

In the present study, the V. natans planting treatments with and without IOB inocu-
lation increased the α-diversity of bacterial communities in sediments, especially in the
rapid growth and mature stages. Such improvements in bacterial diversity could be at-
tributed to lower OM contents in sediments planted with V. natans. Similarly, Lin et al. [4]
observed that bacterial community diversity in macrophyte-treated sediments was higher
than that in unplanted controls. Another study reported a negative correlation between
bacterial community diversity and OM content in sediments at seven sampling sites in
Taihu Lake, China [37]. Higher OM concentrations may favor the growth of dominant
bacterial populations, which in turn inhibits the growth of non-dominant bacteria [38].

The results of clustering analysis at the OTU level indicated that transplantation and
growth of V. natans plants distinctively altered bacterial community structure in sediments.
V. natans planting with and without IOB inoculation led to the enrichment of Firmicutes
in the rapid growth and mature stages. The phylum Firmicutes contains a variety of
bacteria capable of degrading and transforming organic material, thereby enhancing the
release of mineral elements [39]. Therefore, the higher relative abundance of Firmicutes in
sediments planted with V. natans (without additional nutrient input) might enhance OM
decomposition and provide nutrients for V. natans growth.

4.3. Key Taxa and Predicted Functions of Bacteria Associated with Phosphorus Retention
in Sediments

Although environmental physicochemical factors play a key role in Fe redox activity,
an increasing number of studies report that some bacterial groups exert major influence in
the transition between Fe2+ and Fe3+ [15,40]. Numerous bacterial groups are capable of Fe
reduction or oxidation in microaerobic and anaerobic environments [40]. The introduction
of IOB and associated Fe oxides clearly increased the proportions of IOB in sediments
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during the rapid growth and mature stages of V. natans. This study identified the key
bacterial genera associated with Fe redox transformation in sediments. Under all treatments,
Acidovorax and Chlorobium were observed as dominant IOB. Members of Acidovorax, such
as strains BoFeN1 and 2AN, are neutrophilic, nitrate (NO3

−)-reducing, and Fe2+-oxidizing
bacteria in anaerobic environments [41,42]. Therefore, NO3

− reduction would also play
a role in Fe oxidation in the simulated lake system. In addition, our previous field study
showed that N metabolism genes accounted for a substantial portion of genes related to
energy metabolism in shallow lake sediments [36]. However, none of the bacterial groups
in all treatments was predicted to have potential Fe-oxidizing genes. These bacteria might
be omitted in predictions of Fe oxidation function using FAPROTAX 1.1. A previous study
also indicated that the abundance of traditional IOB was substantially low in all sediment
samples, and they were almost absent in samples with OM addition [17].

Some bacterial groups with sulfide oxidation or sulfate reduction capacity influence
the formation of Fe redox species through the transformation of sulfide [15]. In the present
study, the trends in the relative abundances of IOB among different treatments were
similar to those of sulfide-oxidizing bacteria (Figure S1a), while the relative abundances
of IRB and sulfate-reducing bacteria (Figure S1b) shared similar trends. Furthermore, the
relative abundances of predicted functions, including sulfur (S) oxidation and N reduction,
were higher in sediments planted with V. natans, especially under the Va-IOB treatment
(Figure S2a). Such trends were similar to those of IOB, while the trends in the relative
abundances of predicted functions associated with Fe3+ reduction (Figure S2b) were similar
to those of IRB. Sulfide could simultaneously reduce Fe3+ and form FeS; hence, it reduces
the availability of Fe to bind P in both ferric and ferrous solids [15]. Given the high
portion of sulfate-reducing bacteria (e.g., Desulfobacteraceae) in the sediment samples, the
contribution of these microorganisms to Fe–P formation could not be neglected.

Overall, the results of the present study indicate that bacterially mediated Fe redox
reactions play essential roles in the retention of P in sediments with the presence of V. natans.
That P retention in sediments is synergistically controlled by Fe oxidation, S oxidation,
and NO3

− reduction. The underlying microbiological mechanisms of such synergistic
interactions still require further investigations.

5. Conclusions

This study analyzed the interactive effects of V. natans planting and IOB inoculation on
Fe–P formation in eutrophic lake sediments. V. natans growth decreased OM, Fe2+, and TP
concentrations; increased Fe3+ and Fe–P concentrations; and improved bacterial diversity
in sediments. The effects of V. natans were dependent on plant growth stage intensified
by IOB inoculation. Moreover, V. natans and IOB introduction increased the relative
abundances of IOB genera, such as Acidovorax and Chlorobium, especially in the rapid
growth stage of V. natans. The results confirm our hypothesis that synergistic interactions
of V. natans growth and IOB activity enhance Fe–P formation in eutrophic lake sediments
through the modification of sediment physicochemical conditions and associated bacterial
community structure. Overall, the coupled V. natans–IOB system shows great potential
as an in situ remediation technology for controlling internal P loading from freshwater
sediments. Our study was conducted under simulated conditions; therefore, the results
must be interpreted with caution. Field experiments should be carried out to determine
the optimal planting density of V. natans and inoculum level of IOB. Further studies on the
key environmental factors and microbial taxa that influence the remediation process are
also required to elucidate the microbiological mechanisms of IOB-mediated P retention in
eutrophic sediments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/microorganisms10020413/s1, Figure S1: Key bacterial genera related to (a) sulfide oxidation and
(b) sulfate reduction in sediments under different treatments. Figure S2: Functional predictions of
sediment bacteria related to (a) iron oxidation and (b) iron reduction by FAPROTAX.
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