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Abstract: Coronary artery disease (CAD) is a global health issue. Lipid peroxidation produces various
by-products that associate with CAD, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA).
The autoantibodies against HNE and MDA-modified peptides may be useful in the diagnosis of
CAD. This study included 41 healthy controls (HCs) and 159 CAD patients with stenosis rates of
<30%, 30–70%, and >70%. The plasma level of autoantibodies against four different unmodified and
HNE-modified peptides were measured in this study, including CFAH1211–1230, HPT78–108, IGKC2–19,
and THRB328–345. Furthermore, feature ranking, feature selection, and machine learning models
have been utilized to exploit the diagnostic performance. Also, we combined autoantibodies against
MDA and HNE-modified peptides to improve the models’ performance. The eXtreme Gradient
Boosting (XGBoost) model received a sensitivity of 78.6% and a specificity of 90.4%. Our study
demonstrated the combination of autoantibodies against oxidative modification may improve the
model performance.

Keywords: plasma; 4-hydroxynonenal; machine learning; oxidative stress

1. Introduction

Coronary artery disease (CAD) is a global health care issue which affected nearly
1.72% of individuals worldwide [1]. The progression of CAD consists of three stages: fatty
streak, plaque progression, and disruption. Starting from inflammatory cells recruitment
and lipid accumulation, the inflammation may lead to plaque formation and eventually
cause atherosclerosis [2]. Inflammation occurs with the accumulation of free radicals,
which may accelerate the process of CAD progression and create a positive feedback
loop to form additional free radicals [3]. Inflammation has been considered as the major
factor of CAD progression. Hence, the diagnosis of CAD in the clinic focuses on the
measurement of inflammation markers, such as C-reactive protein (CRP), cytokines, and
adhesion molecules [4].

In addition to inflammation, lipid peroxidation can also generate free radicals; it has
been considered as a process of oxidants’ attack on the lipids containing carbon–carbon
double bonds [5]. Lipid peroxidation produces several by-products such as malondialde-
hyde (MDA), propenal (acrolein), hexanal, and 4-hydroxynonenal (4-HNE), which are
associated with chronic diseases [5–9]. These by-products may modify macromolecules,
and cause damage to the molecular functions of the macromolecules [6]. Furthermore, since
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MDA and 4-HNE are extremely toxic by-products derived from lipid peroxidation [10],
numerous studies have reported the pathological processes with the participation of MDA
and 4-HNE [5]. While MDA is the most abundant by-product in lipid peroxidation, 4-HNE
shows the highest biological activity during the oxidation.

Although MDA has been considered as a reliable and popular biomarker for eval-
uating oxidative stress, an improvement in identifying free form MDA and total MDA
is required [5,11]. A common detection method for MDA, a thiobarbituric acid (TBA)
assay, exhibited non-specificity, poor reproducibility, lack of the recovery test results, and
instability of MDA [12]. Aside from MDA, 4-HNE has recently been brought to researchers’
attention due to several advantages such as high stability. Not only does 4-HNE produce a
large amount in tissues, but it also exhibits higher stability compared to MDA [13,14]. The
formation of 4-HNE is attributed to the decomposition of the primary products of lipid per-
oxidation; once lipid hydroperoxides transform into peroxyl and alkoxyl (LO) radicals, they
may form secondary products such as 4-HNE [15]. Part of the 4-HNE compounds enter the
process of biotransformation, whereas part of the compounds form 4-HNE adducts by con-
jugating with various cellular components such as protein and DNA. Both 4-HNE modified
adducts lead to genotoxicity and protein dysfunction [14]. The 4-HNE-modified proteins
disrupt the process of protein degradation and eventually cause metabolism diseases, such
as atherosclerosis and rheumatological diseases [16]. In addition, the protein modifications
of MDA and 4-HNE are considered oxidation-specific epitopes (OSE) and recognized by
autoantibodies [17,18]. OSE also presented on oxidized LDL (OxLDL), which has been
associated with an increased risk of cardiovascular disease [19]. Circulating autoantibodies
against OSE are involved in the initiation and the formation of atherosclerosis. Furthermore,
OSE on lipoprotein can be measured as a biomarker in CAD [18].

Previously, we discovered four novel HNE-modified peptides in serum derived
from patients with RA [20]. The 4-HNE-modified positions on the peptides were under-
lined: 1211-SHTLRTTCWDGKLEYPTCAK-1230 (complement factor H, CFAH1211–1230), 78-
AVGDKLPECEADDGCPKPPEIAHGYVEHSVR-108 (haptoglobin, HPT78–108), 2-TVAAPSVFI
FPPSDEQLK-19 (immunoglobulin kappa constant, IGKC2–19), and 328-TFGSGEADCGLRPLF
EKK-345 (prothrombin, THRB328–345). Crowson et al. suggested that patients with RA have
a twofold increased risk of developing CAD [21]. Moreover, it is one of the leading causes
of death in patients with RA in Taiwan [22]. Hence, we speculated the autoantibodies
we discovered in patients with RA may be useful in the diagnosis of CAD. In this study,
we measured HNE-modified adducts and autoantibodies against unmodified and HNE-
modified peptides in HCs and CAD patients with stenosis rates of <30%, 30–70%, and >70%.
Furthermore, we incorporated feature ranking and selection techniques to optimize our ma-
chine learning models. Finally, the models were evaluated by accuracy, precision, f1 score,
sensitivity, specificity, and area under the receiving operating characteristic curve (AUC).

2. Materials and Methods
2.1. Patients Sample

Plasma samples from 30 patients with RA (12 female and 18 male patients) and
30 patients with RA-CAD (11 female and 19 male patients) were obtained from the Divi-
sion of Allergy, Immunology, and Rheumatology, Department of Internal Medicine and
the Department of Laboratory Medicine, Shuang-Ho Hospital (NTPC, New Taipei City,
Taiwan). Plasma samples from 159 patients with CAD (51 female and 108 male patients)
and 41 healthy controls (HCs) were obtained from Cardiovascular Center of the Lo-Hsu
Medical Foundation Luodong Poh-Ai Hospital. Patients defined as having pre-coronary
artery disease were recorded with coronary atherosclerosis or angina pectoris, and were
found to have coronary artery stenosis rate <30%. In the groups of patients with coro-
nary artery disease, patients were separated into the group of coronary stenosis rate of
30–70% and the group of coronary stenosis rate of >70%. CAD patients who also were
diagnosed as RA were excluded (Figure 1). As for comorbidity, patients were considered as
having hyperglycemia with one of following criteria: total cholesterol ≥200 mg/dL, LDL-C
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≥ 130 mg/dL, TG ≥ 200 mg/dL, and HDL-C < 40 mg/dL, or receiving lipid lowering
drug prescription. Patients were considered as having hypertension with one of following
criteria: systolic blood pressure ≥140, diastolic blood pressure ≥90, or receiving an anti-
hypertensive drug prescription. Patients were considered as having diabetes with one of
following criteria: diagnosis with diabetes or receiving a hypoglycemia drug prescription.
Healthy controls (HCs) were excluded if they suffered from hyperglycemia, hyperlipidemia,
hypertension, or angina pectoris. Ten mL of blood samples were collected from patients
and HCs. After the blood samples were centrifuged 3000 rpm for 10 min, the plasma was
stored at −80 ◦C until analyzed. This study was approved by the institutional review board
of the study hospital, and all volunteers provided informed consent before participating.
Patient samples were randomly selected. The demographic characteristics of patients are
summarized in Table 1. The Taipei Medical University-Joint Institutional Review Board
and the Institutional Review of Cathay General Hospital approved the study protocol
(N201512049 (3 February 2017), CGP-LP106006 (15 June 2017)).
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Figure 1. The participants were grouped into HC, pre-CAD (<30%), CAD (30–70%), and CAD (>70%).

Table 1. Comparison of clinical characteristics between HC and CAD patients.

Variables

Shuang-Ho Hospital Luodong Poh-Ai Hospital

Stenosis Rate of Patients

RA (n = 30) RA-CAD (n = 30) HC (n = 41) <30% (n = 44) 30–70% (n = 50) >70% (n = 65)

Age (year) 52.26 ± 4.27 53.65 ± 9.19 38.41 ± 10.42 62.72 ± 10.32 63.57 ± 9.55 62.79 ± 9.27

Male 12 26 26 29 23 56 *

Drinker - 11 11 5 12 10

Used to smoke - - 1 15 * 10 * 19

Current smoker - - 17 4 11 36 *

Diabetes - - - 13 15 30

Hypertension - - 30 39 56

HNE-protein adducts - - 1.010 ± 0.088 1.044 ± 0.097 1.054 ± 0.115 * 1.120 ± 0.112 **

* means p < 0.05, ** means p < 0.0001.

2.2. Detection of Plasma HNE Adducts

HNE-modified BSA (A7906, Sigma, Neustadt, Germany) standards (100 µL) or diluted
samples (10 µg/mL) were added into a 96-well plate (Thermo Fisher, Waltham, MA, USA)
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and incubated at 37 ◦C for 2 h. For blocking, 3% of a BSA solution was added and incubated
at 37 ◦C for 1 h after the plates were washed with PBS containing 0.05% Tween 20 (PBST).
The plates were washed with PBST, and a rabbit anti-HNE antibody (ab46545, Abcam,
Cambridge, MA, USA) was added. After incubating for 2 h at room temperature, the
plates were washed with PBST. A mouse anti-rabbit antibody conjugated with horseradish
peroxidase (HRP) was added into plates and incubated for 1 h. We washed the plates
with PBST and detected the HRP with SureBlue Reserve™ TMB (Kirkegard and Perry
Laboratories, Gaithersburg, MD, USA) for 30 min. The color reaction was stopped with 1N
HCl, and the absorbance was measured at 450/620 nm. The concentration of HNE-protein
adducts in plasma was calculated according to a standard HNE-modified BSA curve.

2.3. Detection of Plasma Autoantibodies against Unmodified and HNE Modified Peptide

The BSA and four peptides with 1mg/mL were modified with 4-Hydroxynonenal
(Sigma, Neustadt, Germany). The BSA or peptides (10 µg/mL) were added into a 96-well
plate and incubated at 37 ◦C for 2 h. For blocking, after washing with PBST, 3% of a BSA
solution was added and incubated at 37 ◦C for 1 h. The plates were washed with PBST
and the 100-fold diluted plasma samples were added. The plates were incubated at room
temperature for 2 h. After the plates were washed, rabbit anti-human IgG-HRP (A80-118P,
1:30,000, BETHYL) or rabbit anti-human IgM-HRP (A0420, 1:10,000, Sigma) were diluted
and added into plates. The plates were incubated at room temperature for 1 h. After that,
the plates were washed completely and added with the SureBlue ReserveTM Peroxidase
Substrate (Kirkegard & Perry Laboratories, Gaithersburg, MD, USA). The plates were
incubated at room temperature for 15 min. The color reaction was stopped by adding
1N HCl, and the absorbance was measured at 450/620 nm. All ELISA experiments were
conducted following the ELISA Guidebook. The quality controls samples were prepared
with two replicates in each plate to calculate the percent coefficient of variation (CV%)
across wells and plates. An experiment was repeated if the CV% was calculated above 20%.

2.4. Statistical Analysis and Machine Learning

The significance of IgG and IgM autoantibodies between HCs and RA, RA-CAD, or
CAD patients were determined by Student’s t-test. The Student’s t-test was calculated by
GraphPad Prism (v.8.0; GraphPad software, San Diego, CA, USA). The significance level
of all statistical tests was set to p < 0.05. The feature ranking was conducted by WEKA
(vers.3.8.5). The models we built in this study were based on eXtreme Gradient Boosting
(XGBoost) and the Light Gradient Boosting Machine (GBM) with 5-fold cross validation
with scikit-learn (vers.0.21.3). A confusion matrix was applied in this study to calculate the
accuracy, precision, sensitivity, specificity, and f1 score. The value of AUC was calculated
with scikit-learn (vers.0.21.3). The comparison of models was evaluated by an ANOVA test.

3. Results
3.1. Measurement of Autoantibodies against HNE Modified BSA

Plasma samples were subjected to ELISAs for measuring IgG and IgM autoantibodies
against unmodified and HNE-modified BSA. Plasma levels of IgG and IgM against HNE-
modified BSA were found to be increased in patients with RA and RA-CAD (Supplementary
Figure S1A,B). Plasma levels of IgM against BSA were found significantly different between
HC and RA (Supplementary Figure S1B).

3.2. Measurement of Autoantibodies against HNE-Modified Peptides and HNE Adducts

Plasma samples were analyzed with ELISA to detect IgG and IgM autoantibodies
against unmodified and HNE-modified peptides (Supplementary Figure S2). Plasma levels
of IgG against the CFAH1211–1230 unmodified peptide and HNE-modified peptide in CAD
patients with a stenosis rate >70% were notably higher than HCs (p = 0.008, p = 0.0002).
Plasma levels of IgM against the CFAH1211–1230 unmodified peptide and HNE-modified
peptide in CAD patients with a stenosis rate >70% were significantly lower than HCs
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(p < 0.0001, p < 0.0001) and CAD patients with a stenosis rate <30% (p = 0.0092, p = 0.0211).
Plasma levels of IgG against the HPT78–108 unmodified peptide and HNE-modified peptide
in CAD patients with a stenosis rate >70% were significantly decreased compared to HCs
(p = 0.0002, p = 0.0001). Plasma levels of IgM against the HPT78–108 unmodified peptide and
HNE modified peptide in CAD patients with a stenosis rate >70% were notably lower than
HCs (p < 0.0001, p < 0.0001). Plasma levels of IgG against the IGKC2–19 unmodified peptide
in CAD patients with a stenosis rate >70% were significantly lower than HCs (p < 0.0001). In
contrast, plasma levels of IgG against the IGKC2–19 HNE-modified peptide in CAD patients
with stenosis rates of <30%, 30–70%, and >70% were decreased compared to HCs (p = 0.02,
p = 0.001, p = 0.0002). Plasma levels of IgM against the IGKC2–19 unmodified peptide in
CAD patients with a stenosis rate >70% were lower than HCs (p < 0.0001) and CAD patients
with a stenosis rate <30% (p = 0.0056). Plasma levels of IgM against IGKC HNE-modified
peptide in CAD patients with stenosis rates of <30%, 30–70%, and >70% were lower than
HCs (p = 0.0001, p = 0.0005, p < 0.0001). Plasma levels of IgG against the THRB328–345

HNE-modified peptide in CAD patients with a stenosis rate >70% were higher than HCs
(p < 0.0001) and CAD patients with stenosis rate <30% (p = 0.0039). Plasma levels of IgM
against the THRB328–345 unmodified and HNE-modified peptide in CAD patients with a
stenosis rate >70% were significantly higher than HCs (p = 0.0003, p = 0.0002) and CAD
patients with stenosis rate <30% (p = 0.00498, p = 0.00486). Furthermore, HNE-modified
protein adducts in patients with CAD were higher than HCs (Table 1).

3.3. Optimization of Machine Learning Algorithms with Autoantibodies against HNE
Modified Peptides

To increase the performance of LightGBM and XGBoost, we firstly performed fea-
ture ranking with InfoGain + Ranker to list the features from the most important to
less important in HCs against patients with stenosis rates of <30%, 30–70%, and >70%
(Table 2). The autoantibody, IgG anti-IGKC2–19 HNE, was ranked as the top feature in
each analysis. Next, we performed forward selection to further optimize LightGBM and
XGBoost. In the LightGBM model, the features that were selected included IgG anti-
IGKC2–19 HNE, IgM anti-CFAH1211–1230, IgG anti-CFAH1211–1230, IgM anti-CFAH1211–1230

HNE, IgG anti-CFAH1211–1230 HNE, IgM anti-HPT78–108, IgM anti-HPT78–108 HNE, IgG anti-
HPT78–108 HNE, IgM anti-IGKC2–19, IgG anti-IGKC2–19, IgM anti-IGKC2–19 HNE, IgM anti-
THRB328–345, IgG anti-THRB328–345, IgM anti-THRB328–345 HNE, and IgG anti-THRB328–345

HNE. In differentiating HCs and CAD patients with a stenosis rate of <30%, the model
received an accuracy of 77%, a precision of 73%, a f1 score of 72.6%, a sensitivity of 78.2%, a
specificity of 76.4%, and an AUC value of 0.832. In discriminating HCs and CAD patients
with a stenosis rate of 30–70%, the model received an accuracy of 72.7%, a precision of
72.5%, a f1 score of 69.1%, a sensitivity of 71.5%, a specificity of 75.8%, and an AUC value
of 0.816. As for HCs and CAD patients with stenosis rates of >70%, the model received an
accuracy of 73%, a precision of 61%, a f1 score of 57.8%, a sensitivity of 62%, a specificity of
79.6%, and an AUC value of 0.819. In the XGBoost model, the features that were selected
included IgG anti-IGKC2–19 HNE, IgG anti-CFAH, IgG anti-HPT78–108, IgM anti-HPT78–108

HNE, IgM anti-IGKC2–19, IgG anti-IGKC2–19, and IgM anti-IGKC2–19 HNE (Table 3). In
discriminating HCs and CAD patients with stenosis rates of <30%, the model received
an accuracy of 77.7%, a precision of 74.5%, a f1 score of 71.4%, a sensitivity of 74.2%, a
specificity of 79.2%, and an AUC value of 0.845. As for HCs and CAD patients with stenosis
rates of 30–70%, the model received an accuracy of 75.3%, a precision of 71.7%, a f1 score
of 71.4%, a sensitivity of 75.6%, a specificity of 75.4%, and an AUC value of 0.825. In
differentiating HCs and CAD patients with stenosis rates of >70%, the model received
an accuracy of 77.3%, a precision of 66.9%, a f1 score of 62.8%, a sensitivity of 64.5%, a
specificity of 83.2%, and an AUC value of 0.856 (Table 3).
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Table 2. Feature ranking results among HCs versus CAD patients with stenosis rates of <30%, 30–70%
and >70%.

HC vs. <30% HC vs. 30–70% HC vs. >70%

Score Attributes Score Attributes Score Attributes
0.525 IgG anti-IGKC HNE 0.356 IgG anti-IGKC HNE 0.288 IgG anti-IGKC HNE
0.27 IgM anti-IGKC HNE 0.275 IgM anti-IGKC HNE 0.278 IgM anti-IGKC HNE

0.209 IgG anti-THRB 0.178 IgM anti-THRB HNE 0.172 IgM anti-THRB HNE
0.167 IgG anti-THRB HNE 0.178 IgG anti-THRB 0.164 IgM anti-THRB
0.14 IgM anti-THRB HNE 0.153 IgG anti-THRB HNE 0.156 IgM anti-HPT

0.127 IgM anti-HPT 0.128 IgM anti-THRB 0.143 IgM anti-CFAH HNE
0.126 IgM anti-HPT 0.128 IgM anti-CFAH
0.126 IgM anti-HPT HNE 0.123 IgM anti-HPT HNE

0.116 IgG anti-THRB
0.109 IgG anti-HPT
0.109 IgG anti-THRB HNE
0.104 IgG anti-CFAH HNE

Table 3. The machine learning models incorporated autoantibodies against unmodified and HNE-
modified peptides.

Groups Accuracy
(95%CI)

Precision
(95%CI)

f1 Score
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI) AUC (95%CI)

LGBM

IgG anti-IGKC HNE, IgM anti-CFAH, IgG anti-CFAH, IgM anti-CFAH HNE, IgG anti-CFAH HNE, IgM anti-HPT, IgM anti-HPT
HNE, IgG anti-HPT HNE, IgM anti-IGKC, IgG anti-IGKC, IgM anti-IGKC HNE, IgM anti-THRB, IgG anti-THRB, IgM anti-THRB

HNE, IgG anti-THRB HNE

HC vs. <30% 77%
(64.6–89.4%)

73%
(49.5–96.5%)

72.6%
(53–92.2%)

78.2%
(54.7–101.6%)

76.4%
(57.5–95.2%)

0.832
(0.657–1.008)

HC vs. 30–70% 72.7%
(59.2–86.2%)

72.5%
(52.5–92.4%)

69.1%
(52.9–85.3%)

71.5%
(49.6–93.4%)

75.8%
(57–94.6%)

0.816
(0.665–0.967)

HC vs. >70% 73% (59.1–87%) 61%
(32.5–89.6%)

57.8%
(34.6–81.1%)

62%
(33.5–90.5%)

79.6%
(64.1–95.2%)

0.819
(0.66–0.978)

Groups Accuracy
(95%CI)

Precision
(95%CI)

f1 Score
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI) AUC (95%CI)

XGB

IgG anti-IGKC HNE, IgG anti-CFAH, IgG anti-HPT, IgM anti-HPT HNE, IgM anti-IGKC, IgG anti-IGKC, IgM anti-IGKC HNE

HC vs. <30% 77.2%
(63.6–90.8%)

74.5%
(51.9–97.2%)

71.4%
(51.1–91.7%)

74.2%
(48.9–99.5%)

79.2%
(61.4–97.1%)

0.854
(0.684–1.024)

HC vs. 30–70% 75.3%
(62.6–88%)

71.7%
(52.6–90.8%)

71.4%
(54.3–88.6%)

75.6%
(53.9–97.3%)

75.4%
(58.5–92.3%)

0.825
(0.696–0.953)

HC vs. >70% 77.3%
(64–90.6%)

66.9%
(38.9–94.9%)

62.8%
(38.7–86.9%)

64.5%
(37.3–91.7%)

83.2%
(68.5–98%)

0.856
(0.729–0.982)

LGBM: Light Gradient Boosting Machine (lightGBM), XGB: eXtreme Gradient Boosting (XGBoost).

3.4. Optimization of Machine Learning Algorithms with Autoantibodies against HNE and
MDA-Modified Peptides

In our previous study, we had reported that the autoantibodies against four different
MDA modified peptides may serve as biomarkers in diagnosing patients with CAD [23].
The MDA-modified positions were underlined: 76-ADYEKHKVYACEVTHQGLSSPVTK-99

(IGKC76–99), 284-LQHLENELTHDIITK-298 (alpha-1-antitrypsin, A1AT284–298), 824-VSVQLEA
SPAFLAVPVEK-841 (alpha-2-macroglobulin, A2M824–841,), and 4022-WNFYYSPQSSPDKKLT
IFK-4040 (apolipoprotein B-100, ApoB1004022–4040). The IgG and IgM autoantibodies against
unmodified, MDA, and HNE-modified peptides were summarized in Table 4. The au-
toantibody, IgG anti-IGKC1–18 HNE, was selected as the first feature. We then performed
forward selection with autoantibodies against HNE and MDA-modified peptides (Table 5,
Figure 2). In the LightGBM model, the features selected included IgG anti-IGKC1–18 HNE,
IgM anti-A1AT MDA, IgM anti-IGKC1–18 MDA, IgG anti-A2M MDA, IgG anti-A1AT MDA,
and IgM anti-CFAH HNE. In differentiating HCs and CAD patients with a stenosis rate of
<30%, the model received an accuracy of 75.7%, a precision of 74.8%, a f1 score of 72%, a
sensitivity of 75.1%, a specificity of 77.2%, and an AUC value of 0.848. As for HCs and CAD
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patients with a stenosis rate of 30–70%, the model received an accuracy of 76.1%, a precision
of 72.2%, a f1 score of 71.3%, a sensitivity of 75.7%, a specificity of 76.6%, and an AUC of
0.845. In discriminating HCs and CAD patients with a stenosis rate of >70%, the model
received an accuracy of 82.7%, a precision of 74.5%, a f1 score of 71.9%, a sensitivity of
75.2%, a specificity of 86.4%, and an AUC value of 0.904. In the XGBoost model, the features
selected included IgG anti-IGKC1–18 HNE, IgM anti-A1AT MDA, and IgM anti-IGKC1–18

MDA. In the discrimination of HCs and CAD patients with a stenosis rate of <30%, the
model received an accuracy of 78.2%, a precision of 76.8%, a f1 score of 75%, a sensitivity of
78.4%, a specificity of 78.8%, and an AUC value of 0.847. As for HCs and CAD patients
with a stenosis rate of 30–70%, the model received an accuracy of 78.6%, a precision of
76.6%, a f1 score of 74.2%, a sensitivity of 77.1%, a specificity of 79.9%, and an AUC value
of 0.881. In the differentiation of HCs and CAD patients with a stenosis rate of >70%, the
model received an accuracy of 86.1%, a precision of 81.7%, a f1 score of 77.2%, a sensitivity
of 78.6%, a specificity of 90.4%, and an AUC value of 0.935. Statistical tests were performed
to validate the improvement.

Table 4. The distribution of IgG and IgM autoantibodies against unmodified, MDA, and HNE-
modified peptide in oxidative model.

Attributes HC (n = 30) <30% (n = 30) 30–70% (n = 30) >70% (n = 30)

IgG anti-A2M824–841 3.32 ± 5.35 1.51 ± 2.4 1.79 ± 2.01 1.99 ± 1.92
IgG anti-A2M824–841 MDA 9.87 ± 14.34 6.94 ± 11.9 4.66 ± 2.82 5.29 ± 2.8
IgG anti-ApoB1004022–4040 4.22 ± 7.25 3.75 ± 8.75 1.87 ± 1.19 1.78 ± 1.19

IgG anti-ApoB1004022–4040 MDA 1.97 ± 2.57 5.89 ± 15.61 2.21 ± 2.26 2.32 ± 3.87
IgG anti-A1AT284–298 3.63 ± 7.87 2.27 ± 2.75 2.39 ± 2.54 2.03 ± 1.16

IgG anti-A1AT284–298 MDA 4.26 ± 4.51 2.79 ± 1.79 3.42 ± 2.69 3.04 ± 1.36
IgG anti-IGKC76–99 2.37 ± 2.55 2.86 ± 4.22 1.74 ± 2.37 3.09 ± 5.72

IgG anti-IGKC76–99 MDA 4.41 ± 7.07 1.81 ± 3.02 1.52 ± 1.64 1.68 ± 1.43
IgM anti-A2M824–841 0.95 ± 0.53 0.6 ± 0.28 0.65 ± 0.52 0.59 ± 0.31

IgM anti-A2M824–841 MDA 2.03 ± 1.36 1.35 ± 0.61 1.57 ± 1.14 1.37 ± 0.65
IgM anti-ApoB1004022–4040 1.41 ± 0.96 1.02 ± 0.63 1.23 ± 1.53 1.18 ± 1.2

IgM anti-ApoB1004022–4040 MDA 1.41 ± 1.12 0.99 ± 0.43 1.18 ± 1.24 0.83 ± 0.36
IgM anti-A1AT284–298 1.41 ± 1.37 0.81 ± 0.7 1.8 ± 3.96 0.8 ± 1.09

IgM anti-A1AT284–298 MDA 1.17 ± 0.5 0.91 ± 0.37 0.93 ± 0.47 0.78 ± 0.37
IgM anti-IGKC76–99 3.54 ± 8.99 1.21 ± 1.06 16.3 ± 79.05 1.15 ± 1.97

IgM anti-IGKC76–99 MDA 0.88 ± 0.76 0.47 ± 0.26 0.54 ± 0.5 0.39 ± 0.24
IgM anti-CFAH1211–1230 17.54 ± 17.8 11.2 ± 9.08 13.26 ± 17.33 12.59 ± 19.43
IgG anti-CFAH1211–1230 26.13 ± 15.09 21.73 ± 31.63 23.53 ± 25.34 25.07 ± 25.65

IgM anti-CFAH1211–1230 HNE 15.71 ± 10.27 12.34 ± 8.28 12.44 ± 9.66 11.01 ± 11.05
IgG anti-CFAH1211–1230 HNE 26.98 ± 14.4 23.91 ± 28.53 24.71 ± 26.29 24.38 ± 20.02

IgM anti-HPT78–108 11.89 ± 6.34 10.95 ± 9.51 9.94 ± 7.06 8 ± 4.44
IgG anti-HPT78–108 37.11 ± 16.95 32.09 ± 36.49 34.67 ± 31.77 36.63 ± 26.47

IgM anti-HPT78–108 HNE 6.73 ± 4.14 6.9 ± 7.13 5.74 ± 5.53 4.43 ± 2.97
IgG anti-HPT78–108 HNE 27.67 ± 13.05 26.27 ± 27.46 26.6 ± 24.57 26.27 ± 18.45

IgG anti-IGKC2–19 29.36 ± 11.95 22.56 ± 19.62 26.27 ± 17.36 19.66 ± 10.1
IgM anti-IGKC2–19 44.88 ± 9.8 36.22 ± 11.98 33.87 ± 24.54 31.56 ± 21.59

IgM anti-IGKC2–19 HNE 30.11 ± 15.84 18.16 ± 15.37 19.99 ± 24.36 14.96 ± 14.68
IgG anti-IGKC2–19 HNE 42.7 ± 11.69 33.82 ± 37.21 34.86 ± 28.84 43.94 ± 36.92
IgM anti-THRB328–345 30.08 ± 26.5 16.98 ± 11.87 23.5 ± 37.37 18.83 ± 26.25
IgG anti-THRB328–345 88.48 ± 32.89 63.24 ± 46.2 71.84 ± 48.89 74.58 ± 46.34

IgM anti-THRB328–345 HNE 12.01 ± 11.93 7.96 ± 7.79 6.11 ± 5.22 7.23 ± 8.35
IgG anti-THRB328–345 HNE 32.16 ± 13.36 28.59 ± 35.45 30.46 ± 27.26 30.04 ± 19.74
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Table 5. The machine learning models incorporated autoantibodies against unmodified, MDA, and
HNE-modified peptides.

Groups Accuracy
(95%CI)

Precision
(95%CI)

f1 Score
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI) AUC (95%CI)

LGBM

IgG anti-IGKC HNE, IgM anti-A1AT MDA, IgM anti-IGKC MDA, IgG anti-A2M MDA, IgG anti-A1AT MDA, IgM anti-CFAH HNE

HC vs. <30% 75.7%
(62.4–88.9%)

74.8%
(52.4–97.2%)

72%
(53.6–90.4%)

75.1%
(51.7–98.6%)

77.2%
(57.5–96.9%)

0.848
(0.706–0.99)

HC vs. 30–70% 76.1%
(62.6–89.6%)

72.2%
(49.3–95.1%)

71.3%
(51.7–90.9%)

75.7%
(51.6–99.7%)

76.6%
(58.1–95.2%)

0.845
(0.687–1.002)

HC vs. >70% 82.7%
(72.3–93.1%) *

74.5%
(51.5–97.5%) *

71.9%
(52.2–91.5%) *

75.2%
(50.7–99.6%) *

86.4%
(73.8–99.1%)

0.904
(0.783–1.025) *

Groups Accuracy
(95%CI)

Precision
(95%CI)

f1 Score
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI) AUC (95%CI)

XGB

IgG anti-IGKC HNE, IgM anti-A1AT MDA, IgM anti-IGKC MDA

HC vs. <30% 78.2%
(64.8–91.6%)

76.8%
(55.6–98%)

75%
(57.8–92.2%)

78.4%
(57.3–99.5%)

78.8%
(59.1–98.5%)

0.847
(0.696–0.999)

HC vs. 30–70% 78.6%
(66.4–90.8%)

76.6%
(55.5–97.7%)

74.2%
(56.9–91.4%)

77.1%
(55.4–98.8%)

79.9%
(62.3–97.5%)

0.881
(0.751–1.011)

HC vs. >70% 86.1%
(76.2–96%) *

81.7%
(60.5–103%) *

77.2%
(59–95.5%) *

78.6%
(55.8–101.4%) *

90.4%
(79.6–101.1%) *

0.935
(0.846–1.024) *

* means p < 0.05; LGBM: Light Gradient Boosting Machine (lightGBM), XGB: eXtreme Gradient Boosting (XGBoost).
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Figure 2. The flowchart of the developing oxidative model.

4. Discussion

In this study, we examined the diagnostic performance of four HNE-modified peptides
in CAD that had been previously reported in patients with RA [20]. Autoantibodies
found in RA have been related to cardiovascular events [24]. Thus, we speculated that
the autoantibodies we discovered previously may be useful in the diagnosis of CAD.
We firstly examined the IgG and IgM autoantibodies against BSA and HNE-modified
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BSA (Supplementary Figure S1). The results indicated the diagnostic potential of IgG
and IgM autoantibodies against HNE-modified adducts. Hence, we measured the IgG
and IgM autoantibodies against peptides, including CFAH, HPT, IGKC2–19, THRB, and
HNE-modified peptides. We found that IgG and IgM autoantibodies against CFAH, HPT,
IGKC2–19, THRB, and HNE-modified peptides decreased in CAD patients.

The proteins were discovered to be associated with the development of CAD. For
instance, CFAH has been found in early human coronary atherosclerotic lesions [25]. Lee
et al. suggested that HPT may be elevated in the plasma derived from CAD patients [26].
Although no study has reported the elevation of IGKC in CAD patients, MDA-modified
IgG was found to be significantly elevated in CAD patients [27]. The elevation of THRB
fragments was reported in patients with peripheral artery disease (PAD), which is also
a cardiovascular risk factor [28,29]. Increasing the level of 4-HNE and above-mentioned
proteins in CAD patients may accelerate the increment of oxidized proteins, which play a
crucial role in the formation of atherosclerosis. Therefore, the 4-HNE modified peptides
may also trigger inflammation and strengthen the development of atherosclerosis. Studies
indicated that autoantibodies may be associated with the severity of CAD [30,31]. The
decreased level of autoantibodies against 4-HNE modified peptides possibly indicates
the clearance of 4-HNE or immune dysregulation [32,33]. However, the role of autoanti-
bodies against MDA and 4-HNE modified peptides in the development of CAD requires
further investigation.

To date, no other study has investigated autoantibodies against HNE-modified pep-
tides in patients with cardiovascular disease. However, HNE increment has been associated
with oxidative stress and vascular disease [34,35]. In addition, the formation of HNE-
modified adducts may induce the generation of autoantibodies [36]. Hence, we speculated
that the decreasing level of IgG and IgM against HNE-modified peptides may result from
the immune dysfunction of patients with CAD [37].

To further explore the diagnostic ability, we conducted feature selection (feature
ranking + forward selection) and machine learning models. IgG anti-IGKC2–19 HNE was
ranked as the most important feature during each ranking (Table 2). Thus, the following
forward selection was initiated with IgG anti-IGKC2–19 HNE. Various types of machine
learning algorithms have been applied into medical studies. Examples include decision tree,
support vector machine, random forest, and neural network [38]. Recently, two advanced
tree-based models, Light Gradient Boosting Machine (lightGBM) and eXtreme Gradient
Boosting (XGBoost), have been popular in other studies. Wang et al. built their miRNA
classifier with LightGBM and identified hsa-mir-139 as an important feature for breast
cancer diagnosis [39]. Joo et al. analyzed the cohort data from Korean National Health and
developed various machine learning prediction models to estimate 2-year and 10-year risks
of cardiovascular disease (CVD). LightGBM owned the highest AUC value in estimating
10 year follow-ups without medication features [40]. Al’Aref et al. incorporated clinical
features and coronary artery calcium scores (CACs) with an XGBoost model to estimate the
pretest of obstructive CAD on coronary computed tomography angiography (CCTA). They
received the best performance with an AUC of 0.866 [41]. Kim et al. enrolled 1312 patients
with obstructive CAD on coronary angiography. They built a model with the XGBoost
algorithm and received an AUC of 0.820 as the best model in their experiments [42].

In our study, we performed forward feature selection with LightGBM and XGBoost.
We received the highest performance with features including IgG anti-IGKC2–19 HNE, IgM
anti-A1AT284–298 MDA, and IgM anti-IGKC76–99 MDA. The XGBoost model received a
sensitivity of 0.786 and a specificity of 0.904. Many biomarkers have been utilized in the
clinic. For instance, the C-reactive protein (CRP) has been considered as a useful biomarker
to predict cardiac death, AMI, and heart failure [43]. In addition, high sensitivity-CRP
(hs-CRP) was found mildly elevated (up to 15 mg/L) in suspected ACS patients, which
may be a meaningful prognostic marker in the clinic [44]. Furthermore, inflammation
markers were studied in CAD. For example, the elevation of interleukin-6 (IL-6) was found
in induced myocardial infarction [45]. Cyclophilin A was found elevated significantly in
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CAD patients with type 2 diabetes. It served as a high specificity biomarker for diagnosis of
CAD patients with type 2 diabetes [46]. Furthermore, other researchers focus on circulating
protein and RNA [47]. Together, a multiplex biomarker panel may improve the diagnosis
with a comprehensive analysis [48]. In this study, we demonstrated a combination of
autoantibodies against two types of oxidative modified peptides (MDA and HNE). The
XGBoost model was improved the most after we incorporated autoantibodies against MDA
and HNE-modified peptides together (Table 5). Our future work may incorporate other
oxidative stress related markers to comprehend our oxidative model.

An in vitro diagnostic multivariate index assay (IVDMIA) combines multiple values
with an algorithm to reach an improved accuracy compared to a single biomarker [49]. It has
been applied to improve the diagnosis of ovarian cancer [50]. In addition, autoantibodies
have been considered as valid biomarkers for various diseases such as cancer [51], RA [52],
neurodegenerative disease [53], and CAD [54]. Together, these studies indicate the potential
of improving diagnostic ability with an IVDMIA combined with an immunoassay in the
clinic. However, several limitations should be noted. The machine learning models had
been improved after we incorporated multiple autoantibodies against oxidatively modified
peptides. Nevertheless, a larger sample size is required for further validation. Furthermore,
other biomarkers from the clinic that may improve the diagnosis should be included, such
as hs-CRP.

5. Conclusions

In this study, we firstly reported the plasma level of autoantibodies IgG and IgM
against CFAH1211–1230, HPT78–108, IGKC2–19, and THRB328–345 and their HNE-modified
peptides. In addition, we incorporated machine learning models to exploit the potential of
their diagnostic performance. Moreover, we included autoantibodies IgG and IgM against
MDA-modified peptides to further improve the performance of the models. Our study
provided a demonstration that combining autoantibodies against two types of oxidative
modification may improve the model performance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics12102269/s1, Supplementary Figure S1: Dot
plots of plasma concentration of autoantibodies: IgG anti-BSA and IgG anti-HNE modified BSA
(A), IgM anti-BSA and IgM anti-HNE-modified BSA (B) in healthy controls (HCs), rheumatoid
arthritis (RA) patients and RA patients with coronary artery disease (CAD); Supplementary Figure
S2: Dot plots of plasma concentration of autoantibodies: IgG anti-CFAH1211–1230 and IgG anti-
CFAH1211–1230 HNE (A), IgG anti-HPT78–108 and IgG anti-HPT78–108 HNE (B), IgG anti-IGKC2–19

and IgG anti-IGKC2–19 HNE (C), IgG anti-THRB328–345 and IgG anti-THRB328–345 HNE (D), IgM anti-
CFAH1211–1230 and IgM anti-CFAH1211–1230 HNE (E), IgM anti-HPT78–108 and IgM anti-HPT78–108

HNE (F), IgM anti-IGKC2–19 and IgM anti-IGKC2–19 HNE (G), IgM anti-THRB328–345 and IgM anti-
THRB328–345 HNE (H) in healthy controls (HCs) and coronary artery disease patients with stenosis
rates of <30%, 30–70%, and >70%.
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