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Abstract

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America,

underscoring the need for the development of new therapeutic strategies for the manage-

ment of this disease. Although many drugs are pre-clinically tested every year, only a few

are selected to be evaluated in clinical trials, and only a small number of these are success-

fully incorporated into standard care. Inaccuracies with the initial in vitro drug testing may be

responsible for some of these failures. Drug testing is often performed using 2D monolayer

cultures or 3D spheroid models. Here, we investigate the impact that these different in vitro

models have on the carboplatin response of four EOC cell lines, and in particular how differ-

ent 3D models (polydimethylsiloxane-based microfluidic chips and ultra low attachment

plates) influence drug sensitivity within the same cell line. Our results show that carboplatin

responses were observed in both the 3D spheroid models tested using apoptosis/cell death

markers by flow cytometry. Contrary to previously reported observations, these were not

associated with a significant decrease in spheroid size. For the majority of the EOC cell lines

(3 out of 4) a similar carboplatin response was observed when comparing both spheroid

methods. Interestingly, two cell lines classified as resistant to carboplatin in 2D cultures

became sensitive in the 3D models, and one sensitive cell line in 2D culture showed resis-

tance in 3D spheroids. Our results highlight the challenges of choosing the appropriate pre-

clinical models for drug testing.

Introduction

Epithelial ovarian cancer (EOC) is the 5th cause of cancer-related deaths in North American

women with a 5-year survival of 45% [1]. The standard front-line treatment for EOC includes

cytoreductive surgery and treatment with platinum DNA alkylating agents such as carboplatin

or cisplatin combined with the anti-microtubule drug paclitaxel [2]. Although initial response
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rates are high (>70%), the disease eventually recurs in most patients, who will then develop

chemoresistance [2–4]. To improve EOC survival, new therapies and their combinations are

under investigation, and preclinical models are used to test their efficacy prior to eventual

human trials. Because of time and cost efficiency, these models are often in the form of 2D or

3D in vitro assays. However, optimizing and translating the results seen in 2D in vitro models

to an in vivo response is challenging, as these models do not take into account important

tumor characteristics such as hypoxia, drug transport restriction, extra cellular matrix (ECM),

anchorage-independent growth as well as interactions with other cell types in the tumor,

including stroma/fibroblast and immune cells [5–8]. Alternatively, 3D spheroid models have

been proposed as an attractive alternative as they are thought to more closely resemble the

tumor tissue architecture [9–11].

There are several methods to prepare 3D spheroids from cell lines (reviewed elsewhere [11,

12]) including hanging-droplets [13–16], rotating wall vessel cultures [14, 17], and ultra-low

attachment (ULA) 96-well round-bottom plates [11, 18, 19]. In ovarian cancer, several groups

have described the capacity of EOC cell lines to form spheroids by different methodologies

[20–26], including our work using hanging droplets [16, 27–29]. These different techniques

each have their own challenges. On one hand, hanging-droplet spheroids take longer to form,

are difficult to manipulate for spheroid transfer steps, and they present a challenge for experi-

ments requiring medium changes [30, 31] or treatments. On the other hand, spheroids formed

in ULA plates can be readily used in high-throughput assays [18, 19] but many cell lines do not

form spheroids under these conditions. Considering the importance of the tissue microenvi-

ronment in the establishment of 3D models, components of the ECM have been used to assist

spheroid formations [11]. Matrigel, consisting of collagen type IV, perlecan/heparin sulfate

proteoglycan 2 and laminin, is one of the most commonly used ECM mimics [11, 32] and has

been shown to improve spheroid formation in ULA plates for cell lines that otherwise would

not have the capacity to aggregate [18, 19]. More recently, many bioengineered microfluidic

devices have been developed and shown to be effective in forming spheroids [33–39]. In addi-

tion, the use of these microfluidic devices has gained popularity as a 3D model system for drug

screening [12, 33–44]. In ovarian cancer, our group has been a pioneer in the application of

this technology to evaluate drug response in EOC cell lines [37, 38, 41].

Although several studies have compared the chemosensitivity of ovarian cancer cell lines

grown as monolayers with 3D-spheroid cultures [18, 41, 45, 46], little is known about the

impact that different 3D spheroid model systems have on their sensitivity. In the present

study, we investigated the ability of four different EOC cell lines to form 3D spheroids follow-

ing different methodologies (hanging-droplets, ULA plates and microfluidic chips), and their

carboplatin sensitivity in monolayer culture versus spheroids formed within microfluidic

devices or round-bottom ULA plates (the latter using Matrigel as an ECM) (Fig 1). Response

was measured by flow cytometry for apoptosis/cell death and spheroid size measurement. Our

results show that spheroid formation of EOC cell lines is significantly faster and more uniform

in polydimethylsiloxane (PDMS) microfluidic devices and Matrigel-assisted ULA plates than

in hanging-droplets or ULA plates without Matrigel. Carboplatin responses were observed in

both 3D spheroid models using flow cytometric analysis, but no significant decrease in spher-

oid size was detected. For the majority of the EOC cell lines (3 out of 4) a similar response to

carboplatin treatment was observed by both spheroid methods. Interestingly, two cell lines

classified as resistant to carboplatin in 2D cultures responded as sensitive in 3D models, and

one sensitive cell line in 2D culture showed resistance in the 3D spheroids. Our results high-

light the challenges in choosing appropriate pre-clinical models for empirical drug testing.
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Materials and methods

Cell lines

Four different human EOC cell lines were used in this study, TOV3041G, TOV112D, OV90

and OV866(2) (all BRCA1/2 wild-type). Three cell lines [TOV112D, OV90, OV866(2)] are

classified as resistant to carboplatin therapy in 2D culture as measured by clonogenic assay,

and one (TOV3041G) is classified as sensitive (Table 1). These cell lines were derived in our

laboratory from patient tumor (TOV) or ascites (OV) [27, 47] samples. All cell lines were

authenticated at the beginning of this study using STR profiling by the McGill University

Genome Center (Montreal, Canada). Cells were cultured in complete OSE medium (Wisent,

QC, Canada) supplemented with 10% fetal bovine serum (Wisent), 2.5 μg/mL of amphotericin

B (Wisent) and 50 μg/mL of gentamicin (Wisent). Cells were maintained in 100 mm petri

dishes with 5% CO2 at 37˚C.

Clonogenic survival assays

The IC50’s for carboplatin, as determined by clonogenic survival assay, have previously been

reported for TOV3041G, TOV112D, and OV866(2) [27, 28]. Carboplatin sensitivity for the

OV90 cell line was determined in this study using the same clonogenic assay [27]. Briefly, cells

were seeded in a 6-well plate at a density of 750 cells/well that allowed the formation of individ-

ual colonies. After seeding, cells were allowed to adhere for 16 hours in a 37˚C, 5% CO2 incu-

bator after which the medium was removed and replaced with OSE complete medium

containing carboplatin (0–100μM) (Hospira Healthcare Corporation, Saint-Laurent, QC).

Cells were incubated with the drug for 24 hours. The drug was then removed and OSE com-

plete medium was added to each well. When colonies became visible at a 2X magnification

plates were fixed with cold methanol and stained with a solution of 0.5% blue methylene

(Sigma–Aldrich Inc., St. Louis, MO) in 50% methanol. Colonies were counted under a stereo-

microscope and reported as percent of control. IC50 values were determined using Graph Pad

Prism 5 software (GraphPad Software Inc., San Diego, CA). Each individual experiment was

performed in triplicate and repeated three times.

Spheroid formation

Spheroids were formed using three different methods: hanging-droplet, PDMS-based micro-

fluidic chips and ULA 96-well plates (with and without Matrigel). Hanging-droplet spheroids

were generated as previously described [16]. Briefly, 16 μL droplets containing 4000 cells each

were placed on the inside of the lid of a 150 mm cell culture plate. The lid was then gently

Fig 1. Schematic illustration of the study strategy. For each cell line used, 3D spheroid formation was evaluated by four different methods, i.e., PDMS-based

microfluidic systems, ultra-low attachment (ULA) plates in the presence or not of 2% Matrigel, and hanging droplets. The two most effective 3D spheroid

methods (microfluidic chips and Matrigel-assisted ULA plates) were used to define carboplatin sensitivity of each cell line that was then compared to

responses in the 2D monolayer assay.

https://doi.org/10.1371/journal.pone.0244549.g001

Table 1. Carboplatin sensitivity (IC50 by clonogenic assay) of the EOC cell lines used in this study.

Carboplatin IC50 (μM) Reference

TOV3041G 5.2 ± 1.1 Fleury et al. 2015

TOV112D 13.4 Letourneau et al. 2012

OV90 31.8 ± 5.4 This study

OV866(2) 32.1 ± 7.1 Fleury et al. 2015

https://doi.org/10.1371/journal.pone.0244549.t001
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inverted and replaced on the base of the plate containing sterile PBS for humidification and

the plate was put in the incubator with the droplets hanging. Spheroids were allowed to grow

for up to 6 days. For the microfluidic method, each device contained 120 spheroid culture

chambers, with one inlet and one outlet (Fig 2, see fabrication section below). A cell suspen-

sion of 1 x 106 cells in 1 mL of complete OSE medium was used. The device was seeded with

100 μL of this suspension in the inlet, and the same amount of medium was removed from the

outlet. This process was repeated by seeding in the outlet and removing medium from the inlet

and performed five times in each direction (total 10 times, using all of the 1 x 106 cells) to

allow uniform distribution of cells across the wells. Spheroids were allowed to form over 48

hours. Finally, spheroids were also prepared using 96-well round-bottom ULA plates (Corning

4515). Wells were seeded with 2000 cells in 100 μL of cooled complete OSE medium with or

without 2% Matrigel (BD, Bioscience, Canada). This was done for each cell line and condition.

Spheroids were allowed to form over 48 hours.

Microfluidic device fabrication

The PDMS microfluidic device used in this work is a modification of a previously described

device [35]. It was made of PDMS and used the basic principle of gravity trapping [34, 41, 48].

The device layout was developed using CATIA (Dassault Systèmes, France) and the mold was

carved out of polymethyl methacrylate. Using this mold, our device was made of two bonded

layers of PDMS (Fig 2); 1) the bottom later contains five segments of spheroid culture cham-

bers, each of which contains 24 wells of 500μm x 500μm x 500μm, and 2) the top layer contains

a straight channel with a height of 500μm covering the entirety of the spheroid culture cham-

bers with 3 mm holes for the inlet and outlet at the ends of the straight channel. The device

was bonded using an upright microscope to align the layers after 30 sec of atmospheric plasma

surface treatment. After bonding, the device was put in an oven at 80˚ C for two hours. The

dimension of the device was 7.5 cm long x 1 cm wide with of 120 spheroid culture chambers (5

blocks of 24 chambers each). Nine devices could be culture at a time in an incubator using a

simple pipet tip box. Prior to use, the devices were treated with 10 mg/ml Pluronic (Sigma-

Aldrich, St Louis, USA) as previously described [48], to make the PDMS surface less adherent

to cells. This treatment also prevents chemo-absorption by the PDMS [49].

Carboplatin treatment

Previously, we have shown that the carboplatin IC50 for spheroids from a specific EOC cell line

(TOV112D) is approximately 10x the corresponding monolayer IC50 value [41]. Therefore, as

the most resistant cell line in this study has an IC50 of 30μM (Table 1), we treated the spheroids

formed in the PDMS-based microfluidic systems and in the ULA plates with 300 μM

Fig 2. Design of PDMS microfluidic device developed for the culture of 3D spheroids and drug testing. Each chip

is comprised of five sections of 24 wells, containing 120 wells. Each well has a dimension of 500×500×500 μm3. The

scale bar is 1 cm.

https://doi.org/10.1371/journal.pone.0244549.g002
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carboplatin. Moreover, in our earlier pilot studies using concentrations 10 times lower

(30 μM) and 10 times higher (3000 μM), no differential results among the cell lines were

observed, as they all survived at the lower dose and all died at the higher. Interestingly, the

300 μM carboplatin concentration is similar to that found in the plasma of ovarian cancer

patients undergoing chemotherapy [48]. Spheroids formed 48 hours after cell seeding were

treated with fresh medium (controls) or fresh medium containing 300 μM carboplatin (Hos-

pira Healthcare Corporation) for a period of 48 hours. Carboplatin treatment was also per-

formed on monolayer cultures prepared with 5,000 cells/well of each cell line seeded into

6-well plates. Consistent with the method for spheroids, 48 hours after inoculation, the cul-

tures were treated with fresh medium (controls) or fresh medium containing 300 μM carbo-

platin and cultures were incubated for 48 hours. After treatment samples were immediately

used in subsequent analyses.

Microscopy and imaging

Microscopy images were taken using an inverted microscope (Nikon TS100) at 10X or 4X

magnification two and four days after seeding as well as 48 hours after treatment prior to flow

cytometry analysis. PDMS microfluidic devices were put into a 100 mm petri dish for imaging

purposes to maintain sterile conditions. Size estimation was done using ImageJ software (Ver-

sion 1.49, National Institute of Health, Bethesda, MD).

Flow cytometry analysis

After carboplatin treatment, monolayer cells from each well of the 6-well plates were harvested

by trypsin-EDTA (0.05%) as a single cell suspension. For the spheroids treated in the ULA

plates, 10 were collected, pooled and dissociated with trypsin-EDTA (0.05%) for 5 minutes to

obtain single-cell suspensions. For those treated in the PDMS-based microfluidic devices, 48

were pooled and dissociated as above. Cells were then labelled with Annexin-V (3:100 dilu-

tion) and 7-Amino-ActinomycinD (7-AAD, 5:100 dilution) to detect apoptotic and dead cells,

respectively (PE Annexin V apoptosis Detection Kit I, BD Biosciences). After a 15-minute

incubation at RT (25˚C) in the dark, the stained cells were analyzed by flow cytometry

(LSR-Fortessa, BD Biosciences), within 2 hours of staining. The data collected from each

acquisition was analyzed using the FlowJo software (FlowJo, LLC, Ashland, USA). After

excluding cell debris, viable cells were selected based on the absence of 7-AAD and/or

Annexin-V markers (see example on S1 Fig).

Statistical analysis

Values are expressed as the mean ± SEM (standard error of the mean), derived from at least

three independent experiments. Single comparisons between two groups were determined by

Student’s t-test (paired, two-tailed). Comparisons between multiple groups were determined

by Tukey ANOVA multi comparison test. P values < 0.05 were considered significant. All sta-

tistical analyses were done using GraphPad Prism 6 software (GraphPad Software Inc., San

Diego, CA).

Results

Comparison of spheroid formation using different methods

In order to compare carboplatin sensitivity of different EOC cell lines in 2D monolayers and

in 3D spheroids obtained by different methods, we first evaluated the efficiency of each 3D

technique (hanging-droplets, ULA plates, and PDMS-based microfluidic chips) to form
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spheroids using four EOC cell lines [TOV3041G, TOV112D, OV90 and OV866(2)]. Fig 3A

shows the hanging-droplet cultures at day 2 with the four EOC cell lines. Only TOV3041G

formed spheroids within 48 hours. Careful observation showed that, at this time point,

TOV112D and OV90 had started to form multiple smaller spheroids. However, OV866(2) had

not formed spheroids at all. Culturing the same cell lines up to day 4 and day 6, we observed that

the smaller spheroids of TOV112D and OV90 had fused together to form larger spheroids (S2

Fig). However, OV866(2) did not show any sign of spheroid formation. Fig 3B shows bright field

images of 3D cultures at day 2 using the PDMS-based microfluidic device. All cell lines formed

spheroids in the microfluidic device within 48 hours. Fig 3C shows the bright field images of

Matrigel-assisted spheroids using ULA wells at 48 hours. Again, all the cell lines formed spheroid

within 48 hours. However, less compact spheroids were obtained when EOC cell lines were

grown in the ULA plates in the absence of Matrigel (S3 Fig). Therefore, carboplatin sensitivity

was evaluated in 3D spheroids formed in the PDMS microfluidic device and the Matrigel-assisted

ULA plate since the latter is widely used for drug sensitivity assays [11, 18, 19, 45, 50].

Carboplatin sensitivity of EOC cell line spheroids obtained by two different

methods

Sensitivity of the spheroids was evaluated at a concentration of 300 μM carboplatin, a concen-

tration similar to that found in the plasma of ovarian cancer patients undergoing chemother-

apy [48]. This concentration is in range of what has been used in other studies (100 μM,

Fig 3. Capacity of EOC cell lines to form spheroids in three different culture conditions. Representative

microscopic bright field images of TOV3041G, TOV112D, OV90 and OV866(2) cells cultured 48 hours in hanging

droplets (A), within the custom PDMS-based microfluidic chips, (B) and in 96-well round-bottom ULA plates with 2%

Matrigel (C). The scale bar is 500 μm.

https://doi.org/10.1371/journal.pone.0244549.g003
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330 μM) to evaluate platinum sensitivity of ovarian cancer spheroids [18, 46]. It is also 10

times higher than the 2D IC50 (by clonogenic assay) of the most resistant cell lines OV90 and

OV866(2) (see Table 1). Then, the effect of carboplatin on our EOC cell lines was evaluated by

measuring the size of the spheroids, as is commonly used in the literature [18, 19, 45, 51], and

by measuring live/apoptotic/dead cells by flow cytometry using Annexin V/7-AAD staining of

the dissociated spheroids. For the spheroids grown in the PDMS-based microfluidic chips, we

observed a significant decrease in the percentage of live cells following treatment with 300 μM

carboplatin for the OV90 and OV866(2) spheroids, but not for the TOV3041G and TOV112D

cells, the latter being the most resistant in this assay (Fig 4B). However, no significant decrease

Fig 4. Carboplatin response of EOC spheroids cultured in PDMS microfluidic devices. 3D spheroids of four EOC

cell lines [TOV3041G, TOV112D, OV90, OV866(2)] were formed and cultured in microfluidic devices for 2 and 4

days (Ctrl Day 2 and Ctrl Day 4) or treated at day 2 with 300 μM of carboplatin and assessed at day 4 (Carbo 300 Day

4). A) Representative microscopic bright field images at 10X magnification. B) Comparison of carboplatin treatment

on EOC cell survival (grey bars) and spheroid diameters (red points). 48 spheroids were analyzed (in duplicate) from

each set of experiment readouts. Error bars indicate the standard errors of the mean (SEM) of three independent

experiments. Statistical analyses: Ctrl Day 4 vs Carbo 300 Day 4, � p<0.05; ��� p<0.0005; ns, non-significant (Student’s

t-test).

https://doi.org/10.1371/journal.pone.0244549.g004
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in the size of spheroids was observed, and on the contrary, sizes of the OV90 and OV866(2)

spheroids were significantly increased, likely due to spheroid disaggregation (Fig 4A and 4B).

For spheroids grown in the Matrigel-assisted ULA plates, our results showed that all four cell

lines presented decreased viability after incubation with 300 μM carboplatin, including

TOV112D, as assessed by Annexin V/7-AAD staining and flow cytometry, but we did not

notice a change in size when visually inspecting these spheroids (Fig 5 inserts). In the Matri-

gel-assisted ULA plates the highest resistance to carboplatin was observed in the TOV3041G

cell line. Of note, sizes of non-treated spheroids were less than 500 μm in diameter in days 2

and 4 in both methods (Figs 3–5), which is important to avoid extensive internal necrotic core.

Comparative carboplatin response of 3D spheroids with that of 2D

monolayers

The carboplatin sensitivity of cell lines in 2D culture was originally obtained using the clono-

genic assay (Table 1), where cells are plated at a low dilution in order to obtain colonies from

single cells. However, in our 3D spheroid assays (both methods), a large number of cells are

used to form the spheroids and carboplatin sensitivity is determined by the percentage of

residual live cells. In order to approximate analysis methods used for the 2D and 3D drug sen-

sitivity assays, we treated cell monolayers at 80% confluence with carboplatin (300 μM), and

Fig 5. Carboplatin response of EOC spheroids cultured with 2% matrigel in ultra-low attachment wells. 3D

spheroids of TOV3041G (A), TOV112D (B), OV90 (C) and OV866(2) (D) were formed and cultured in concave-

bottom ULA plates in the presence of 2% Matrigel for 4 days (Ctrl Day 4) or treated at day 2 with 300 μM of

carboplatin and assessed at day 4 (Carbo 300 Day 4). Top panels are representative microscopic bright field images of

each condition. Bar graphs represent cell survival analysed by flow cytometry of control (light grey) and treated (dark

grey) spheroids. Data are shown as the mean ± SEM of three independent experiments. � p<0.05; �� p<0.005

(Student’s t-test).

https://doi.org/10.1371/journal.pone.0244549.g005
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evaluated cell viability by flow cytometry as for the spheroids. Sensitivity of 2D monolayers

(Fig 6A) corresponded proportionately with that of the clonogenic assays where TOV3041G

was the most sensitive and OV90 and OV866(2) the most resistant (Table 1).

When comparing the percentage of live cells by flow cytometry (normalized to controls) in

the three methods tested, i.e. monolayer, spheroids from PDMS-based microfluidic devices

and Matrigel-assisted spheroids, we observed that the spheroids of TOV3041G were signifi-

cantly more resistant to carboplatin than in monolayer culture, and that the spheroids of

OV90 and OV866(2) were significantly more sensitive than their respective monolayer cul-

tures. This was independent of the spheroid formation method used (Fig 6B). However, when

comparing both 3D cultures, OV90 spheroids formed in the microfluidic devices were signifi-

cantly more resistant than those obtained using Matrigel-assisted ULA plates. However, both

spheroid models were significantly more sensitive than the monolayer cultures. In contrast,

Fig 6. Comparison of carboplatin response between 2D-monolayers and two different 3D spheroid models. A)

TOV3041G, TOV112D, OV90 and OV866(2) were culture as 2D monolayers for 4 days without treatment (Ctrl Day 4)

or treated at day 2 with 300 μM of carboplatin and assessed at day 4 (Carbo 300 Day 4). Bar graphs represent cell

survival analysed by flow cytometry of control (light grey) and treated (dark grey). Data are shown as the mean ± SEM

of three independent experiments � p<0.05; �� p<0.005; ns, non-significant (Student’s t-test) B) 2D-monolayer

carboplatin sensitivity was compared to that of 3D spheroid cultures. Each treatment response was normalized relative

to the percentage of live cells in comparison to the appropriate control. � p-value<0.05; �� p-value<0.005; ��� p-value

<0.0005; Turkey ANOVA multi comparison test of three independent experiments.

https://doi.org/10.1371/journal.pone.0244549.g006
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spheroids of the TOV112D cell line formed in the microfluidic device were more resistant than

the monolayer culture but were more sensitive when formed by the Matrigel-assisted technique.

Table 2 summarizes this comparative study, in which a cell line ranking #1 has lower viability

(more sensitivity) than the cell line ranking as #2, and this approach was further applied to

determine rank order. When cell lines have similar percentage of cell survival, the same ranking

is given to both of them. This classification shows a clear inversion of sensitivity from 2D to 3D

for two of the four cell lines studied, in which the most sensitive becomes resistant to carbopla-

tin (TOV3041G) and the most resistant becomes the most sensitive [OV866(2)].

Discussion

In recent years, 3D cell culture models such as multi-cellular spheroids have become more

widely used as pre-clinical models and are expected to bridge the gap between 2D and animal

models. In the particular case of ovarian cancer, 3D spheroids are clinically relevant models

since in advanced disease EOC cells can spread to the peritoneum as aggregates/spheroids [52,

53]. In the literature, several EOC cell lines have been studied by different spheroid generating

methods, including hanging-droplets [16, 22, 27–29, 41, 54, 55], biomimetic hydrogels [23],

plastic wells coated with matrix scaffolds [20, 46, 56], and more recently by microfluidics [33,

34, 37, 38, 42, 44] and commercially available round-bottom ULA plates [18, 45, 50, 57]. In the

present study we first compared the ability of four EOC cell lines to form spheroids using these

ULA 96-well plates (in the absence or presence of Matrigel) with that of hanging-droplets and

PDMS-based microfluidic chips. For the latter, we used a recently developed [34, 37, 38]

PDMS microfluidic device with a capacity of 120 spheroids per device. We showed that both

Matrigel-assisted ULA plates and simple well-based PDMS microfluidic devices were the most

robust and efficient methods to form spheroids. However, our microfluidic devices have the

advantage of using much smaller volumes of media or drug, which is desirable when working

with expensive compounds or extensive drug screenings.

We evaluated the carboplatin response of EOC cell lines grown as spheroids using these

two methods and compared these to the respective monolayer cultures. Spheroid size is widely

used as a measure of drug response in several studies, including those with EOC cells [18, 19,

45, 51], where decreased spheroid size has been interpreted as reflecting cell death [19]. In con-

trast, our results show that, independent of the method of spheroid formation used, no

decrease in spheroid volume was observed. However, a significant increase in spheroid volume

was observed for two cell lines [OV90 and OV866(2)] when using PDMS-based microfluidic

devices, likely reflecting spheroid disaggregation due to cell death. Our findings indicate that

spheroid size is not appropriate to be used as a measurement of carboplatin response, at least

when using a short incubation time (like 48h of this study), as cell dissociation/disaggregation

due to cell death/apoptosis would increase spheroid size. Therefore, the response of the spher-

oids and monolayers to the drug was also assessed by the broadly accepted method of flow

cytometry through the analysis of apoptosis (Annexin V) and cell death (7-AAD). We

Table 2. Relative carboplatin sensitivity of four EOC cell lines in three different culture conditions.

Cell line 2D culture model 3D culture model

PDMS Microfluidic devices Ultra-low attachment wells and 2% Matrigel

TOV3041G 1 2 3

TOV112D 2 3 2

OV90 3 2 2

OV866(2) 3 1 1

https://doi.org/10.1371/journal.pone.0244549.t002
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observed decreased cell survival of spheroids after carboplatin treatment, with the highest level

of cell death being observed in the two cell lines that showed increased spheroid volumes.

Strikingly, in three of the four cell lines studied, the 3D sensitivity (independent of the spher-

oid formation method used) was inverted when compared with the corresponding 2D test,

where two cell lines [OV90 and OV866(2)] classified as resistant in 2D cultures became sensi-

tive in 3D models, and one sensitive cell line (TOV3041G) in 2D culture showed resistance in

the 3D model. The latter result is more consistent with the literature where 3D spheroids are

more resistant than 2D cultures [11, 18, 34, 41, 46, 58]. Although the exact signaling mecha-

nism implicated in this resistance is still unclear, reports have attributed it to decreased com-

pound access, reduced sensitivity in response to hypoxia, cells cycling more slowly, cell-cell

contact influence, and an increased EMT phenotype [11, 12, 58].

In a recent report [18], a comparative analysis of cisplatin response of monolayer cultures

and 3D spheroids of 16 EOC cell lines showed that the majority of the spheroids (13/16) were

more resistant to cisplatin than the respective 2D cultures (much as we have observed with the

TOV3041G cell line), whereas two cell lines were equally sensitive and one showed higher sen-

sitivity in 3D spheroids than 2D monolayers, the latter similar to what we observed in two of

our cell lines [OV9 and OV866(2)]. Another study using 11 EOC cell lines showed increased

cisplatin resistance of 3D spheroids in seven cell lines, with no change for the other four [46].

It is possible too that the read-out methods used in these studies have underestimated spher-

oids cell death when compared to ours. In these articles, platinum sensitivity of ovarian cancer

cell lines cultured as 3D spheroids have been mainly evaluated by metabolic assay (since it is a

more high-throughput assay) that would overestimate cell survival, as early apoptotic or senes-

cent cells are still metabolically active. We think that the cell death/apoptosis/cell viability

FACS method used in our work, although less high-throughput, would more accurately esti-

mate cell survival after carboplatin treatment in 3D spheroids. Nevertheless, all together, these

findings imply that the assumption that spheroids are more resistant to chemotherapy than

the monolayer cultures is not always accurate and may influence the choice of EOC models

used to study chemoresistance. Previous publications have attempted to correlate molecular

features (i.e. epithelial and mesenchymal protein biomarkers) with platinum sensitivity of

ovarian cancer cell lines grown as 2D vs 3D [18, 46]. Based in these results, it is unlikely that

these factors play a role in the sensitivity inversion of our cell lines.

When comparing the two spheroid models, we generally obtained similar carboplatin

responses, except for the TOV112D cell line. Spheroids of this cell line were more resistant

than the monolayer when assayed using the PDMS-based microfluidic device, but more sensi-

tive in the Matrigel-assisted ULA plates. It is possible that this cell line is more affected by the

Matrigel presence than the others. It is known that ECM components, like Matrigel, can affect

drug responses [11]. Although we treated our PDMS devices with pluronic to prevent cell

adherence and chemo-absorption [49], performing 3D assays in both PDMS chips and con-

ventional plates enabled us to rule out the well-known absorption of drugs by the hydrophobic

porous matrix of the PDMS as a significant cause for this discrepancy [59]. While the absorbed

concentration has not been directly controlled, our results (Fig 6B) do not show a systematic

increase in resistance in the PDMS devices as would be suggested if the cells are experiencing

an effectively lower concentration due to material absorption. Rather, resistance is slightly

lower in one cell line [OV866(2)] and significantly higher in another one (TOV112D). Regard-

ing the latter, it is possible that this cell line is more affected by components of the ECM that

might influence drug efficacy. Matrigel is a mixture of different ECM components that has

high variability issues due to batch effect [60], making it difficult to thoroughly investigate the

role of this ECM mimic in the 3D chemosensitivity of this cell line. Therefore, because PDMS-

based microfluidic devices were fast, reliable and high-throughput for the analyses of 3D
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spheroids, and because they used very small media/drug volumes, they make an interesting

alternative choice for drug screening either in pharmaceutical research or in clinical settings.

In a very recent report, 3D spheroids from tumor tissue of ovarian cancer patients were

obtained using the round-bottom ULA plates (without Matrigel) [57]. When compared to

clinical outcome, response of these patient-derived 3D spheroids to chemotherapeutic drugs,

including the standard of care carboplatin-paclitaxel combination therapy, showed concor-

dance in 89% of the cases (39 of 44) [57]. However, spheroids of different sizes, shapes and

compactions were observed from sample to sample and a high number of replicates were

needed. The PDMS microfluidic device described here may overcome this technical difficulty

by providing a large number of uniform spheroids to be tested for drug response using less

patient sample, suggesting that it could easily be incorporated into a clinic setting or used for

drug development in the future.

Although descriptive, the present work aims to emit a clear warning that there is no strong

tendency of EOC cells to become more resistant in 3D than in 2D, and that spheroid size is an

inefficient predictor of cell response as size variation can be both a change of cell number or a

change in tissue compactness.

Conclusion

In drug discovery, the choice of an appropriate in vitro pre-clinical model can have a major

influence on correctly predicting drug response in human clinical trials. Here, we evaluated

carboplatin sensitivity of four epithelial ovarian cancer cell lines using both 2D and 3D in vitro
models and tested different spheroid forming methods. Channel-based spheroid forming

chips held several advantages over commercially available ultra-low attachment plates or the

hanging droplet method. Irrespective of the spheroid forming method used, some striking car-

boplatin sensitivity inversions were noted within a given cell line when 2D and 3D results were

compared. Overall, the present study highlights the challenges of in vitro models and discusses

the different facets of 2D and 3D in vitro drug testing.

Supporting information

S1 Fig. 7-AAD and Annexin-V flow cytometry analysis. Graphs represent an example of

flow cytometry analysis of spheroids treated with 300 μM carboplatin and its respective con-

trol. After excluding cell debris, viable cells were selected based on the absence of 7-AAD and/

or Annexin-V markers (red square). Apoptotic and/or dead cells are shown in the other quad-

rants.

(TIF)

S2 Fig. Spheroid formation using hanging drops with different EOC cell lines. (A) Bright

field images at day 4. (B) Bright field images at day 6. Scale bar, 500 μm.

(TIF)

S3 Fig. Spheroid formation using ULA round-bottom wells (without Matrigel) with differ-

ent EOC cell lines. Bright field images at day 2. Note that TOV112D cells in these conditions

form multiple spheroids of smaller size. Scale bar, 300 μm.

(TIF)
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