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Simple Summary: The aim of our study was to evaluate the predictive performance of transcriptomic
biomarkers to immune response. The study collected 22 transcriptomic biomarkers and constructed
multiple benchmark datasets to evaluate their predictive performance of immune checkpoint block-
ade (ICB) response in pre-treatment patients with distinct ICB agents in diverse cancers. We found
“Immune-checkpoint molecule” biomarkers PD-L1, PD-L2, CTLA-4 and IMPRES and the “Effector
molecule” biomarker CYT showed significant associations with ICB response and clinical outcomes.
These immune-checkpoint biomarkers and another immune effector IFN-gamma presented predic-
tive ability in melanoma, urothelial cancer and clear cell renal-cell cancer. Interestingly, for anti-PD-1
therapy and anti-CTLA-4 therapy, the top-performing response biomarkers were usually mutually
exclusive even though in the same biomarker category and most of biomarkers with outstanding
predictive power were observed in patients with combined anti-PD-1 and anti-CTLA-4 therapy.

Abstract: Background: Immune checkpoint blockade (ICB) therapy has yielded successful clinical
responses in treatment of a minority of patients in certain cancer types. Substantial efforts were made
to establish biomarkers for predicting responsiveness to ICB. However, the systematic assessment
of these ICB response biomarkers remains insufficient. Methods: We collected 22 transcriptome-
based biomarkers for ICB response and constructed multiple benchmark datasets to evaluate the
associations with clinical response, predictive performance, and clinical efficacy of them in pre-
treatment patients with distinct ICB agents in diverse cancers. Results: Overall, “Immune-checkpoint
molecule” biomarkers PD-L1, PD-L2, CTLA-4 and IMPRES and the “Effector molecule” biomarker
CYT showed significant associations with ICB response and clinical outcomes. These immune-
checkpoint biomarkers and another immune effector IFN-gamma presented predictive ability in
melanoma, urothelial cancer (UC) and clear cell renal-cell cancer (ccRCC). In non-small cell lung
cancer (NSCLC), only PD-L2 and CTLA-4 showed preferable correlation with clinical response.
Under different ICB therapies, the top-performing biomarkers were usually mutually exclusive in
patients with anti-PD-1 and anti-CTLA-4 therapy, and most of biomarkers presented outstanding
predictive power in patients with combined anti-PD-1 and anti-CTLA-4 therapy. Conclusions: Our
results show these biomarkers had different performance in predicting ICB response across distinct
ICB agents in diverse cancers.

Keywords: immune checkpoint blockade (ICB); transcriptomic biomarkers; immune response; im-
munotherapy; comparative analysis
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1. Introduction

Cancer immunotherapies by immune checkpoint blockade (ICB) have revolutionized
the conventional tumor treatment and bring remarkable clinical efficacy to patients of
advanced-stage melanoma, squamous and non-squamous non-small-cell lung carcinoma
(NSCLC), kidney carcinoma, DNA mismatch repair deficient (dMMR)/microsatellite insta-
bility (MSI) high cancers, gastric cancer and hepatocellular carcinoma [1,2]. However, the
biggest limitation of ICB is that only a few patients are responsive to ICB due to intrinsic
resistance to immunotherapy [3,4]. Therefore, predicting ICB response is a critical challenge
for guiding patient selection for current checkpoint immunotherapies, and providing early
on-treatment indicators of response.

Over the last decade, several dozens of biomarkers have been developed for pre-
dicting responsiveness to ICB [5,6], PD-L1 expression was one of the earliest and most
promising biomarkers. Increasing studies found that pre-treatment PD-L1 expression on
tumor cells and immune cells was associated with improved response rate, progression-free
survival (PFS) and overall survival (OS), and could effectively predict the clinical outcomes
to ICB across various tumor types [7,8]. Tumor mutation burden (TMB) emerged as a
promising biomarker for ICB patient stratification. High mutation load correlated with
increased response rate to ICB therapies and longer PFS in most of studies [9]. Among
these biomarkers, transcriptome-based biomarkers that were generally composed of mul-
tiple genes were widely identified, such as immuno-predictive score (IMPRES), immune
resistance program (IRP), pan-fibroblast TGF-β response signature (Pan-F-TBRS) [10], since
the transcriptome sequencing of cancer patients was widespread and the transcriptomic
changes were generally rapid following minimal damage. One of the most important
advantages was that such multiple gene-based biomarkers could be effective to reflect
immune-related properties with their expression levels. For instance, TIDE used the expres-
sion of multiple genes interacting with the cytotoxic T lymphocytes (CTL) infiltration level
to reflect two immune escape mechanisms about the T cell dysfunction and exclusion. The
results showed that TIDE achieved consistently better performance for both anti-PD-1 and
anti-CTLA-4 therapies than other biomarkers like IFNG, PDL1 [11]. Immunophenoscore
(IPS) that quantified tumor immunogenicity according to the expression of representative
genes or gene sets was a useful biomarker of response to checkpoint blockades in patients
with melanoma [12]. These predictive biomarkers underlay a diverse range of mechanisms
of tumor-immune interaction implicating immune checkpoint pathway [13,14], immune
regulation [15], tumor antigen presentation [16], lymphocyte infiltration [16,17] and tumor
immune evasion [11]. However, the systematic assessment of predictive effects of these
transcriptomic ICB response biomarkers is still absent.

Herein, we collected 22 transcriptomic biomarkers for ICB response, and determined
a benchmark to evaluate the associations with immune response, predictive performance,
and clinical efficacy of these transcriptomic biomarkers under different cancer types and
ICB agents. Our results provided a systematic assessment of transcriptomic biomark-
ers for ICB response, which provided novel insights into potential strategies for patient
stratification, and would help to improve the prediction accuracy in ICB immunotherapy.

2. Materials and Methods
2.1. Data Collection and Preprocessing

We collected gene expression profiles of 16 cancer types from the TCGA (https:
//gdc.cancer.gov/about-data/publications/pancanatlas, accessed on 6 October 2019),
including 6518 tumor samples of bladder urothelial carcinoma (BLCA, n = 389), uter-
ine corpus endometrial carcinoma (UCEC, n = 509), skin cutaneous melanoma (SKCM,
n = 466), head and neck squamous cell carcinoma (HNSC, n = 476), prostate adenocarci-
noma (PRAD, n = 444), cervical squamous cell carcinoma and endocervical adenocarci-
noma (CESC, n = 300), colorectal (n = 344), lung squamous cell carcinoma (LUSC, n = 449),
kidney renal clear cell carcinoma (KIRC, n = 460), liver hepatocellular carcinoma (LIHC,
n = 319), breast invasive carcinoma (BRCA, n = 979), ovarian serous cystadenocarcinoma

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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(OV, n = 301), glioblastoma multiforme (GBM, n = 153), lung adenocarcinoma (LUAD,
n = 456), mesothelioma (MESO, n = 87), and stomach adenocarcinoma (STAD, n = 386).

For evaluation of ICB response prediction, we collected gene expression and the cor-
responding clinical data of ICB pre-treatment patients from ten studies (Table 1), which
involved in four major cancer types (melanoma, ccRCC, UC, NSCLC) and four ICB ther-
apy strategies (anti-CTLA-4, anti-PD-1, anti-PD-1 after progression on prior anti-CTLA-4
(anti-CTLA-4 prog anti-PD-1), and combination of anti-PD-1 and anti-CTLA-4 (combina-
tion therapy)). RNA-seq raw data of the Hugo et al. study [18], Riaz et al. study [19]
and Gide et al. study [20] were available from GEO (GSE78220, GSE91061) and ENA
(ERP105482), respectively. SRA archives were converted into fastq files with fastq-dump
from SRA Toolkit v2.9.6, for the quality control of raw data, we used trim-galore (v.0.4.5)
(https://github.com/FelixKrueger/TrimGalore, accessed on 18 October 2018) to filter low-
quality reads. We used kallisto v0.44.0 (https://github.com/pachterlab/kallisto, accessed
on 18 October 2018) [21] to align reads originating to the reference transcriptome and to
quantify transcript abundance and then transformed count into gene-level. Expression
levels were then converted into transcripts per million (TPM) and log2-transformed for
downstream analyses. We collected the gene expression profiles from NanoString nCounter
data for anti-PD-1 treatment samples from four cancer types (GSE93157). Other expression
data and clinical information used in this study were obtained through the supplementary
materials of original publications.

2.2. Biomarkers Collection and Scores Calculation

We performed an extensive search of published studies in the past five years about
transcriptomic signatures for distinguishing patients who can benefit from ICI, on PubMed
and Google Scholar. Keywords included “immune/immunotherapy”, “PD-1/PD-L1”,
“CTLA-4”, “biomarker/signature”, “predict/predictor”, “checkpoint”, and “response”.
Abstract and results sections (if necessary) were carefully scanned, biomarkers that met the
following three criteria were included: (1) a biomarker is related to immune response or
resistance; (2) a biomarker has predictive potential of immunotherapy response; (3) reach-
ing more than 60 citations. The identified candidate biomarkers were then fully discussed
by our group members. Finally, we collected a total of 22 transcriptomic biomarkers
which were considered to be an ICB response indicator. For each biomarker, the score
was calculated as follows: the expression of single checkpoint genes (PD-1, PD-L1, PD-L2
and CTLA-4), average gene expression-based biomarkers (CYT, gene.CD8, IFN-gamma,
Expanded immune signature, EMT and CRMA) were applied in a straightforward man-
ner. Another biomarker representing CD8 T cell infiltration was estimated via CIBER-
SORT (https://cibersort.stanford.edu/, accessed on 11 June 2019). IPS and IRP were
computed using the source codes provided by the original publications. After data nor-
malization, we used the TIDE web application for response prediction in each dataset
(http://tide.dfci.harvard.edu/, accessed on 8 June 2019). Meanwhile, we reconstructed
the calculation model for IMPRES and IS strictly according to the description in original
publications, and proved that our calculation models were highly consistent with original
articles using the same datasets (Figure S1). Other biomarkers were implemented using
methods according to the original citations: TIS, APM, C-ECM-p were calculated using
single-sample gene set enrichment (ssGSEA) analysis [27], and IPRES was calculated us-
ing gene set variation analysis (GSVA), both implemented in the GSVA R package [28];
Pan-F-TBRS was based on principal component analysis; T cell-inflamed GEP score was
computed as the weighted sum of signature gene expressions. The abundance of eight
immune and two stromal cell populations in the tumor microenvironment (TME) was
estimated from bulk tissue gene expression data using the MCP-counter algorithm [29].

https://github.com/FelixKrueger/TrimGalore
https://github.com/pachterlab/kallisto
https://cibersort.stanford.edu/
http://tide.dfci.harvard.edu/
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Table 1. Benchmark datasets for the evaluation in different cancer types and ICB therapy strategies.

Data Name 1 Data Name 2 Tumor Type Sample # Objective Response
Rate * Therapeutic Agent Data Type RECIST Reference

Gide et al.,
2019

Gide et al., 2019 (aPD1)

Melanoma

41 46.3% anti-PD-1 (pembrolizumab/nivolumab)
RNA-seq RECIST 1.1 [20]Gide et al. 2019

(aCTLA4 + aPD1) 32 65.6% anti-PD-1 + anti-CTLA-4 (ipilimumab)

Riaz et al.,
2017

Riaz et al., 2017 (aPD1)

Melanoma

25 26.1% anti-PD-1 (nivolumab)
RNA-seq RECIST 1.1 [19]Riaz et al., 2017 (aCTLA4

prog aPD1) 26 15.4% anti-CTLA-4 progression + anti-PD-1
(nivolumab, ipilimumab)

Van Allen
et al., 2015 Van Allen et al., 2015 Melanoma 42 17.1% anti-CTLA-4 (ipilimumab) RNA-seq RECIST 1.1 [22]

Chen et al.,
2016

Chen et al., 2016 (aCTLA4)

Melanoma

16 26.7% anti-CTLA-4 (ipilimumab)
NanoString
nCounter RECIST [23]Chen et al., 2016 (aCTLA4

prog aPD1) 16 6.7% anti-CTLA-4 progression + anti-PD-1

Hugo et al.,
2016 Hugo et al., 2016 Melanoma 27 55.6% anti-PD-1 (pembrolizumab/nivolumab) RNA-seq irRECIST [18]

TCGA TCGA Melanoma 18 36.4% anti-CTLA-4 (ipilimumab) RNA-seq RECIST

Prat et al., 2017

Prat et al., 2017 (melanoma) Melanoma 25 36%

anti-PD-1 (pembrolizumab/nivolumab) NanoString
nCounter RECIST 1.1 [24]Prat et al., 2017 (NSCLC) NSCLC 35 25.37%

HNSCC 5

Mariathasan
et al., 2018 Mariathasan et al., 2018 UC 298 22.8% anti-PD-L1 (atezolizumab) RNA-seq RECIST [10]

Snyder et al.,
2017 Snyder et al., 2017 UC 26 35% anti-PD-L1 (atezolizumab) RNA-seq RECIST 1.1 [25]

Miao et al.,
2018

Miao et al., 2018 (aPD1)

ccRCC

16 18.8% anti-PD-1 (nivolumab)
RNA-seq RECIST 1.1 [26]

Miao et al., 2018 (ICB) 17 29.4% anti-PD-L1 (atezolizumab)/anti-PD-1 +
anti-CTLA-4 (nivolumab, ipilimumab)

1 Ten benchmark datasets for overall analysis. 2 Fifteen datasets for cancer-specific and treatment-specific analysis. # Total number of patients included in the dataset. Among them, there are a few of patients
missed response information that were excluded in analysis. * Objective response rate (ORR) = (CR + PR)/total patients.
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2.3. The Classification of Patients Based on Clinical Response

Four commonly used strategies to define responders and non-responders according to
RECIST or irRECIST criteria were considered in our analysis: (1) PD (Progressive disease)
strategy: patients with complete or partial response, or stable disease were defined as
“responders”. Patients with progressive disease were defined as “non-responders” [18,30].
(2) OR (Objective response) strategy: the “responders” were defined using a composite end
point of complete response or partial response by RECIST criteria. “non-responders” were
defined as stable or progressive disease [15]. (3) OS (No long overall survival response)
strategy: “responders” were defined using a composite end point of complete or partial
response by RECIST criteria or stable disease with overall survival greater than one year.
“non-responders” were defined as progressive disease by RECIST criteria or stable disease
with overall survival less than one year [13]. (4) DCB (Durable clinical benefit) strategy:
“responders” were defined using a composite end point of complete or partial response by
RECIST criteria or stable disease with progression free survival greater than six months.
“non-responders” were defined as progressive disease by RECIST criteria or stable disease
with progression free survival less than six months [31].

2.4. Evaluation of the Predictive Performance of Biomarkers

The AUCs were calculated to evaluate the predictive abilities of biomarkers to clinical
response based on “PD” strategy. Receiver operating characteristic (ROC) curves were
constructed using the function roc provided in the pROC package [32]. For each biomarker,
its training data was not included in the AUC calculation. Considered different sample
size of datasets, we computed the aggregated sample size-weighted AUC (labeled as
Prediction Score) for comparing the different biomarkers regardless the data size [33,34].
The Prediction Score for one biomarker is defined as follows:

PredictionScore = ∑n
i=1 Sizei × AUCi

∑n
i=1 Sizei

where AUCi is the prediction performance of this biomarker in i-th dataset, and Sizei is the
sample size of the i-th dataset.

2.5. Survival Analysis

Patients who had more than one sample were excluded in survival analysis. Kaplan–
Meier analyses were performed to estimate the association of biomarker scores with
overall survival (OS) and progression free-survival (PFS) between patients with high
scores (>median) and those with low scores (<median) (log-rank tests) using the survival
package. The patients with median score (=median) were classified into the smaller-size
group among the two groups mentioned above. p-value < 0.05 was considered as a
significant difference.

2.6. Objective Response Rate

We assessed the objective response rate in the objective response evaluable datasets,
containing more than 20 intention-to-treat patients who had measurable disease according
to RECIST at baseline. Such that patients with a complete or partial response were defined
as objective response patients. Objective response rate (ORR) was defined as the number of
objective response patients divided by the total number of patients. Fisher’s exact test was
used to assess the association between biomarker scores and objective response.

2.7. Statistical Analysis

We tested the ability of the 22 transcriptomic biomarkers to predict clinical response
by comparing (two-sided Wilcoxon Rank Sum Test) between the responders and non-
responders. When the p value was less than 10−5, we uniformly set it to p = 10−5. Logistic
regression modeling was used to conduct the hypothesis testing associated with these
biomarkers and clinical response outcome under ICB therapies.
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3. Results
3.1. Collection of Immune Response-Associated Transcriptomic Biomarkers

We curated 22 transcriptomic biomarkers for ICB response that were based on the
expression of a single gene or multiple genes involving in the immune-associated processes
such as lymphocyte infiltration, antigen presenting, immune resistance and immune escape
(Figure 1 and Table 2). We classified these biomarkers into seven categories: (i) “Immune-
checkpoint molecule”: PD-1, PD-L1, PD-L2, CTLA-4 and IMPRES; (ii) “Tumor-infiltrating
lymphocyte (TIL)” category representing the tumor infiltration level of CD8+ T cell and
other immune cell types: CIBERSORT.CD8, gene.CD8 and TIS; (iii) “Effector molecule”
category associated with cytolytic activity and IFN-γ responsive effect: CYT, IFN-gamma,
Expanded immune signature, and T cell-inflamed GEP; (iv) “Antigen associated” category:
CRMA as the gene expression signature related to MAGE-A cancer-germline antigens
that predicted resistance uniquely to CTLA-4 blockade; (v) “Antigen presenting” category:
Antigen presenting machinery (APM); (vi) “Immune resistance” category shaping the
tumor microenvironment to restrain anti-tumor immunity: the Pan-F-TBRS, EMT, C-ECM-
up, IRP and IPRES; (vii) “Comprehensive” category involving multiplexed process of
anti-tumor immunity: TIDE, IPS and IS.
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Table 2. Summary of 22 transcriptomic predictive biomarkers included in this study for ICB response prediction.

Biomarker Category Biomarker Definition Correlation to
ICB Response Data Type Tumor Type Reference

Immune-checkpoint
molecule PD-1 PD-1 mRNA expression Positive RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [35,36]

Immune-checkpoint
molecule PD-L1 PD-L1 mRNA expression Positive RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [8,37]

Immune-checkpoint
molecule PD-L2 PD-L2 mRNA expression Positive RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [36,38]

Immune-checkpoint
molecule CTLA-4 CTLA-4 mRNA expression Positive RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [8]

Immune-checkpoint
molecule

IMPRES (immuno-
predictive score)

A predictor of ICB response in melanoma
which encompasses 15 pairwise

transcriptomics relations between
immune checkpoint genes.

Positive RNA-seq/NanoString
nCounter/MicroArray Melanoma [13]

Tumor-infiltrating
lymphocyte (TIL) CIBERSORT.CD8 Fraction of tumor-

infiltrating CD8 + T cells Positive RNA-seq/MicroArray Multiple Cancer Types [17]

Tumor-infiltrating
lymphocyte (TIL) gene.CD8 The mean expression of CD8A and CD8B

genes/the CD8 gene expression Positive RNA-seq/NanoString
nCounter/MicroArray Multiple Cancer Types [17]

Tumor-infiltrating
lymphocyte (TIL) TIS (T Cell Infiltration Score) T cell infiltration score about nine

T cell subsets Positive RNA-seq/MicroArray Multiple Cancer Types [16]

Effector molecule CYT (immune cytolytic activity) Immune cytolytic activity Positive RNA-seq/NanoString
nCounter/MicroArray Multiple Cancer Types [39]

Effector molecule IFN-gamma IFN-γ 10-gene expression Positive RNA-seq/NanoString
nCounter/MicroArray Multiple Cancer Types [15]

Effector molecule Expanded immune signature IFN-γ 28-gene expression Positive RNA-seq/NanoString
nCounter/MicroArray Multiple Cancer Types [15]

Effector molecule T cell-inflamed GEP(gene
expression profiles) IFN-γ–responsive genes expression Positive RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [15]

Antigen associated CRMA (anti-CTLA-4 resistance
associated MAGE-A) MAGE-A genes expression Negative RNA-seq/NanoString

nCounter/MicroArray Melanoma [40]

Antigen presentation APM (Antigen
Presenting Machinery)

Seven antigen presenting machinery (APM)
genes expression Positive RNA-seq/MicroArray Multiple Cancer Types [16]

Immune resistance Pan_F_TBRS (pan-fibroblast
TGF-β response signature) Pan-fibroblast TGF-β response signature Negative RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [10]
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Table 2. Cont.

Biomarker Category Biomarker Definition Correlation to
ICB Response Data Type Tumor Type Reference

Immune resistance EMT (epithelial–mesenchymal
transition)

Epithelial–mesenchymal transition
(EMT)-related gene expression Negative RNA-seq/NanoString

nCounter/MicroArray Melanoma, UC [18,41]

Immune resistance
C-ECM-up (cancer-associated

extracellular matrix
genes upregulated)

Cancer-associated ECM upregulated
genes enrichment score Negative RNA-seq/MicroArray Multiple Cancer Types [30]

Immune resistance IRP
(ImmuneResistanceProgram)

Resistance program that is associated with T
cell exclusion and immune evasion Negative RNA-seq/MicroArray Melanoma [42]

Immune resistance IPRES (Innate Anti-PD-1
RESistance) Innate anti-PD-1 resistance gene signature Negative RNA-seq/MicroArray Multiple Cancer Types [18]

Comprehensive TIDE (Tumor Immune
Dysfunction And Exclusion)

A computational method to model two
primary mechanisms of tumor

immune evasion
Negative RNA-seq/NanoString

nCounter/MicroArray Melanoma, NSCLC [11]

Comprehensive IPS (Immunophenoscore) A scoring scheme for the quantification
termed immunophenoscore. Positive RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [12]

Comprehensive IS (Immune Signature) Bayesian probability of the
immune signature Positive RNA-seq/NanoString

nCounter/MicroArray Multiple Cancer Types [43]
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Some of these biomarkers contained single gene (e.g., PD-1), others contained multiple
immune-related genes (e.g., IMPRES and TIS). Although a few common genes were shared
among these biomarkers, 67.4% of the biomarkers did not share any overlapping genes
(Figure S2). The majority of multiple-gene biomarkers did not contain known immune
checkpoint genes, such as PD-1, PD-L1, PD-L2, and CTLA-4. However, significant overlaps
among IS, IPRES, TIS and IPS were observed (p < 0.01, Hypergeometric test), having a
common gene LCK among them. To further investigate the correlations between these
biomarkers, we calculated the scores of the transcriptomic biomarkers for ~6600 cancer
samples derived from the TCGA pan-cancer cohort and calculated their similarities using
Spearman rank correlation (See Method). There were two distinct clusters. The biomarkers
from “Immune-checkpoint molecule”, “Tumor-infiltrating lymphocyte (TIL)”, “Effector
molecule” and “Antigen presentation” categories formed one cluster with average corre-
lation coefficient of 0.711 (Figure 2). The biomarkers including Pan-F-TBRS, IPRES and
C-ECM-up of “Immune resistance” category formed another cluster, showing an average
Spearman’s rank-correlation coefficient of 0.757 (Figure 2). The other three biomarkers, IPS,
CIBERSORT.CD8 and Mutation_load, were not contained in these two clusters. Notably, all
of the transcriptomic biomarkers showed low correlations with Mutation_load, implying
different anti-tumor immune response mechanisms from TMB.
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Figure 2. Correlations of transcriptomic biomarkers with ICB response at overall evaluation level. A heatmap displayed the
Spearman rank correlation coefficient between any two biomarkers, and demonstrated the hierarchical clustering pattern of
various biomarkers based on ~6600 samples from the TCGA pan-cancer cohort. Positive and negative correlations were
represented in red and blue, respectively. Biomarkers such as EMT, CRMA, IRP, TIDE and IMPRES were excluded due to
them only apply to specific cancer types.
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3.2. Assembling Benchmark Datasets to Test Transcriptomic Biomarkers

To perform an overall evaluation of the correlation between the predictive biomarkers
and clinical response to ICB therapy, we compiled numerous public ICB treatment bench-
mark datasets derived from 10 studies containing a total of 647 patients with solid tumors
involving in melanoma, clear cell renal-cell cancer (ccRCC), urothelial cancer (UC) and
non-small cell lung cancer (NSCLC) under different ICB therapies (Table 1). Among these
patients, the overall objective response rate was 28.4% across different cancer types. For
melanoma, ccRCC, UC and NSCLC, their objective response rates were 35.2%, 24.2%, 23.6%
and 25.7%, respectively. The melanoma patients showed a higher objective response rate to
anti-PD-1 therapy (42.2%) and the anti-PD-1 and anti-CTLA-4 combination therapy (65.6%)
(Table S1). The benchmark datasets we used supplied additional validation data to the
reference studies (Figure S3).

In order to facilitate subsequent evaluation, we applied a widely used classification
strategy for defining the responding and non-responding sub-groups according to the
RECIST criteria or irRECIST criteria. Patients who achieved objective responses (complete
response or partial response), or stable disease were classified as responders, and non-
responders were defined as progressive disease. The total number of responders and non-
responders were 316 and 309, respectively. In addition, the other response classification
strategies, including “OR” (Objective response), “OS” (No long overall survival response),
and “DCB” (Durable clinical benefit) that were frequently used in previous studies, were
also applied for classifying patients to investigate whether different classification strategies
could affect the evaluation results.

3.3. Assessing the Association between Transcriptomic Biomarkers and Clinical Response in
Benchmark Datasets

Based on these benchmark datasets, we addressed whether the predictive values of
transcriptomic biomarkers could differentiate responders from non-responders to ICB by
wilcoxon rank sum test. And we also performed univariate logistic regression analysis to
test associations between response and these biomarkers. In general, these biomarkers had
remarkably different associations with clinical response in different patient cohorts. Among
them, the immune checkpoint molecules PD-1, PD-L1, PD-L2 and CTLA-4 showed the
most stable correlations, as their expression levels were significantly higher in responding
sub-groups across three individual cohorts (Figure S4A, p < 0.05 for all, Wilcoxon Rank Sum
Test). CYT was another stable biomarker whose score was significantly higher among the
responders in three cohorts (Figures S4A and S5, p = 0.031 in the Prat et al., 2017, p = 0.004
in the Gide et al., 2019, p = 0.004 in the Mariathasan et al., 2018, Wilcoxon Rank Sum Test).
Its positive correlations with response were also true when assessed by logistic regression
analysis (Figure S4B, Table S2a, p = 0.011, odds ratio = 2.08, [95% CI, 1.24–3.86] in the
Gide et al., 2019; p = 0.031, odds ratio = 1.62, [95% CI, 1.07–2.58] in the Prat et al., 2017). High
scores of IFN-gamma, Expanded immune signature, T cell−inflamed GEP, genes.CD8, TIS,
APM and IS were all significantly associated with clinical response in the two datasets of
the Gide et al., 2019 and the Mariathasan et al., 2018 studies (Figures S4A and S5, p < 0.05 for
all, Wilcoxon Rank Sum Test). Unlike single checkpoint molecules, IMPRES encompassing
several pairs of checkpoints was positively correlated with response in another two cohorts,
the Van Allen et al., 2015 and the Chen et al., 2016 ones (Figures S4 and S5, Table S2a,
p = 0.013, p = 0.037, respectively, Wilcoxon Rank Sum Test; p = 0.019, odds ratio = 2.14,
[95% CI, 1.21–4.46], p = 0.033, odds ratio = 2.05, [95% CI, 1.15–4.51], respectively, Logistic
regression model).

Interestingly, we found several biomarkers presented significant correlations with
clinical response in one specific patient cohort. Biomarkers indicating immune resistance
like EMT, C−ECM−up and Pan−F−TBRS had significantly lower scores in responders
only from the Hugo et al., 2016 dataset (Figure S4A, p < 0.05 for all, Wilcoxon Rank Sum
Test), their negative correlations with response were also confirmed by logistic regression
analysis (Figure S4B, p = 0.01, odds ratio = 0.02, [95% CI, 3 × 10−4 − 0.22], p = 0.013, odds
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ratio = 0.01, [95% CI, 10−4 − 0.22], p = 0.03, odds ratio = 0.64, [95% CI, 0.4–0.91] in the
Hugo et al., 2016 dataset, respectively). Previous study showed most of the non-responders
in the Hugo et al., 2016 cohort displayed innate anti-PD-1 resistant characteristics which
might lead to the primary associations between the “Immune resistance” biomarkers and
ICB response [18].

We further observed differences of biomarkers between responders and non-responders
under the other three classification strategies (i.e., “OR”, “OS” and “DCB”). In general, the
trends of associations between biomarkers and clinical response didn’t change as strategies
changed. We also observed that even under all of the four response classification strategies,
there were still some datasets that did not capture any correlation between biomarkers and
clinical response (Figures S6–S8, Table S2b,d), suggesting current biomarkers might still
have some limitations and could not make good use for all sample sets.

3.4. The Prediction Performance of Transcriptomic Biomarkers for Response to
ICB Immunotherapy

To evaluate the prediction performance of the transcriptomic biomarkers for ICB
response, receiver operator characteristic (ROC) curves were performed to measure the
true-positive rates against the false positive rates in benchmark datasets. According to
the average AUC across datasets, the widely used ICB response biomarkers TMB and
PD-L1 were superior to most of biomarkers, though they didn’t achieve good performance
(Figures S9 and S10, average AUC 0.66 for Mutation_load, average AUC 0.65 for Non-
Syn_mutation_load, average AUC 0.63 for PD-L1). IMPRES ranked among the top two
with the AUC being above 0.7 in four datasets. Figure S10 showed the ROC curves of
PD-L1 and IMPRES across all benchmark datasets. APM, Pan-F-TBRS and CYT ranked
in the top fourth, sixth and seventh place (Figure S9A, average AUC 0.63, 0.62, 0.62 for
APM, Pan-F-TBRS and CYT, respectively). TIDE and C-ECM-up followed closely, while
the performance fluctuated noticeably among different datasets (Figure S9A, average AUC
0.61 for TIDE, average AUC 0.61 for C-ECM-up). Also, some of the biomarkers had lower
average AUC, but in some specific datasets their prediction performances were extremely
high, such as EMT in the Hugo et al., 2016 (Figure S10, AUC = 0.82). Using the sum of
sample size-weighted AUC (labeled as Prediction Score), we summarized the prediction
performance of transcriptomic biomarkers acorss datasets (Figure S11), the training sets
used for identification of biomarkers were excluded to ensure an unbiased results. All of
the biomarkers had the prediction score lower than 0.7.

In terms of sensitivity and specificity, we used median score of biomarkers as the
threshold to stratify responders and non-responders. Among all the biomarkers, the median
sensitivities and median specificities of IS, Mutation_load and CRMA were consistently
high. IMPRES showed the highest median sensitivity to response but very low median
specificity. In contrast, IPS and TIDE had the lowest sensitivities, but their specificities were
relatively higher (Figure S9B). In summary, the predictive ability of these transcriptomic
biomarkers to ICB response is still limited currently.

3.5. Evaluating the Association of Biomarkers with Clinical Responses in Specific Cancer Types
with Different ICB Therapies
3.5.1. Evaluating the Association in Different Cancer Types

Due to highly heterogeneous objective response rate in different cancer types (melanoma,
31–44% [44–46]; NSCLC, 19–20% [47,48]; RCC, 22–25% [49,50]) (Table S1), we therefore
asked whether correlations between these biomarkers and response to ICB were different
in various cancer patients under the setting of different ICB therapies. We first splited the
10 benchmark datasets into 15 patient cohorts according to different cancer types, including
melanoma (10 datasets, n = 268), ccRCC (2 datasets, n = 33), UC (2 datasets, n = 324) and
NSCLC (1 dataset, n = 35), and then performed the response association analysis as above
(Table 1).

Different biomarkers showed differential correlations with response in various can-
cer types, and some had the preference in specific cancer types. Across cancer types,
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only the biomarkers of “Immune-checkpoint molecule” category performed stably in
four cancer types. CYT, IFN-gamma, gene.CD8, APM and IS presented significantly
higher scores among responders of three cancer types except for NSCLC (Figure 3 and
Figure S12, p < 0.05 for all, Wilcoxon Rank Sum Test). Melanoma and UC shared the largest
number of biomarkers correlated with response, including PD-1, PD-L1, PD-L2, CTLA-4,
gene.CD8, all biomarkers of “Effector molecule”, APM and IS (Figure 3A,C). On the other
hand, transcriptomic biomarkers presented preference in specific cancer types. Among
biomarkers of “Immune-checkpoint molecule”, PD-L1 showed significant associations
in ccRCC (Figure 3B, p = 0.004 in the Miao et al., 2018 data (ICB)) while PD−L2 and
CTLA−4 was significant in NSCLC (Figure 3D, Figures S12 and S13, Table S2e, p = 0.024,
p = 0.028 in the Prat et al., 2017(NSCLC) dataset, respectively, Wilcoxon Rank Sum Test;
p = 0.02, odds ratio = 2.9, [95%CI, 1.31–8.33], p = 0.04, odds ratio = 1.94, [95%CI, 1.07–3.88],
respectively, Logistic regression model). Specifically, CIBERSORT.CD8 only showed signifi-
cant associations with clinical response in ccRCC (Figure 3B, p = 0.027 in the Miao et al.,
2018 study (ICB), Wilcoxon Rank Sum Test) and IPS only in UC patients (Figure 3C and
Figure S12, p = 0.006 in the Mariathasan et al., 2018 report, Wilcoxon Rank Sum Test).
The immune resistance-related biomarkers Pan-F-TBRS, EMT and C-ECM-up exhibited a
significant correlation with poor clinical response only in the melanoma patients (Figure 3A
and Figure S12, p < 0.05 for all, Wilcoxon Rank Sum Test). Based on the other three re-
sponse classification strategies, the overall trends of the results didn’t change remarkably
(Figures S14–S16, Table S2f,h).

3.5.2. Evaluating the Association in Different ICB Therapy Strategies

To further explore the appropriate biomarkers for different ICB treatments, we eval-
uated the correlations between these transcriptomic biomarkers and response in ten
melanoma cohorts under different ICB therapy strategies including anti-PD-1, anti-CTLA-
4, anti-PD-1 after progression on prior anti-CTLA-4 (anti-CTLA-4 prog anti-PD-1) and
combined anti-PD-1 and anti-CTLA-4 immunotherapy (combination therapy) (Table 1).

For the patients treated with anti-PD-1, checkpoint PD-L1, gene.CD8, immune resistance-
related biomarkers (Pan-F-TBRS, EMT and C-ECM-up) and TIDE demonstrated significant
correlations with clinical response in the Gide et al., 2019 (aPD1) or the Hugo et al.,
2016 datasets (Figure 4A). The consistent results were observed in logistic regression
analysis (Figure S17, Table S2e). In the anti-CTLA-4 cohorts, PD-L2, CTLA-4 and IMPRES
biomarkers in “Immune-checkpoint molecule” category showed correlations with ICB
response only in one of three datasets, which might be caused by the limited sample
size of the other two datasets (Figure 4B and Figure S12, p = 0.049, p = 0.049, p = 0.013
in Van Allen et al., 2015, respectively, Wilcoxon Rank Sum Test). For the “anti-CTLA-4
prog anti-PD-1” therapy, PD-L2, IMPRES, effector molecules (CYT, Expanded immune
signature) and TIDE all had significant correlations with response in the Chen et al., 2016
data (aCTLA4 prog aPD1) (Figure 4C and Figure S12, p < 0.05 for all, Wilcoxon Rank Sum
Test). Comparing with other ICB therapies, the combination therapy dataset captured
the largest number of biomarkers that significantly associated with improved clinical
response, and these biomarkers included the checkpoint molecules (PD-1, PD-L1, CTLA-4),
T-cell infiltration-related signature (TIS), effector molecules (CYT, IFN-gamma, Expanded
immune signature), APM and IS (Figure 4D and Figure S12).
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Figure 3. Correlation of biomarkers with clinical response to ICB across multiple datasets with different cancer types.
(A–D) Left: the two-sided Wilcoxon rank-sum test p value indicating whether biomarkers significantly differentiate between
responders versus non-responders (NR) (patients stratification using “PD” strategy) in distinct tumors, red dashed line
indicated 0.05 threshold of p value. The color of the dot represented ICB treatment types of each dataset. Magenta denoted
anti-PD-1, yellow denoted anti-CTLA-4, light green denoted “anti-PD-1 after progression on prior anti-CTLA-4”, blue
represented combined anti-PD-1 and anti-CTLA-4 immunotherapy, grass green represented multiple ICB treatments, and
purple represented anti-PD-L1. Right: boxplots showing examples of biomarkers with significant difference (Wilcoxon
rank-sum test p < 0.05) between the responding (R) versus non-responding (NR) tumors. Black lines in the box represented
upper 75%, median, and lower 25% values.
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Figure 4. Correlation of biomarkers with clinical response to ICB across multiple datasets with different ICB therapy
strategies. (A–D) Top: the two-sided Wilcoxon rank-sum test p value indicating whether biomarkers significantly differenti-
ate between responders (R) versus non-responders (NR) (patients stratification using “PD” strategy) in four ICB therapy
strategies, red dashed line indicated 0.05 threshold of p value. Bottom: scatterplot showed log10 (Odds Ratio) and −log10
(p-value) from univariate logistic regression model for different ICB therapies. Red dashed line indicated 0.05 threshold of
p value.

Across these ICB therapies, the biomarkers from “Immune-checkpoint molecule” had
the most extensive applicability, whose scores were significantly higher in the responders
of four different immunotherapy datasets. The biomarkers belonging to “Comprehensive”
represented significant associations with ICB response in three ICB therapy strategies
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(including anti-PD-1, anti-CTLA-4 prog anti-PD-1 and combination therapy). Among
the biomarkers of “Immune-checkpoint molecule”, PD-L1 showed significant association
with response in patients treated with anti-PD-1 or combination therapy, while PD-L2 and
IMPRES showed significant associations in patients treated with anti-CTLA-4 or “anti-
CTLA-4 prog anti-PD-1” therapy. Scores of APM biomarker were significantly higher in
the responders treated with anti-PD-1 and combination therapy. The overall trend of the
results did not change significantly when we used the other three response classification
strategies (Figures S18–S20).

3.6. Evaluating Prediction Performance of Transcriptomic Biomarkers in Specific Cancer Types and
ICB Therapies

We next evaluated the prediction performance of the transcriptomic biomarkers in
the 15 cancer type-specific datasets (Table 1). In melanoma, the performance of Muta-
tion_load, IFN-gamma, Nonsyn_mutation_load, PD-L1 and Expanded immune signature
were superior to the other biomarkers (Figure 5A, Figures S21 and S22, mean AUC = 0.68,
0.67, 0.66, 0.65, 0.65, respectively). For ccRCC patients, we found that the biomarkers
CIBERSORT.CD8, gene.CD8 and the T cell-inflamed GEP, IFN-gamma, CYT and PD-L1
provided the relatively better performance in the two cohorts (Figure 5B and Figure S23,
mean AUC = 0.8, 0.78, 0.78, 0.76, 0.75, 0.73, respectively). Among the UC patients, beside
Neoantigen_load that came out at top, the transcriptomic biomarkers Pan-F-TBRS and
APM ranked among the top two and top three though the average AUC merely reached
0.65 (Figure 5C and Figure S24). While for NSCLC, PD-L2 and CTLA-4 obtained relatively
higher accuracy in Prat et al., 2017 (Figure 5D and Figure S25, AUC = 0.73 for PD-L2
and AUC = 0.72 for CTLA-4). In general, the overall predictive efficacy of transcriptomic
biomarkers was higher in ccRCC across four cancer types. Some biomarkers preferred the
specific cancer in predicting response to ICB, for example, PD−L1 and IFN−gamma per-
formed well in melanoma in contrast to their worse performance in NSCLC (Figure 5A,D).

Furthermore, we investigated the response predictive performance of these biomarkers
under different ICB therapy strategies in 10 melanoma datasets (Table 1). Firstly, we focused
on patients with anti-PD-1 or anti-CTLA-4 monotherapy. Only the NonSyn_mutation_load
was shared as the biomarker with high predictive efficiency in both of these two therapies.
The top five transcriptomic biomarkers ranked according to the average AUC in the anti-
PD-1 treatment dataset were C-ECM-up, TIDE, CYT, PD-L1 and PD-1, however, these five
biomarkers couldn’t achieve effective accuracy in anti-CTLA-4 therapy with average AUC
around 0.5 (Figure 5E). Alternatively, IMPRES, IFN-gamma and IPS obtained top-ranked
average AUC in anti-CTLA-4 therapy, but their predictive performance in anti-PD-1 therapy
was poor (Figure 5E,F). One possible explanation was that the PD-1 and CTLA-4 pathways
drove distinct immunobiologic processes [51,52]. Next, we found that in “anti-CTLA-4
prog anti-PD-1 therapy” cohorts, Expanded immune signature, TIDE and IFN-gamma
achieved relatively better performance with the AUC greater than 0.75 (Figure 5G, average
AUC = 0.79, 0.78, 0.76, respectively). And in patients treated with combined anti-CTLA-4
and anti-PD-1 therapy, the biomarkers PD-L1, TIS, APM and IFN-gamma ranked in the
top four, all with the AUC being above 0.8 (Figure 5H, average AUC = 0.83, 0.82, 0.81
and 0.81, respectively). According to the prediction score, we may have a glance at the
overview of preference for biomarkers. PD−L1 and CYT were more predictive in combined
anti-CTLA-4 and anti-PD-1 therapy and anti-PD-1 monotherapy (Figure S21).
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Figure 5. Prediction performance of biomarkers for ICB response across different cancer types and different ICB therapy
strategies. (A–D) Bar centre was defined by the mean AUC values of each transcriptomic biomarker across different cancer
datasets (patients stratification using “PD” strategy), and error bars indicated ±1 SD. (E–H) Bar centre was defined by the
mean AUC values of each transcriptomic biomarker in melanoma datasets under different ICB therapy strategies (patients
stratification using “PD” strategy), and error bars indicated ±1 SD.
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3.7. The Effect of Response Biomarkers on Clinical Efficacy of ICB Therapy

To investigate the impact of response biomarkers’ status on predicting clinical outcome
to ICB therapy, the Kaplan-Meier analyses of overall survival (OS) and progression-free
survival (PFS) were performed. At the overall level, the response biomarkers of “Immune-
checkpoint molecule” category displayed predictive natures for ICB immunotherapy,
which were superior to the other biomarkers (Table S3a). Within the full cohort from the
Van Allen et al. study, patients with high CTLA-4 expression had improved overall and
progression-free survival than those with low CTLA-4 expression (Table S3a, log-rank
p = 0.0065 and p = 0.027, respectively). Median OS was 38.7 weeks (95% CI, 16.6–115.9)
and the 24-week landmark overall survival rate was 52.4% (95% CI, 34.8–78.8) for CTLA-
4–low patients compared with 169.1 weeks (95% CI, 30.1 to not estimable) and 76.2%
(95% CI, 60–96.8) for CTLA-4–high patients (Table S3a). Similarly, a statistically signifi-
cant association of detectable PD-L2 status with OS and PFS was observed in both the
Gide et al., 2019 (Table S3a, log-rank p = 0.03 and p = 0.017) and Miao et al., 2018 datasets
(Table S3a, log-rank p = 0.0087 and p = 0.037). Meanwhile, the biomarkers Expanded
immune signature, T cell-inflamed GEP of “Effector molecule” category and the IPS of
“Comprehensive” category suggested preferable prognostic ability under the setting of ICB
therapy (Table S3a).

We next explored the predictive ability of response biomarkers on clinical outcomes
to ICB immunotherapy across different cancer types. Among melanoma tumors, the
biomarkers PD-L1, PD-L2 and CTLA-4 and those of “Effector molecule” category, such
as Expanded immune signature and T cell-inflamed GEP, were significantly associated
with favorable outcomes (Figure 6A, Table S3b). In contrast, the values of CRMA were
correlated with poor overall and progression-free survival observed in the Van Allen et al.,
2015 dataset (Table S3b, log-rank p = 0.0013 and p = 0.0058). In UC, the results showed
that PD-L1, CTLA-4, IFN-gamma, Expanded immune signature and T cell-inflamed GEP
in “Effector molecule” category, IPS and IS were positively correlated with longer overall
survival (Figure 6A, Table S3b, log-rank p < 0.05 for all), whereas higher EMT signature
scores alone was associated with worse progression-free survival (Table S3b, log-rank
p = 0.045). For ccRCC, the only statistically significant association of PD-L2 values with
OS was observed in the Miao et al., 2018 (aPD1) dataset (Figure 6A, Table S3b, log-rank
p = 0.012). However, we did not find any biomarkers being significantly associated with
survival outcome in NSCLC patients (Table S3b). These results suggested that different
biomarkers displayed different predictive ability to ICB response in specific cancer type.
Of note, the “Immune-checkpoint molecule” biomarkers showed relatively stable clinical
efficacy to ICB therapy across multiple cancer types.

Furthermore, we evaluated the prognostic significance of response biomarkers under
different ICB therapy strategies in melanoma. For anti-PD-1 therapy, patients with high
scores of PD-L1, gene.CD8, APM, IS and all biomarkers in “Effector molecule” category
showed significantly favorable clinical outcome, which were mainly observed in the
Gide et al., 2019 (aPD1) dataset (Figure 6B, Table S3b). For anti-CTLA-4 blockade, we
observed that higher CTLA-4 expression and higher scores of TIS and Expanded immune
signature were associated with better OS and PFS, whereas the values of CRMA and
TIDE were associated with worse survival (Figure 6B, Table S3b). These complementary
findings between PD-1 and CTLA-4 therapy were accordant with the notion that the PD-1
and CTLA-4 pathways occupied biologically and clinically disparate niches. Considering
patients treated with CTLA-4 blockade followed by PD1 antibodies, the positive association
between IPS and overall survival was found (Figure 6B, Table S3b, log-rank p = 0.036).
For the combination anti-PD-1 and anti-CTLA-4 immunotherapy, only the higher value
of APM observed was significantly associated with increased progression-free survival
(Figure 6B, Table S3b, log-rank p = 0.037).
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under the combination anti-PD-1 and anti-CTLA-4 therapy. (C) Top: the pies on the left panel showing the significance of 
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Figure 6. The impact of ICB response biomarkers on clinical efficacy of ICB therapy. Kaplan–Meier survival curves showing
OS or PFS for patients with high versus low scores of (A) T cell-inflamed GEP in melanoma, T cell−inflamed GEP in UC and
PD−L2 in ccRCC. Kaplan-Meier survival curves showing OS for patients with high versus low scores of (B) PD−L1 under
anti-PD-1 therapy, Expanded immune signature under anti-CTLA-4 therapy and IPS under “anti-CTLA-4 prog anti-PD-1”
therapy. Kaplan–Meier survival curves showing PFS for patients with high versus low scores of APM under the combination
anti-PD-1 and anti-CTLA-4 therapy. (C) Top: the pies on the left panel showing the significance of association for each
response biomarker in each overall benchmark dataset and the barplots on the right panel showing the numbers of patients
in each dataset. The left half of the pie chart represented the patients with high scores of the corresponding biomarkers,
red and dark gray indicated the proportion of responders and non-responders in high-score patients, respectively. The
right half of the pie chart represented the patients with low scores of the corresponding biomarkers, blue and light gray
indicated the proportion of responders and non-responders in patients with low-score patients, respectively. Borders with
no color, gray borders and black borders represented p ≥ 0.1, 0.05 ≤ p < 0.1, p < 0.05, respectively. Different categories of
biomarkers were represented by different colors. Bottom: objective response in patients with high versus low scores of
PD-L2 and gene.CD8 in the Gide et al., 2019 dataset, Expanded immune signature in the Mariathasan et al., 2018 dataset and
Pan−F−TBRS in the Hugo et al., 2016 dataset. Proportion of PR/CR were colored on histograms based on the categories
of corresponding biomarkers, with the numbers of patients shown in each bar. Datasets with less than 20 samples were
excluded from the analysis.
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Next, we asked whether the different scores of ICB response biomarkers resulted in
differential objective response to ICB therapy. Objective response rate (ORR) was evaluated
based on the median of biomarker scores as a differentiating threshold in multiple datasets
at the different situation, in which the number of samples was more than 20 to ensure relia-
bility. At the overall level, the scores of PD-L2, gene.CD8 and the biomarkers in “Effector
molecule” category were positively correlated with objective response to ICB (Figure 6C
and Table S3b). Of these, the ORRs in the PD-L2–high expression patients (80.6%) were nu-
merically greater than those in the PD-L2–low expression patients (35.1%) in the Gide et al.,
2019 dataset (Figure 6C). Nevertheless, higher scores of Pan-F-TBRS and IPRES in “Immune
resistance” category were associated with lower objective response rates (Figure 6C and
Table S3b). Furthermore, the objective response in patients with different biomarker scores
was assessed, considering different cancer types (involving melanoma, UC and NSCLC)
and different ICB therapy strategies. For melanoma, objective response rates were higher
in patients with high score of PD-L2, TIS, IFN-gamma, T cell-inflamed GEP and APM
(Figure S26). For UC, the scores of Expanded immune signature, IPS and Pan−F−TBRS
were significantly associated with clinical response to ICB, whereas none of the predictive
biomarkers in NSCLC was significantly correlated with objective response rate (Figure S26).
Among different ICB therapy strategies, we observed almost all biomarkers were associated
with objective response to PD-1 blockade in at least one dataset (Figure S26). Meanwhile,
the impact of the statuses of PD-L2, TIS, IFN-gamma, T cell-inflamed GEP, AMP and IRP
on objective response was also observed in melanoma patients with combination anti-PD-1
and anti-CTLA-4 immunotherapy (Figure S26). And there were no significant correla-
tions observed between the scores of any predictive biomarker and clinical response to
other immunotherapy strategies in melanoma patients (Figure S26). Taken together, these
data suggested response biomarkers as transcriptomic determinants of clinical outcome
depended on different situations relating to cancer types and immunotherapy strategies.

3.8. Evaluating the Association of Tumor Microenvironment Components with Response to ICB
Immunotherapy and Their Prediction Performance

As various TME components can influence response and resistance to ICB immunother-
apy [53], we evaluated whether the abundance of TME components estimated by MCP-
counter associated with ICB clinical response [29].

Different TME components also showed distinct correlations with ICB response in
different cancer cohorts following various ICB therapy strategies. Among these, CD8 T
cell and T cell showed the most significantly positive correlations with response to ICB
immunotherapy across melanoma, ccRCC and UC. Notably, high abundances of CD8 T
cells, T cells and myeloid dendritic cells were significantly associated with clinical response
in melanoma treated with combined anti-CTLA-4 and anti-PD-1 therapy, while in ccRCC,
these cell populations showed positive correlation with response for patients treated with
anti-PD-1. For UC patients, the abundances of CD8 T cells, T cells, cytotoxic lymphocytes
and especially B lineages were significantly higher in the responders treated with anti-
PD-L1 therapy. This was consistent with recent reports that B cells were associated with
immunotherapy response to ICB in patients with metastatic melanoma, RCC and soft-
tissue sarcoma [54,55]. Moreover, we also found that the stromal composition including
fibroblasts and endothelial cells had significantly lower abundance score in responders only
from the Hugo et al., 2016 dataset (Figure 7A, p < 0.05 for all, Wilcoxon Rank Sum Test).
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Figure 7. Evaluation of the association between the TME components and clinical response to ICB in different cancer types
and therapies. (A) Scatterplot showed correlation of the abundance of TME components with ICB response in specific cancer
type with different ICB therapy. Red dots denoted that the abundance of TME component was higher in responders than
non-responders, green dots indicated the opposite. Size of dots indicated significance (larger for p < 0.05) and p value was
computed by the two-sided Wilcoxon rank-sum test. Colors of different datasets indicated different ICB treatment strategies.
(B) Prediction performance of each TME component for ICB response across different cancer and treatment types. AUC for
each component across benchmark datasets were shown at left panel. The cancer type-specific and treatment type-specific
prediction scores (sum of sample size-weighted AUC) were shown at right panel. The gradient of color indicated the
prediction performance from low (light) to high (dark).
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Furthermore, the prediction performance of these TME components was evaluated
correspondingly. In melanoma, the CD8 T cell and NK cell had the relatively better
performance (prediction score = 0.64, 0.62, respectively). Among ccRCC patients, we
found that CD8 T cell, T cell, cytotoxic lymphocytes, myeloid dendritic cells and B lineage
all achieved relatively better performance with the AUC greater than 0.70 (prediction
score = 0.80, 0.71, 0.76, 0.70, 0.71, respectively). For UC, only the cytotoxic lymphocytes
ranked in the top with the prediction score being 0.62. Next, we explored the performance
of TME components in melanoma under different ICB therapy strategies. NK cell was
relatively more effective for predicting response to anti-PD-1 therapy, while B lineage
obtained relatively better performance for melanoma patients under anti-CTLA-4 therapy.
In patients treated with combined anti-CTLA-4 and anti-PD-1 therapy, the majority of cell
populations achieved high prediction score especially myeloid dendritic cells, CD8 T cell
and T cell (all greater than 0.75) (Figure 7B).

4. Discussion

Immune checkpoint blockade therapy has prompted a shift of therapeutic landscape
and induce durable responses in several advanced-stage cancers, but only a fraction of
patients benefits from the treatment. Identifying ICB response biomarkers is a crucial
mandate for successful clinical application of these agents [1,5,6,56]. In this study, we
systematically evaluated predictive power of current 22 transcriptomic biomarkers for
ICB response, which involved in immune checkpoint, lymphocyte infiltration, immune
resistance, immune escape and other mechanisms, using multiple ICB treatment bench-
mark datasets constructed for different evaluation situations. The scores of each response
biomarker were assessed carefully and their calculation process could be reproduced well
following the original publications in our study.

Our results suggested that, for the overall evaluation, the biomarkers PD-1, PD-L1,
PD-L2, CTLA-4 and IMPRES of “Immune-checkpoint molecule” and CYT of “Effector
molecule” showed the most stable correlations with ICB response and outstanding predic-
tion performance. CYT quantified the cytolytic activity of the local immune infiltrate based
on transcript levels of two key cytolytic effectors, granzyme A (GZMA) and perforin (PRF1),
which represented the process of killing cancer cells that tumor immunotherapy strategies
aim to boost [57]. Accumulating evidence supported CYT as an impactful prognostic
feature of tumors and was considered widely as an immunotherapy response indicator.
CYT was associated with a modest but significant survival benefit in pan-cancer samples
and commonly in melanoma [39,58,59]. Also, patients who achieved clinical benefit from
ICB therapy had significantly higher CYT than those who had minimal benefit from ICB
therapy [22]. We also found that PD-L1, PD-L2, CTLA-4 and the biomarkers Expanded
immune signature, T cell-inflamed GEP in “Effector molecule” category could also be a tran-
scriptomic determinant of clinical outcome and were associated with the objective clinical
response to ICB. To evaluate the performance of response biomarkers, we also calculated
the accuracy, sensitivity and specificity of 22 biomarkers. TMB-associated biomarkers were
included in the evaluation comparison, which were often reported to indicate the likelihood
of response to ICB immunotherapy [60,61]. As expected, the performance of Mutation_load
and NonSyn_mutation_load in TMB category ranked among the top ones. Compared
with TMB biomarkers, IMPRES of “Immune-checkpoint molecule” and CYT of “Effector
molecule” both demonstrated relatively good predictive performance and high sensitivity,
though their specificities were actually barely satisfactory. These findings suggested that
the “Immune-checkpoint molecule” and the “Effector molecule” biomarkers might play a
role on predictive responses and clinical outcomes with ICB therapy, consistent with many
previous studies, which demonstrated their robustness and generalizability [8,14,59].

Interestingly, we observed that in some benchmark datasets, most of biomarkers
showed robust performance for ICB response prediction, whereas none in other datasets.
Meanwhile, the biomarkers Pan−F−TBRS, EMT, and C−ECM−up of “Immune resistance”
category showed differential expression between responders and non-responders only in
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the Hugo et al., 2016 dataset. Indeed, previous study reported that non-responders in the
Hugo et al., 2016 displayed innate anti-PD-1 resistant characteristics represented by the
transcriptional signature IPRES, which indicated concurrent up-regulation of processes
involving in the mesenchymal transition, extracellular matrix remodeling, and angiogen-
esis [18]. On the other hand, TGF-β-signaling, EMT and remodeling of the extracellular
matrix (ECM) laid down by fibroblasts often occurred in tumors with T cell suppression or
exclusion [10,30,41]. It seemed to be the innate characteristics of patients in Hugo study,
which led to the primary associations between the “Immune resistance” biomarkers and
ICB response. These results promoted us to ask whether the performance of biomarkers
to predict ICB response depended on the inherent nature of samples, such as the state of
immune infiltration and the cancer-immune phenotypes [62]. And it also reminded us
to evaluate the response biomarkers under different situations including different cancer
types and ICB therapy strategies.

Next, we explored the robustness of biomarker to predict ICB response across dif-
ferent cancer types including melanoma, UC, ccRCC and NSCLC. In melanoma, most
biomarkers were significantly associated with clinical response. Indeed, most of the tran-
scriptomic biomarkers for ICB response have been designed, identified or validated in
melanoma [63,64]. Specially, we found the checkpoint molecules PD-L1, PD-L2, CTLA-4,
the immune effector IFN-gamma, Expanded immune signature, T cell-inflamed GEP and
the biomarker APM showed significantly higher scores in responders with ICB blockade,
and they were also consistently correlated with clinical outcome and objective clinical
response to ICB. For UC, the results suggested that PD-L1, CTLA-4, the biomarkers IFN-
gamma, Expanded immune signature, T cell-inflamed GEP of immune effector molecules,
and the biomarkers IPS, IS in “Comprehensive” category showed better impact on response
association and clinical efficiency than other biomarkers. Previous studies reported that
IFN-gamma and Expanded immune signature performed better predictive ability than
most of other biomarkers in melanoma and UC [10,15], which further provided supports
for our observations. Among ccRCC patients, we found the scores of CIBERSORT.CD8
and gene.CD8 in “Tumor-infiltrating lymphocyte (TIL)” category showed significant cor-
relations with clinical response, achieving the best performance superior to the other
biomarkers. These findings supported by previous clinical and genomic studies, which
demonstrated that ccRCC was a highly immune-infiltrated tumor and featured the in-
creased immune signature [16]. While in NSCLC patients, we found that only the immune
checkpoints PD-L2 and CTLA-4 suggested preferable performance than other biomarkers.
In general, our results revealed that most of biomarkers showed different performance
to ICB response in various cancer types, while some had the preference in specific cancer
types, suggesting different cancer underlined markedly distinct immuno-oncology inter-
action mechanisms with ICB blockade. Nonetheless, the immune checkpoint biomarkers
shared among these four cancer types, and the “Effector molecule” biomarkers especially
IFN-gamma also presented accordantly predictive ability to ICB response, implying their
well universality and applicability across the cancer types.

Furthermore, we evaluated the performance of response biomarkers under different
ICB therapy strategies. Due to the limited availability of sufficient datasets from other
cancer types to cover multiple treatment strategies, we only split melanoma patients ac-
cording to treatment strategies. For anti-PD-1 immunotherapy, immune checkpoint PD-L1,
gene.CD8, the biomarkers Pan−F−TBRS, C-ECM-up in “Immune resistance” category
and TIDE presented significant association with clinical response and prognostic efficiency.
While under the anti-CTLA-4 therapy, our analysis revealed CTLA-4 and IMPRES, TIS,
CRMA, and IPS performed better than other biomarkers for predicting treatment response.
Interestingly, the top-performing transcriptomic biomarkers under PD-1 blockade couldn’t
perform well as those in anti-CTLA-4 therapy and vice versa. These findings were sup-
ported by previous studies showing that the CTLA-4 pathway and PD-1 pathway executed
non-redundant co-inhibitory roles [51]. For “anti-CTLA-4 prog anti-PD-1” therapy, the
biomarkers PD-L2, Expanded immune signature and TIDE showed consistently better
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performance than the others. Comparing with monotherapies and sequential therapy, more
transcriptomic biomarkers were found to be correlated with clinical response, predictive
power and prognostic efficacy in patients following combined anti-CTLA-4 and anti-PD-
1 therapy [65,66]. Targeting both of the immunosuppressive pathways simultaneously,
combination therapy could more effectively, at least in part, induce the infiltration of
immune cells, production of inflammatory cytokines and enhancement of tumor antigen
presentation [52]. Correspondingly, these notions were consistent with our observations
that these immunobiologic process-related biomarkers TIS, IFN−gamma and APM all
exhibited significant association with clinical response and achieved better accuracy in
combination therapy cohorts.

Due to the association of TME components with response to ICB was frequently
reported [53], we invesgated the the associations with clinical ICB response and predictive
performance of various TME componets estimated by MCP-counter [29]. In general, the
abundance of CD8 T cells and T cells showed significant correlations with clinical response
and good predictive efficiency across melanoma, ccRCC and UC. And for patients treated
with combined anti-CTLA-4 and anti-PD-1 therapy, most immune cells obtained relatively
better prediction performance. In addition, we also found the abundance of the B cell
demonstrated positive correlation with ICB response for UC patients, and also achieved
preferable predictive performance in ccRCC and in melanoma patients treated with anti-
CTLA-4 therapy. These results were consistent with recent studies that B cells were
associated with immunotherapy response to ICB in patients with metastatic melanoma,
RCC and soft-tissue sarcoma [54,55].

Taken together, these results surprised us in that a few biomarkers showed a tendency
of stable association with ICB response in majority of the datasets and the biomarkers
showed substantial variation in prediction performance across datasets. Similar to our
results, Auslander et al. [13] compared the predictive accuracy of IMPRES with that of
current transcriptome-based biomarkers and found the prediction performance fluctuated
widely across datasets except IMPRES. While IMPRES was then argued about its statistical
validity and generalizability [67,68]. Jiang et al. [11] also compared TIDE with other
biomarkers, and showed the biomarker IPS did not achieved the claimed accuracy when
using the source codes. In our opinion, there were some other potential factors that could
influence the performance of biomarkers even in the specific cancer type and ICB therapy.
Currently, we didn’t investigate suitable thresholds of biomarkers for better stratification of
patients. While previous evidences showed that more stringent threshold might improve
the predictive power of some given biomarkers. For example, IMPRES manifested the
best tradeoff between precision and recall under the threshold 8 [13], patients with higher
levels of TMB showed better prognostic efficacy [10,69]. These observations suggested that
different thresholds might affect the prediction performance of biomarkers and more precise
threshold need to be further studied. Another possible factor was the intra- and inter-tumor
heterogeneity of tumor microenvironment. Whether a tumor was “hot” or “cold” and the
TMB differences really make sense, and these hypotheses need to be further validated.
As individual biomarker seemed not be robust for patients stratification, we supposed
the combination of multiple biomarkers might perform better than individual biomarkers.
There already were some explorations. For example, the combination of CD8+ effector
T cell signature and TMB provided significantly improved predictive power over either
biomarkers in isolation [10]. We expect further investigation about integrated biomarkers
would facilitate more accurate and robust prediction of ICB response in the future.

The potential limitation of our study was the lack of large-scale patient cohort for
more sufficient assessment. In our study, we compiled numerous public ICB treatment
datasets with variable sample size (each more than 15 patients) and focused on multi-
layered analysis. Importantly, the study might suffer from a lack of statistical power due
to small samples after stratification of some cohorts. To address this issue, we used the
prediction score to take into account sample size differences for the predictive performance
evaluation. Besides, we also noticed that the variation of response rates in our benchmark
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datasets from different cancer types or even the same cancer type. This was consistent with
the recent findings that objective response rates varied among different cancer types and
ICB therapy strategies, respectively [45,56]. Moreover, current benchmark datasets were
from different transcriptomic technologies, both RNA-seq and Nanostring nCounter. As
Nanostring nCounter only detects hundreds of pre-selected genes, we carefully checked
the genes detected by the Nanostring nCounter and the genes involved in each biomarker.
For those biomarkers that not all genes were measured, they would not be evaluated.
Therefore, the biomarkers calculated based on expression of a single gene or integration
of geneset expression (such as CYT, IFN-gamma) would not be affected under different
transcriptomic technologies. Although we tried to address these issues due to divergent
public evaluation datasets, we expected ongoing and future more labeled patient ICB
response data and large-size prospective clinical trials, it is definitely necessary for further
determining an unbiased benchmark and performing an objective biomarker evaluation.

5. Conclusions

In summary, based on the systematic benchmark, we assessed the associations with
clinical ICB response, predictive performance and prognostic values of current transcrip-
tomic biomarkers at the overall evaluation situation or considering different situations
under different cancer types and ICB therapies. Our analysis demonstrated that the
different predictive biomarkers exhibited different performance for ICB response across
various cancer types and ICB therapy strategies, whereas some performed better than other
biomarkers only in specific situation. Nevertheless, there remained to be some benchmark
datasets did not capture any significant correlations between predictive biomarkers and
ICB response, suggesting limitations of individual biomarkers require the combinations
of multiple biomarkers for ICB response prediction in the future. Our study provided
a guidance for ICB response biomarker selection and laid the foundation for precision
immuno-oncology field.
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