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Abstract: Kinematic analysis of the hyoid bone in a videofluorosopic swallowing study (VFSS)
is important for assessing dysphagia. However, calibrating the hyoid bone movement is time-
consuming, and its reliability shows wide variation. Computer-assisted analysis has been studied to
improve the efficiency and accuracy of hyoid bone identification and tracking, but its performance
is limited. In this study, we aimed to design a robust network that can track hyoid bone movement
automatically without human intervention. Using 69,389 frames from 197 VFSS files as the data set,
a deep learning model for detection and trajectory prediction was constructed and trained by the
BiFPN-U-Net(T) network. The present model showed improved performance when compared with
the previous models: an area under the curve (AUC) of 0.998 for pixelwise accuracy, an accuracy of
object detection of 99.5%, and a Dice similarity of 90.9%. The bounding box detection performance
for the hyoid bone and reference objects was superior to that of other models, with a mean average
precision of 95.9%. The estimation of the distance of hyoid bone movement also showed higher
accuracy. The deep learning model proposed in this study could be used to detect and track the hyoid
bone more efficiently and accurately in VFSS analysis.

Keywords: dysphagia; hyoid bone; videofluoroscopy; deep learning

1. Introduction

Dysphagia is a common and growing healthcare concern because it can occur with
age-related changes as well as various diseases, such as stroke, Parkinson’s disease, neuro-
muscular disease, and head and neck cancer, and frequently leads to serious complications,
such as nutritional deficiencies, aspiration pneumonia, and suffocation [1–3]. The vide-
ofluoroscopic swallowing study (VFSS) is the gold standard examination for evaluating
dysphagia and is the most objective and frequently used method [4]. During VFSS, the pa-
tient repeatedly swallows food boluses of various viscosities mixed with contrast while the
swallowing process is recorded by fluoroscopy and then analyzed by clinicians or speech
pathologists [4–7]. This process can visualize the anatomical structures and their dynamic
functions involved in the swallowing process with bolus movement [4,5,7].

The hyoid bone is a horseshoe-shaped bone located in the anterior midline of the neck
and is known as an important structure that participates in swallowing, speech, respiration,
mastication, and maintaining the patency of the airway [8]. Among the anatomical struc-
tures associated with the swallowing process, the hyoid bone is a relatively radio-opaque
structure and is easy to detect in VFSS images. Movement of the hyoid bone caused by
contraction of the tongue base and suprahyoid muscles starts as the bolus passes into the
pharynx and represents the initiation of physiologic swallowing [9,10]. Its horizontal and
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vertical movement is closely related to airway closure and upper esophageal sphincter
opening, and reduced movement of the hyoid bone is associated with increased aspira-
tion and pharyngeal residue [11,12]. Paik et al. reported that the extent and pattern of
hyoid movement varies according to the etiology of dysphagia in two-dimensional ki-
netic swallowing motion analysis and suggested its applicability in differentiating the
mechanism of dysphagia and treatment for reversing the mechanism [10]. However, in a
clinical setting, manual tracking and quantitative measurement of hyoid bone movement
is a labor-intensive and time-consuming task [13]. Moreover, the hyoid bone usually has
unclear margins and varies in shape for each person. Therefore, manual tracking of the
hyoid bone is inevitably prone to human error due to fatigue and individual subjective
judgment, and wide intrarater and interrater variation has been shown [14]. Automatic
tracking models of hyoid motion have been used to reduce human error and workload,
and computer-assisted methods for kinematic analysis of hyoid bone movement have
been proposed in a few studies [13,15–17]. However, these semiautomatic methods still
require human judgment and manual input from clinicians and have a limitation of low
performance and efficiency for application in clinical settings [13,15–17].

As deep learning technology has been developed and used for fast and efficient
analysis of medical images acquired by techniques such as X-ray, computed tomography
(CT), and magnetic resonance imaging (MRI) [18–20], recent studies have tried to apply
deep learning to automate VFSS analysis [21–27]. However, we found only two studies
that proposed deep learning models to detect the hyoid bone or track its movement in
VFSS images [21,27]. Zhang et al. proposed the single shot multibox detector (SSD) model
that can detect the hyoid bone fully automatically, but it showed less than perfect accuracy
(mAP of the SSD-500 model = 89.14%), and tracking the whole movement of the hyoid bone
was not attempted [27]. Lee et al. proposed a convolutional-neural-network (CNN)-based
online learning algorithm, which can track hyoid motion and predict it even when it passes
through the mandible and is blurred, but it still requires manual demarcation of a hyoid
bone of appropriate size by humans in the first frame [21].

In this study, we aimed to develop a new deep learning model that could detect
the hyoid bone and track its movement accurately and fully automatically without any
human intervention in the whole process. Manual demarcation was totally excluded,
and the distance was measured automatically by the model. We expect the model to
be used efficiently for a larger number of dysphagic patients and to quickly assess the
mechanism and severity of dysphagia, helping to determine appropriate treatment plans
and feedback [21,27]. This model is also expected to accelerate the development of an
automatic VFSS reading program to be applied in clinical practice.

2. Materials and Methods
2.1. Data Set

A total of 207 video files were selected from the VFSS database of the Department
of Rehabilitation Medicine, Dankook University Hospital. The video files were recorded
from patients who suffered from symptoms related to dysphagia between December 2017
and October 2020. When selecting the VFSS files, maximum effort was made to ensure that
variables such as gender, age, viscosity of diet, and severity of dysphagia were distributed
evenly. Among the videos, ten were excluded, which are difficult for humans to distinguish
the cervical spines or hyoid bones, and 197 files were included in the data set. Each VFSS
video was recorded at a speed of 30 frames per second (fps), and a total of 69,389 frames
were obtained.

Each image was annotated once per 10 video frames, and data labeling was set with
the hyoid bone as a target to track, the cervical spine for axis correction of the hyoid bone,
and a 24 mm coin for depth correction of the hyoid bone. A total of three physicians
skilled in VFSS analysis participated in the annotation process. All three physicians were
experienced in VFSS analysis and rehabilitation of patients with swallowing disorders.
One of them had more than twenty years of experience, and the other two had two to three
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years. Since every frame in the video has a high correlation with other adjacent frames, we
adopted a method of annotating the fewest frames from as many videos as possible. We
obtained 6632 frames from 197 videos through the above process. Then, they were split
into training, validation, and test data sets at a ratio of 7:1:2 on each video and used in
a deep learning network. The study protocol was approved by the Institutional Review
Board of Dankook University Hospital (IRB No. 2021-03-010).

2.2. VFSS Protocols

The VFSS recording followed the protocol described by Logemann [6] with minor
modifications. The VFSS video images were acquired from the lateral projection by fluoro-
scopic equipment (Versa 100, Shimadzu, Japan). Fluoroscopic images were stored digitally
at a speed of 30 fps (frames per second) while the patients swallowed boluses with various
viscosities mixed with contrast medium in a seated position. Ingredients with different
consistencies were swallowed in the following order: 3 mL of thick liquid (water-soluble
barium sulfate diluted to 70%), rice porridge, coagulated yogurt, and thin liquid (water-
soluble barium sulfate diluted to 35%). In addition, a coin with a diameter of 24 mm was
positioned on the skin surface of the lateral neck so that it did not overlap with the shadows
of the cervical spine.

2.3. Object Detection in VFSS Using Deep Learning

In this section, we introduce the algorithm for object-of-interest detection in VFSS
using a deep learning network for fully automatic hyoid bone tracking. The proposed
method for tracking the hyoid bone is largely composed of the step of detecting the
objects of interest (hyoid bone, cervical spine, and coin) in the VFSS image and the step of
estimating the trajectory of the hyoid bone based on the cervical spine. Figure 1 shows the
overall structure of the proposed method.

Figure 1. Schematic diagram of the proposed tracking system for the hyoid bone. Each frame of the video is used as an
input in the deep learning network. (a) Each frame is classified by pixel through a deep learning segmentation model.
(b) The relative distance between the hyoid bone and the cervical spine is calculated. (c) The relative distance obtained
in (b) is converted to a normalized distance. Finally, the trajectory of the hyoid bone obtained through the above process
is visualized.

To detect the hyoid bone, cervical spine, and coin in fluoroscopic images, we used
U-Net [28], which is widely used for the segmentation of biomedical images. The U-Net
used in this paper adopted VGG16 [29] as the backbone. The backbone of the proposed
network can be changed to other networks such as Resnet [30] and EfficientNet [31],
depending on the user’s preference. U-Net is a fully convolutional network (FCN)-based
model consisting of a convolutional encoder and a convolutional decoder that connects an
encoder with a skip connection. The proposed U-Net takes a 224 × 224 image as input and
extracts appropriate feature information to classify classes by pixel in the process of passing
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through 23 convolutional layers. U-Net can infer clearly in pixel units by concatenating
the original information lost in the encoding process to the decoding process. However,
U-Net has the disadvantage of combining feature information only in a top-down way that
combines the feature information of deep layers with the feature information of shallow
layers. Since weights are not used in the process of combining, feature information of
different resolutions may contribute equally to the training process. Since the sizes of the
hyoid bone, cervical spine, and coin are different in VFSS, we need a network that can
effectively segment objects of various sizes. Therefore, we proposed a new network using a
bidirectional feature pyramid network (BiFPN) [32] and bottleneck transformer (BOT) [33]
to effectively segment various objects in VFSS (BiFPN-U-Net(T)).

Figure 2 shows the segmentation network with the BiFPN and BOT. The BiFPN
uses a structure of both bottom-up and top-down approaches. The bottom-up approach,
which combines feature information from P1 to P5, allows feature information with a
large receptive field to consider details from the original information, and the top-down
approach, which combines feature information from P5 to P1, allows feature information
with a small receptive field to consider a wide range of contexts. However, simply adding
different sizes of feature information can result in the same contribution in the process of
combining feature information of different sizes. Therefore, in the BiFPN, different weights
are multiplied and then added to make different contributions to creating new feature
information in the process of combining feature information of different sizes. Additionally,
the coin is usually attached to the patient’s neck during VFSS filming, and at this time,
the hyoid bone can overlap with the mandible and disappear from the image, or the coin
can go out of the field of view (FOV) of the filming device. To continuously track the location
of an object even in the event of such occlusion, it is necessary to effectively utilize not
only the information around the object but also the global context information. In general
deep learning networks, the receptive field size is increased by stacking the convolution
layer or increasing the size of the kernel [29]. As the receptive field widens, the model’s
inference performance tends to increase because the network uses more information when
inferring. However, when a deep learning network is designed by stacking convolution
layers, practically, only a part of the receptive field is used for learning. The CNN uses
a filter to extract feature information from images in a forward path, which tends to be
referenced more when they are closer to the center than the outside. This can also affect the
backpropagation process, as the feature information located at the outer edge has a smaller
gradient. Therefore, the effective receptive field (the receptive field that directly affects
the output value) tends to have the form of a Gaussian distribution [34]. This prevents
deep learning networks from learning long-distance dependencies through the global
context [35]. Therefore, the proposed method uses a BOT [33] on top of the BiFPN so that
the network can reduce the overall computation and extract the global context effectively.

Figure 2. Schematic diagram of the proposed network (BiFPN-U-Net(T)).
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The BOT was proposed for applying global self attention to various computer vision
tasks. It has been difficult to apply Transformer [36] to CNNs because the amount of com-
putation increases quadratically according to the resolution of the feature map. The BOT
uses a bottleneck structure to reduce the computation of the Transformer. To utilize the
BOT effectively, we propose that the network applies the BOT only to P5, which has the
smallest feature map size. We extract the global context by applying the BOT to P5, which
is composed of three convolutional layers, as shown in Figure 2.

Figure 3 shows the result of detecting the pixels corresponding to the hyoid bone,
cervical spine, and coin using the proposed BiFPN-U-Net(T). In Figure 3b,c, the blue
object denotes the hyoid bone, the green column denotes the cervical spine, and the red
circle denotes the coin. The reference point for the position of the objects in analyzing
the movement of the hyoid bone was defined as the average value of the coordinates of
the detected pixels (white spots in Figure 3). As shown in Figure 3, the proposed method
estimates the center points of the hyoid bone, cervical spine, and coin regions well.

(a) Original image (b) Predicted image (c) Ground-truth image

Figure 3. Segmentation results using the proposed method. (a) Original image; (b) segmentation results for the hyoid bone
(blue), cervical spine (green), and coin (red). The average value of the coordinates of the detected pixels is indicated as a
white spot. (c) Ground truth for the hyoid bone (blue), cervical spine (green: segmentation, yellow: detection), and coin
(red). The average value of the coordinates of the detected pixels is indicated as a white spot, and the average value of the
coordinates of the labeled pixels is indicated as a black spot.

2.4. Hyoid Bone Trajectory Prediction

The purpose of this study was to determine the swallowing function of the patient by
observing the movement of the hyoid bone near the pharynx. Therefore, it was necessary to
measure the relative movement of the hyoid bone based on the rigid structure from VFSS
rather than the movement of the hyoid bone from the image coordinates. In general, head
movement tends to increase when patients swallow boluses in VFSS, and sometimes a part
of the head goes out of the image plane during the process of swallowing food. Therefore,
the proposed method detects the cervical spine, which is relatively easy to detect due to
the small variation in shape according to the individual, and calculates the relative position
(DR

x ,DR
y ) of (Hx, Hy) to (Cx, Cy) from the center point (Cx, Cy) and the position of the hyoid

bone (Hx, Hy) as follows [21,25]:

DR
x = Cx − Hx,

DR
y = Cy − Hy (1)

where DR
x and DR

y are the distances in the horizontal and vertical directions between the
center points of the hyoid bone and the cervical spine.

Since the scale of the subject in VFSS can vary depending on the resolution of the
camera and the distance between the camera and the patient, it is necessary to normalize
the movement in pixels to use the movement of the hyoid bone as an indicator of dysphagia.
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For this purpose, as shown in Figure 4, we normalized the scale of the image relative to
the size of the coin by attaching a coin with a diameter of 24 mm around the neck during
VFSS filming. Additionally, in the process of attaching the coin to the patient’s neck, if the
camera axis and the surface of the coin are attached obliquely rather than vertically so
that the coin looks like an oval (Figure 4), then the long axis of the ellipse is used as the
approximate value of the diameter of the coin. In this experiment, the average diameter was
62.9 pixels, and the standard deviation was 7.6 pixels. As a result, we could confirm that
there is a change in the VFSS scale according to the actual filming environment. Therefore,
the proposed method defines the scale factor s, which refers to the size in the physical space
occupied by a single pixel in the image, based on the actual diameter of the coin (24 mm)
and the diameter of the coin in pixel units (Dpxls). Then, using s, the final relative position
of the hyoid bone to the cervical spine (N(DR

x ), N(DR
y )) was normalized in mm.

s = Dpxls/24 (2)

N(DR
x ) = s ∗ DR

x , N(DR
y ) = s ∗ DR

y (3)

(a) SSD (b) U-Net (c) Attention U-Net (d) BiFPN-U-Net(T)

Figure 4. Detection results of each method when the hyoid bone overlaps with the mandible. The blue box denotes the
ground truth, the green box denotes true positives, and the red box denotes false positives.

2.5. Network Training

For the experiment, an NVIDIA V100 32 GB GPU and Xeon Silver 4210 processor were
used, and the libraries of Keras (v2.2.0) and TensorFlow (v.2.4.1) were used. The size of all
images used in the experiment was fixed at 224 × 224. When applying a network used as a
backbone to specific domains in deep learning studies, transfer learning [37] is used, which
utilizes networks pretrained on large amounts of data, such as ImageNet [38]. However,
unlike ImageNet, which consists of color images, VFSS data are grayscale. Therefore,
to apply transfer learning from a network trained on color images, the color images used in
the pretrained network have to be converted to black-and-white images [39]. In addition,
in the case of VFSS images, the deviation of the distance between the object and the
camera is not significantly large, whereas the images in the large-capacity database used
for pretraining have various distances between the camera and the object, so the scale
of the extracted feature information can also vary. It is not easy to obtain performance
improvement through transfer learning. Therefore, transfer learning was not applied in
this experiment, and we performed training by randomly initializing the weights of the
backbone. The model was trained for 500 epochs, and if the loss did not drop for more
than 20 epochs, the training was terminated by early stopping. In U-Net-based image
segmentation, the number of pixels corresponding to the object being segmented (positive
class) is relatively small compared to the other pixels (negative class). To alleviate the
problem of unbalanced data between classes, we used focal loss [40]. Focal loss sets a
small loss for the classes (here, the negative class) that are classified relatively often so
that they are seldom updated. For the classes that are difficult to classify, focal loss makes
them update with a large loss. This can make the model focus more on the difficult classes
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in training. The learning rate was set to 0.1 ∗ batch size/256 according to the batch size
using the linear scaling learning rate method [41]. (Batch size = 8). The optimizer used
Radam [42] for stable learning.

2.6. Performance Evaluation for Object Detection

We used the receiver operating characteristic (ROC) curve, which was mainly used in
the detection problem to evaluate the detection performance for the hyoid bone, cervical
spine, and coin in the proposed BiFPN-U-Net-based segmentation network. The segmen-
tation network determines whether each pixel of an image is a positive or negative pixel.
In our experiment, the pixels corresponding to the hyoid bone, cervical spine, and coin were
defined as positive classes. The main metrics for performance evaluation are as follows:
(1) accuracy: ratio of the correctly predicted observations to the total observations; (2) recall:
the ratio of the correctly predicted positive observations to all observations in the actual
class; (3) precision: the ratio of the correctly predicted positive observations to the total
predicted positive observations; (4) Dice similarity (only for segmentation evaluation): the
percentage of overlap between the predicted positive observations and all observations in
the actual class.

2.7. Comparison with Other Models

To confirm the effectiveness of the proposed method (BiFPN-U-Net(T)), we performed
a comparison experiment with previous models [21,27]. In the study of Zhang et al. [27],
the SSD was used for robust operation on objects of various sizes by detecting each object
from feature maps of various scales. In another study by Lee et al. [21], Attention U-Net
was used with a featurewise gating mechanism to adjust the output values according to
the importance of each feature in the upsampling process. For fair comparison, the VGG16
model was used as the backbone network of all models, and the training environments
were the same.

3. Results
3.1. Performance in Object Detection

Figure 5 shows the pixelwise accuracy of the proposed BiFPN-U-Net(T).

Figure 5. ROC curve for the pixelwise accuracy of BiFPN-U-Net(T).

In Figure 5, the area under the curve (AUC) is 0.998, showing excellent performance.
Table 1 shows the performance of each model based on the ground truth, as shown
in Figure 3c. As shown in Table 1, the proposed BiFPN-based U-Net model showed
2.2%∼2.6% and 1.2%∼1.3% better performance in recall and Dice similarity, respectively,
than other methods.
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Table 1. Comparison of the pixel detection performance among models.

Acc Recall Precision Dice Similarity

U-Net 99.5% 86.9% 92.6% 89.6%
Attention U-Net 99.5% 87.3% 92.3% 89.7%

BiFPN-U-Net(T) (proposed) 99.5% 89.5% 92.4% 90.9%

The proposed method showed the best performance for each object among the hyoid
bone, cervical spine, and coin (Figure 6). Since SSD is a detection network, not a segmenta-
tion network, the detection result of an object is presented in the form of a bounding box.
For performance comparison with SSD, we defined the ground truth as the yellow line
shown in Figure 3c and evaluated the performance of each model. The results of measuring
the average precision for each object based on an intersection over union (IOU) of 0.5 are
shown in Table 2.

Figure 6. Performance of the proposed model in terms of Dice similarity per pixel.

Table 2. Bounding box detection performance comparison among models (IOU = 0.5).

Hyoid Bone Cervical Spine Coin maP

SSD 62.9% 95.0% 91.3% 83.1%
U-Net 86.3% 97.9% 98.7% 94.3%

Attention U-Net 89.6% 97.5% 92.4% 93.1%
BiFPN-U-Net(T) (proposed) 91.9% 99.5% 96.4% 95.9%

BiFPN-U-Net(T) shows the highest mean average precision (mAP) for the three types
of objects, and the other methods differ in detection performance according to the type of
object. Unlike the other methods, which have a large variation in detection performance
depending on the type of object, BiFPN-U-Net(T) showed a high average precision of
over 91% for all hyoid bones, cervical spines, and coins. Additionally, when the patient
swallows the bolus, a part of the hyoid bone that often rises above the mandible in VFSS
may be obscured (red box in Figure 4). In these circumstances, U-Net and Attention U-Net
frequently cannot detect the hyoid bone, whereas a BiFPN-based network considering mul-
tiscale detection can detect the hyoid bone even when it is obscured, as shown in Figure 4.
In addition, the coin attached to the neck often deviates from the field of view (FOV) due
to the movement of the patient’s head during VFSS recording (Figure 7). Even in these
circumstances, the proposed methods detected the coin more robustly than other methods.
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(a) SSD (b) U-Net (c) Attention U-Net (d) BiFPN-U-Net(T)

Figure 7. Detection results of each method when the coin is out of the field of view. The blue box denotes the ground truth,
the green box denotes true positives, and the red box denotes false positives.

3.2. Performance in Hyoid Bone Tracking

To track the movement of the hyoid bone, we used the normalized distances (N(DR
x ),

N(DR
y )), which are normalized from the center point of the cervical spine to the hyoid bone

in the horizontal and vertical directions, as suggested in Section 2.4. Then, we measured

the diagonal distance D(C,H) =
√

N(DR
x )

2 + N(DR
y )

2 from the horizontal and vertical

distances. Figure 8 shows N(DR
x ) and N(DR

y ) measured by the proposed method for each
frame in the video. The proposed method accurately predicted the position of the hyoid
bone when compared with the ground truth. We also measured the distance of hyoid bone
movement from the original position at the first frame to the maximum elevation in the
horizontal, vertical, and diagonal directions.

(a) Vertical distance in BiFPN-U-Net(T) (b) Horizontal distance in BiFPN-U-Net(T)

Figure 8. Visualization of distance measurements by hyoid bone tracking for a video.

Table 3 shows the ground truth labeled by the physicians and the prediction results of
the deep learning models. We measured the distances only for frames where detections of
all three types of objects (hyoid bone, cervical spine, coin) were achieved by each method.
In Table 3, the number in parentheses next to the name of each method is the number of
frames used to calculate the mean of distances. The proposed model showed the closest
results to the ground truth and less standard deviation compared to other models, which
means that the model stably and correctly tracks the hyoid bone. In addition, the proposed
model showed the smallest root-mean-square error (RMSE) between the actual distance
and the distance predicted by the models, except for the SSD in the horizontal direction
(Table 4).
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Table 3. Estimated distance of hyoid bone movement.

Horizontal Vertical Diagonal Maximum Diagonal

SSD (1330) 9.92 ± 5.32 9.47 ± 4.6 15.25 ± 6.13 31.38 ± 19.36
U-Net (1342) 8.49 ± 3.91 9.28 ± 4.43 13.85 ± 5.32 29.39 ± 22.4

Attention U-Net (1356) 8.3 ± 2.89 9.51 ± 5.06 14.02 ± 4.9 27.06 ± 14.82
BiFPN-U-Net(T)(proposed) (1360) 8.14 ± 3.32 8.95 ± 3.9 13.28 ± 4.17 22 ± 11.03

Ground Truth (1391) 8.54 ± 3.23 9.66 ± 4.13 14.13 ± 4.18 21.14 ± 6.69
Values are given as mean ± standard deviation (mm).

Table 4. Root-mean-square error (RMSE) between the actual distance and the predicted distance for
hyoid bone movement (mm).

Horizontal Vertical Diagonal Maximum Diagonal

SSD 2.22 2.81 4.10 6.20
U-Net 5.02 2.61 6.18 17.05

Attention U-Net 3.89 2.25 5.00 7.46
BiFPN-U-Net(T)(proposed) 2.95 1.37 3.57 3.21

Values are in mm.

4. Discussion

The swallowing process consists of oral, pharyngeal, and esophageal stages according
to the location of the bolus [6,43]. Normal pharyngeal swallowing includes two important
functions: (1) food passage (the food bolus is propelled through the pharynx and upper
esophageal sphincter to the esophagus) and (2) airway protection (the larynx and trachea
are insulated from the pharynx during food passage to prevent food from entering the
airway) [44]. The hyoid bone is a U-shaped bone that is connected to the thyroid cartilage
and temporal styloid by ligaments [45]. In pharyngeal swallowing, the hyoid bone and
larynx are pulled upward and forward by contraction of the suprahyoid muscles and
thyrohyoid muscle, migrating the larynx under the tongue base [44]. The superoanterior
excursion of the hyoid bone prevents laryngeal aspiration and promotes opening of the
upper esophageal sphincter [46,47]. Therefore, the range of movement of the hyoid bone in
VFSS can be an important index for evaluation of the swallowing function. The movement
of the hyoid bone shows wide variation among individuals and can be influenced by the
volume of the bolus and disease conditions [48]. A reduced range of hyoid movement
may contribute to penetration–aspiration risk and increase pharyngeal residues in dys-
phagia [11]. Because the extent and pattern of hyoid movement has been reported to be
different from that of normal individuals as well as according to the etiology of dysphagia,
its analysis could be useful in differentiating the mechanism of dysphagia [10]. Therefore,
kinematic analysis of hyoid movement in VFSS is important. However, it is not easy even
for experts in VFSS analysis to detect and track the hyoid bone in the rapid swallowing
process because the shape and density of the hyoid bone differ from person to person,
and its margin is usually unclear [49]. Because many clinicians struggle to calibrate the
kinematics of hyoid movement, it shows wide intrarater and interrater variation [14].

This study is the first to detect and track the hyoid bone without human intervention.
A deep learning model that can identify the hyoid bone in a fully automatic manner has
been reported, but tracking of the hyoid bone was not attempted in that model [27]. Another
model for tracking the trajectory of the hyoid bone has been reported, but it still requires
manual demarcation in the first-frame image [21]. We designed a robust network that can
detect salient objects in VFSS images with high performance and resistance to occlusion.
Prior to our study, two studies attempted to automate the tracking of hyoid movement
by applying deep learning technology [21,27]. We compared the previous studies with
our study as follows. Zhang et al. performed bounding box regression from feature maps
of various sizes using an SSD network [27]. The study used a larger data set, consisting
of 265 subjects, than our data set of 197 subjects. Their model could fully automatically
detect the hyoid bone and showed high performance in terms of object size. However,
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SSD showed a problem of losing balance among the classes in training because objects
were not present in all of the bounding boxes with top-down feature extraction only. It
also showed relatively unsatisfactory accuracy and had a limitation of tracking failure
when passing the mandible. For this reason, the performance of detecting the hyoid bone
with SSD using a bounding box was 23.4%∼29% lower than that of other models (Table 2),
although it showed relatively less error compared to its low detection performance since
SSD uses an anchor box. In another study by Lee et al. [21], a CNN-based online learning
algorithm was proposed that can track hyoid motion and predict it even when it passes
through the mandible and is blurred. U-Net combined with an attention mechanism was
used to detect objects. Their attention U-Net used a featurewise gating mechanism that
adjusts the output according to the importance of the features extracted in the top-down
approach. However, the attention process was executed in a top-down way similar to the
methods of U-Net and SSD. Moreover, there was a possibility that features of different sizes
could contribute equally because the weight was not adjusted in combining the features.
The performance of detecting the hyoid bone with Attention U-Net using a bounding box
was 3.3% higher than that with U-Net, whereas the performance of detecting the coin was
6.3% lower (Table 2). The low performance of detecting the coin with attention U-Net may
be due to poor inference performance in the areas that are not visible, originating from
the poor performance of bounding box regression. Moreover, their model still requires
manual demarcation of a hyoid bone of appropriate size by humans in the first frame. We
used both top-down and bottom-up approaches by applying the BiFPN to extract features
efficiently and made the features contribute differently according to their size by adjusting
the weight in combining the extracted features. Their results are based on a smaller data
set, consisting of 77 subjects, than our data set of 197 subjects. In addition, we extracted the
global context using the BOT to design a strong network for occlusion and significantly
improved the performance in object detection. The proposed BiFPN-U-Net(T) performed
well as long as the image quality is secured and showed much higher performance in
detecting the hyoid bone and cervical spine than the other models: 2.3∼29% and 1.6∼4.5%
higher performance, respectively. The estimated distance of hyoid bone movement by
BiFPN-U-Net(T) showed the closest value to the ground truth (Table 3), suggesting the
most successful tracking performance compared to the other models. Such good results are
probably attributable to the ability of the global context in BOT to extract strong feature
information in occlusion cases. Furthermore, the network with BiFPN can detect objects
of various sizes more effectively by extracting strong feature information from the size.
The results of this study confirmed the higher performance of the BiFPN-U-Net(T) network
(mAP = 95.9%, Dice similarity = 90.9%) than the models proposed by Zhang et al. (mAP
= 83.1%) [27] and Lee et al. (mAP = 93.1%, Dice similarity = 89.7%) [21]. BiFPN-U-Net(T)
also showed the most accurate results in measuring the maximum trajectory distance of
the hyoid bone, which is a clinically significant variable.

This study has other considerable advantages, as follows. Since the kinematic prop-
erties of the hyoid bone are related to age and risk of penetration–aspiration [11,50] and
the viscosities of diet can affect swallowing time [51], we collected a data set aiming to
evenly distribute factors such as age, severity of penetration–aspiration, and type of diet.
Our data set of 69,389 frames from 197 video files for training the model was annotated
manually by three physiatrists skilled in VFSS analysis and contained a 24 mm coin to
establish a standard of distance. The point we want to emphasize in our study is that
human intervention is not required in the whole process of tracking the hyoid bone in
VFSS videos, unlike the previous study in which the salient structures were demarcated
manually in the first frames of video images. Nevertheless, the model we first proposed
here can track the whole movement and showed better performance in video files with
greater lengths compared with the previous models, except for a slightly larger RMSE.
The average recording time for each video is 11 s, which is much longer than those of the
data sets in other papers (2 to 5 s long in the study of Lee et al. [21], and an average of 1.1 s
in the study of Zhang et al. [27]); the data set has 336 frames per video on average, where
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the shortest video is 2 s long and the longest video is 85 s long. By using longer videos
containing movements other than swallowing, such as mastication, we believe that a more
robust network could be constructed.

The network proposed in this study showed an RMSE 3.57 mm higher than that of Lee
et al., which was 3.44 mm [21]. In addition to using different data sets, the following two
factors may have caused the larger error: (1) In the present model, the distance between
the hyoid bone and cervical spine was estimated on the basis of the estimated size of the
attached coin. The RMSE may be increased by poor estimation of the coin size. (2) The
average length of the video files was 11 s, much longer than those in previous studies. This
is because our data set videos include not only swallowing but also the oral phase, and the
resultant jittering of the head made identification of the hyoid bone more difficult. In this
study, we collected 197 VFSS video files from different patients in the same hospital, so
the data set may provide limited variability of patient groups. The present model, like
previous models, can track only the hyoid bone, and other significant VFSS parameters,
such as penetration, aspiration, and time parameters, cannot be measured, which limits the
application of the model in real clinical settings.

Other limitations of this study are as follows. The difference between normal and
dysphagic conditions was not examined, although the data set consisted of videos taken
from individuals with various conditions and characteristics. Further studies are required to
determine whether the proposed model is useful in revealing the mechanism of dysphagia
and the effect of disease conditions. There are many variables other than the tracking of the
hyoid bone for analysis of VFSS. A comprehensive software application that can combine
the results of the variables and determine their interactions for use in a clinical setting needs
to be developed. A large-scale clinical trial may be necessary to demonstrate its usefulness.
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