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Brain death (BD) induces an organ-level inflammatory response. However, the underlying

mechanisms have not been fully elucidated. Here, we investigated the role of

caspase-1-mediated pyroptosis in BD-induced kidney injury in rats. A BD model

was established in Sprague-Dawley rats. The rats were intravenously injected with

Z-YVAD-FMK 1h before BD, and sham-operated rats served as controls. After 0, 1,

2, 4, and 6 h of BD, renal injury, and renal expression of the nod-like receptor family pyrin

domain-containing 3 (NLRP3), caspase-1, caspase-11, gasdermin D (GSDMD), IL-1β,

and IL-18 were assessed using quantitative reverse transcriptase-polymerase chain

reaction, western blotting, and immunohistochemistry. Blood urea nitrogen and serum

creatinine levels were measured. Additionally, renal tubular epithelial cells (NRK-52E)

were subjected to 3 h of hypoxia followed by 6 h of reoxygenation and incubated

with Z-YVAD-FMK before hypoxia and reoxygenation. Caspase-11 was knocked-down

using small interfering RNA technology. Cell viability and levels of pyroptosis-associated

proteins were assessed thereafter. NLRP3, caspase-1, GSDMD, IL-1β, and IL-18

expression levels were upregulated in BD rats. Treatment with Z-YVAD-FMK reduced

mRNA and protein levels of caspase-1, GSDMD, IL-1β, and IL-18, improved renal

function, and alleviated renal injury. Z-YVAD-FMK efficaciously reduced pyroptosis effects

in kidneys in BD rats. Thus, it could be considered as a therapeutic target for BD-induced

kidney injury.
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INTRODUCTION

Brain death (BD) induces organ injury in donors by stimulating an inflammatory response (1, 2).
Many retrospective analyses and randomized controlled studies have confirmed that kidneys
derived from brain-dead organ donors show inferior survival and delayed functional recovery
than those derived from living donors (3, 4). However, the mechanism underlying the effect of
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BD on donor organ function has not been fully elucidated. Brain-
dead donors show inflammatory responses at the organ level,
and the degree of response is related to the extent of organ
dysfunction after transplantation (5, 6).

The kidney is particularly sensitive to ischemia and hypoxia,
and cell death in kidney diseases have been studied primarily in
the context of tubular injury. The renal tubule is the key site of
BD-associated injury and an important source of inflammatory
cytokines (7, 8). Renal cell death is a core pathophysiological
factor in any renal disease (9). Thus, exploring the mechanisms
of cell death and tissue damage can provide major insights for
disease treatment.

Pyroptosis is a highly specific type of inflammatory
programmed cell death that differs from necrosis and apoptosis
(10). Pyroptosis is activated by caspase-1 (human and mouse),
caspase-4 and caspase-5 (human), or caspase-11 (mouse) (11).
Ge et al. (12) identified the pathological roles of NLRs and
AIM2 inflammasomes in the damaged blood-brain barrier
after traumatic brain injury. NLRP3 promotes the activation
of caspase-1, induces release of IL-1β and IL-18, and leads
to tissue injury (13). GSDMD, a substrate of both caspase-1
and caspase-11/4/5, is primarily expressed in immune cells
and shows unique structural characteristics of a perforating
protein (14). Caspase-1 inhibitor Ac-YVAD-CMK inhibits
pyroptosis in brain microvascular endothelial cells (12). The
role of inflammasome and caspase-1 activation pathway
in stroke and traumatic brain injury has been previously
confirmed (15, 16).

Yang et al. (17) found pyroptosis of renal tubular epithelial
cells to be the key event in mouse kidney ischemia-reperfusion
injury. Meanwhile, Wang et al. (18) found renal injury
and pyroptosis to be typical events after renal ischemia-
reperfusion. However, whether the canonical and non-canonical
pyroptosis pathway mediates renal injury following BD
remains unclear.

Although pyroptosis has gained attention in the field of
inflammation, research on organ injury-related pyroptosis in
brain-dead donors remains insufficient. Therefore, we aimed
to investigate the role of caspase-1-mediated pyroptosis in
BD-induced rat kidney injury, and the effect of a caspase-1
inhibitor (Z-YVAD-FMK) on it to reveal potential target genes
for future intervention.

MATERIALS AND METHODS

Experimental Animals
Male Sprague-Dawley rats, weighing 250–300 g, were
purchased from the Animal Center of the Medical College
of Zhengzhou University. The rats were housed at 18–22 ◦C,
with moderate humidity, 12 h light/dark cycle, and a quiet
environment. They were allowed access to chow and drink
ad libitum. All experiments were approved by the Ethics

Abbreviations: BD, brain death; DMSO, dimethyl sulfoxide; NLRP3, the nod-

like receptor family pyrin domain-containing 3; GSDMD, gasdermin D; IHC,

immunohistochemistry; H/R, hypoxia/reoxygenation; NRK52E, renal tubular

epithelial cells; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Committee of the First Affiliated Hospital of Zhengzhou
University (No. 2019-KY-019).

Animal Groups and Treatment
The BD rat model was established based on previous studies
in our laboratory (19) and available literature (20–22). A
total of n = 72 rats were used for the experiments. Rats
were randomly categorized into two cohorts, control cohort
(n = 36) and Z-YVAD-FMK-treated cohort (Z cohort) (n
= 36). In each cohort, rats were randomly categorized into
sham, 0, 1, 2, 4 and 6h group (n = 6 for each group).
Rats were fasted for 6 h before the experiment but allowed
free access to water. BD was induced by inflating a subdural
balloon catheter to induce slow and intermittent intracranial
compression. Blood samples from the abdominal aorta and
kidney tissues were collected at 0, 1, 2, 4, 6 h after BD and
sham group in each cohort. Operations in sham group were
performed in the same manner as that in the BD group, but
BD was not established. Z-YVAD-FMK (Abmole Bioscience Inc.,
Shanghai, China) was dissolved in 14 µL of dimethyl sulfoxide
(DMSO) and intravenously administered at 300 ng/kg 1 h before
BD. Rats were euthanized under general anesthesia and were
sacrificed at different time points as indicated. The abdominal
cavity was opened, kidney was removed, and macroscopic
ischemia, necrosis, and other lesions were visually observed.
Lower portion of the right kidney was collected and fixed in
4% paraformaldehyde solution, followed by paraffin embedding,
sectioning, and hematoxylin and eosin staining. Paller score
was used to evaluate pathological changes in the kidney by
pathologist (23). The standard is described as follow: normal
renal tubules (0 point), obviously dilated renal tubules (1 point),
flat or swollen cells are scored (1 point), renal brush border
membrane injury (1 point), cell debris (2 points), tubular type (2
points), cell shedding and necrosis in the lumen of renal tubules
but without tubular type and cell debris (1 point) (24). Expression
of caspase-1 and caspase-11 in renal tissues was determined by
immunohistochemistry (IHC).

Cell Culture and Treatment
NRK-52E cells (rat ductal epithelial cells; Procell Life Science
& Technology Co., Ltd., Wuhan, China) were cultured in
Dulbecco’s modified Eagle’s medium (Solarbio, Beijing, China)
with 10% fetal bovine serum (Gibco, Gaithersburg, MD, USA)
and 100 U/ml penicillin-streptomycin (Solarbio, Beijing, China)
in 37◦C incubator with 5%CO2.Cell experiment were categorized
into four groups: normal control, hypoxia/reoxygenation (H/R),
Z-YVAD-FMK, and DMSO control. Before the experiment the
medium was changed into serum free medium for 8 h. In the
normal control group, cells were incubated in 5% CO2 and 1%
O2 at 37 ◦C for 3 h. In the H/R group, the culture dishes were
incubated in 5% CO2 and 1% O2 at 37 ◦C for 3 h (BD-induced
hypoxia stimulation) (25). Then, the cells were reoxygenated
for 2, 4, 6, 8, and 12 h. In the Z-YVAD-FMK group, Z-YVAD-
FMK was added into the medium 1 h before H/R at different
concentrations (5, 10, 25, and 50µM; DMSO volume = 80
µL), and their effects on hypoxia-stimulated NRK-52E cells were
detected. Finally, in the DMSO control group, 80µL DMSO
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was added to each dish 1 h before experiment, and the cells
were incubated in 5% CO2 and 1% O2 at 37 ◦C for 3 h. Each
experiment was repeated thrice.

Next, NRK-52E cells were transfected with small
interfering RNA (siRNA) or negative control (NC) and
threated with hypoxia/reoxygenation conditions. Three
SiRNA were used to decrease the expression of caspase-11.
The si-caspase-11 and si-NC sequences were as follows:
Si-RNA-1: sense 5′-GGGCAACCUUGACAAGAUATT-
3, Antisense 5′-UAUCUUGUCAAGGUUGCCCTT-3′,
Si-RNA-2: sense 5′-GCUCUUAUCAUAUGCAAUATT-3,
Antisense 5′-UAUUGCAUAUGAUAAGAGCTT-3′, Si-RNA-
3: sense 5′-CUCCAGAUGUGCUAUUAUATT, Antisense
UAUAAUAGCACAUCUGGAGTT-3′, Negative control(NC):
sense 5′-UUCUCCGAACGUGUCACGUTT-3, Antisense 5′-
ACGUGACACGUUCGGAGAATT-3. Finally, we harvested
the cells, extracted RNA, reverse transcribed RNA into cDNA,
and extracted cell proteins as previously described (25).
Transfection effects of siRNA were determined by reverse
transcription-quantitative polymerase chain reaction (RT-qPCR)
and western blotting.

Cell Viability Check by Cell Counting Kit-8
(CCK-8)
NRK-52E cell suspension was seeded in 96-well plates at 100
µL/well, and pre-cultured at 37 ◦C and 5% CO2. After treating
the cells as described above, CCK-8 reagent (10 µL) was added
to each well and incubated for 1 h. Absorbance was recorded at
450 nm. Each experiment was repeated thrice.

Reverse Transcription-Quantitative
Polymerase Chain Reaction (RT-QPCR)
ThemRNA levels of NLRP3, caspase-1, caspase-11, IL-1β, and IL-
18 were measured by RT-qPCR. Total RNA was extracted from
tissues using the TRIzol (Thermo Fisher Scientific, Shanghai,
China), and reverse transcription was performed as described
previously (26). Primers were designed based on the gene
sequences acquired from PubMed. The primers were synthesized
by Invitrogen (Shanghai) Trading Co., Ltd., China, and are
shown in Table 1. The primers were diluted appropriately,
PCR amplification was performed, and RT-qPCR results were
analyzed using a relative quantitative method as described
previously (26).

Western Blot Analysis
Cell and tissue proteins were extracted as previously described
(19), and bicinchoninic acid method was used to determine
the protein concentration. Nitrocellulose membranes were
incubated with primary antibodies (anti-NLRP3, anti-IL-18,
GAPDH, Proteintech Group, Inc., Chicago, IL,USA; anti-
GSDMD, Abbexa Ltd, Cambridge, United Kingdom; anti-
caspase-1, anti-IL-1β, anti-cleaved caspase-1, anti-cleaved IL-
1β, Affinity Biosciences, Cincinnati, OH, USA; anti-caspase-
11 p20, Santa Cruz Biotechnology, Inc.Dallas, Texas, USA) at
4 ◦C overnight. The membranes were washed with 1% TBST
before and after incubation with goat anti-rabbit IgG secondary
antibody (LI-COR Biotechnology, Lincoln, NE, USA) or goat

TABLE 1 | Gene-specific quantitative-polymerase chain reaction primers.

Primer Primer sequence

Nlrp3-f 5′-CTGCATGCCGTATCTGGTTG-3′

Nlrp3-r 5′-GCTGAGCAAGCTAAAGGCTTC-3′

Casp1-f 5′-GACCGAGTGGTTCCCTCAAG-3′

Casp1-r 5′-GACGTGTACGAGTGGGTGTT-3′

Casp11-f 5′-CAGGAGCCCACTCCTACAGA-3′

Casp11-r 5′-AGGACAAGTGGTGTGGTGTT-3′

GSDMD-f 5′-AAGATCGTGGATCATGCCGT-3′

GSDMD-r 5′-AACGGGGTTTCCAGAACCAT-3′

IL-1β-f 5′-AGGCTGACAGACCCCAAAAG-3′

IL-1β-r 5′-CTCCACGGGCAAGACATAGG-3′

IL-18-f 5′-ACCACTTTGGCAGACTTCACT-3′

IL-18-r 5′-GGATTCGTTGGCTGTTCGGT-3′

Acta2-f 5′-CCGAGATCTCACCGACTACCTCA-3′

Acta2-r 5′-TCAAAGTCCAGAGCGACATAGCA-3′

anti-mouse IgG secondary antibody (LI-COR Biotechnology,
Lincoln, NE, USA) for 1 h at room temperature. Odyssey CLx
imaging system (LI-COR Biosciences, Lincoln, NE, USA) was
used to analysis protein expression as previously described (19).

Biochemical Determination
Blood samples extracted from the abdominal aorta were
centrifuged at 10,000 g for 20min at 4◦C. Frozen serum in
the upper layer was collected, and serum creatinine (Cr) and
urea nitrogen levels were measured using a Commercial
Kit (Jiancheng Biotech, Nanjing, China) following the
manufacturer’s instructions.

Statistical Analysis
SPSS 19.0 (SPSS Inc., Chicago, USA) was used for statistical
analysis. Student’s t-test was used to calculate the difference
between the data obtained from two groups. One-way analysis
of variance was used to calculate the difference across the data
of multiple groups. Results are expressed as mean ± standard
deviation. Results with P-values < 0.05 were considered as
statistically significant.

RESULTS

Pyroptosis Occurring in BD Rats Promoted
Inflammation and Induced Kidney Injury
As can be seen in Figure 1A, proportion of necrotic renal tubular
cells increased after brain death. Paller scores in the BD 1, 2,
4, and 6 h group were higher than BD 0 h group (Figure 1B).
In the BD + Z-YVAD-FMK group, Paller scores were reduced
than those in the control group at 6 h (Figure 1B). The levels
of creatinine and urea nitrogen was increased after brain death
compared with the sham group (Figures 1C,D). At the 4 and
6 h after brain death, the levels of creatinine and urea nitrogen
was significantly lower in Z-YVAD-FMK-treated cohort than
control cohort (Figures 1C,D). The proportion of positive
cells with caspase-1 and caspase-11 staining increased after
brain death (Figures 2, 3). At the 6 h after brain death, the

Frontiers in Surgery | www.frontiersin.org 3 November 2021 | Volume 8 | Article 760989

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Liu et al. Pyroptosis in Kidney Injury

FIGURE 1 | HE staining, Paller scores and renal function results in control cohort and Z-YVAD-FMK-treated cohort. There were sham, 0, 1, 2, 4, and 6 h group (n = 6

in each group) in each cohort. HE appearance after (A). Paller score (B). Serum creatinine levels (C). Urea levels (D). *p < 0.05. BD = brain-death; Sham = without

brain death; HE = Hematoxylin and eosin.

FIGURE 2 | Immunohistochemical (IHC) score of caspase-1 in control cohort and Z-YVAD-FMK-treated cohort. There were sham, BD 0, 1, 2, 4, and 6 h group (n = 6

in each group) in each cohort. (Magnification 200×). (A) Control cohort and Z-YVAD-FMK-treated cohort. (B) IHC score of caspase-1 in different cohorts. *p < 0.05.

BD = brain-death; Sham = without brain death.
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FIGURE 3 | Immunohistochemical (IHC) score of caspase-11 in control cohort and Z-YVAD-FMK-treated cohort. There were sham, BD 0, 1, 2, 4, and 6 h group (n =

6 in each group) in each cohort. (Magnification 200×). (A) Control cohort and Z-YVAD-FMK-treated cohort. (B) IHC score of caspase-11 in different groups. *p <

0.05. BD = brain-death; Sham = without brain death.

IHC score of caspase-1 was significantly lower in Z-YVAD-
FMK-treated cohort than control cohort (Figures 2A,B).
However, the IHC score of caspase-11 was not decreased
in Z-YVAD-FMK-treated cohort compared with control
cohort (Figures 3A,B).

Effects of Z-YVAD-FMK on MRNA and
Protein Expression of Pyroptosis-Related
Molecules in Brain-Dead Rats
RT-qPCR and western blotting results showed that the expression
of NLRP3, caspase-1, caspase-11, GSDMD, IL-1β, and IL-18
at 6 h group were significantly higher compared with sham
group in control cohort (Figures 4A,B). However, Z-YVAD-
FMK treatment reduced the mRNA and protein levels of caspase-
1, GSDMD, IL-1β, and IL-18 in the 6 h group in Z-YVAD-FMK-
treated cohort (Figures 4A,B), although caspase-11 expression
remained unchanged (Figures 4A,B). The expression of mRNA
level of NLRP3 in the 6 h group was significantly lower in
Z-YVAD-FMK-treated cohort compared with control cohort
(Figure 4A). However, the expression of protein level remained
unchanged (Figure 4B).

Decreasing of Caspase-1 and Caspase-11
Affect the Cell Activity of NRK-52E Cells
After H/R
NRK-52E cells treated with different concentrations of Z-
YVAD-FMK for 12 h. There was no significant difference
in the cell activity between the DMSO and Z-YVAD-FMK

groups (Figure 5A), indicating that Z-YVAD-FMK had no
toxic effect on NRK-52E cells at a concentration of 50µM
(dissolved in DMSO). Cell activity decreased significantly in
H/R condition and compared with that in the normal-oxygen
group (Figure 5B). The cell activity was lowest at 6 h after
reoxygenation (Figure 5B), and we chose this time point for our
cell experiment.

Next, we analyzed the activity of NRK-52E cells treated
with different concentrations of Z-YVAD-FMK in the H/R
environment. Cell viability in the 25µM and 50µM Z-
YVAD-FMK-treated groups was significantly higher than that
in the DMSO-treated group (Figure 5C). However, treatment
with 25µM and 50µM showed no significant differences
(Figure 5C). Therefore, 25µM Z-YVAD-FMK was used for
subsequent experiments.

Transfection effects of siRNA were determined by RT-
qPCR (Figure 5D) and western blotting (Figure 5E).
Caspase-11 expression was downregulated in NRK-52E
cells transfected with siRNA-1, siRNA-2, and siRNA-3 (p <

0.01), and its expression was lower in siRNA-2-transfected
group than in the siRNA-1 and siRNA-3-transfected
groups (Figures 5D,E). Therefore, siRNA-2 was selected for
subsequent experiments.

CCK-8 results revealed that NRK-52E cell viability was
significantly decreased in the H/R environment and significantly
increased upon Z-YVAD-FMK treatment (Figure 5F). However,
caspase-11 knockdown with siRNA did not exhibit a protective
effect on cell viability after H/R by inhibiting the non-classical
pathway of pyroptosis (Figure 5F).
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FIGURE 4 | Protein and mRNA expression of pyroptosis-related molecules in control cohort and Z-YVAD-FMK-treated cohort. (A) mRNA expression of NLRP3,

caspase-1, caspase-11, GSDMD, IL-1β, and IL-18 in rat kidney tissuses. (B) Western blotting results of NLRP3, pro-caspase-1, cleaved-caspase-1,

cleaved-caspase-11, GSDMD, pro-IL-1β, cleaved-IL-1β and cleaved-IL-18. In rat kidney tissues. *p < 0.05, **p < 0.01. (n = 6 in each group). BD = brain-death;

Sham = without brain death. GSDMD, gasdermin D; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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FIGURE 5 | Decreasing of caspase-1 and caspase-11 affect the cell activity of NRK-52E cells after H/R. (A) Effects of different concentrations of Z-YVAD-FMK on cell

activity in normoxic state. (B) NRK-52E cell activity at different times of reoxygenation. (C) Effects of different concentrations of Z-YVAD-FMK on the cell activity after

6 h of H/R. (D) Expression of caspase-11 mRNA after caspase-11 siRNA transfection. (E) Expression of caspase-11 protein and statistical analysis after caspase-11

siRNA transfection. (F) Effect of caspase-1 inhibition by Z-YVAD-FMK and caspase-11 inhibition by siRNA on cell activity, as detected by CCK-8. *p < 0.05, **p <

0.01, ##p < 0.05. Z = Z-YVAD-FMK; H/R, hypoxia/reoxygenation; R, reoxygenation; DMSO, dimethyl sulfoxide; Si-casp11, small interfering ribonucleic acid

caspase-11; Si-NC, si-caspase-11 negative control; GAPDH, glyceraldehyde-phosphate dehydrogenase.

Protein and MRNA Expression in NRK-52E
Cells After Inhibition of Caspase-1 or
Caspase-11 in H/R Environment
RT-qPCR and western blotting results showed that the expression
of NLRP3, caspase-1, caspase-11, IL-1β, IL-18, and GSDMD
in NRK-52E cells was upregulated under H/R conditions
(Figures 6A,B). Protein and mRNA expression of IL-1β, IL-
18, caspase-1, and GSDMD was lower in the Z-YVAD-FMK
group than in the H/R group (Figures 6A,B); however, there
was no significant change in NLRP3 or caspase-11 expression
(Figures 6A,B). Further, mRNA and protein expression of
caspase-11 were significantly lower in the siRNA group than in

the H/R group (Figures 6A,B); mRNA expression of GSDMD
was significantly lower in the siRNA group than in the H/R group
(Figure 6A); However, there was no significant change in protein
and mRNA expression of NLRP3, caspase-1, IL-1β, and IL-18 in
the siRNA group (Figures 6A,B).

DISCUSSION

Changes in blood circulation in brain-dead organ donors can lead
to severe ischemia-reperfusion injury, resulting in acute tubular
necrosis and delayed organ function after kidney transplantation
(27, 28). During BD, an inflammatory storm occurs, which
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FIGURE 6 | Effect of Z-YVAD-FMK and si-caspase-11 on protein and mRNA expression in the NRK-52E cell culture model. (A) mRNA levels of NLRP3, caspase-1,

caspase-11, GSDMD, IL-1β, and IL-18 in NRK-52E cells after H/R. (B) Protein expression and statistical analysis of NLRP3, pro-caspase-1, cleaved-caspase-1,

cleaved-caspase-11, GSDMD, pro-IL-1β, cleaved-IL-1β and cleaved-IL-18 in NRK-52E cells after caspase-1 or caspase-11 inhibition. *p < 0.05, **p < 0.01. Z =

Z-YVAD-FMK; H/R, hypoxia/reoxygenation; DMSO, dimethyl sulfoxide; Si-casp11, small interfering ribonucleic acid caspase-11; Si-NC, si-caspase-11 negative

control; GSDMD, gasdermin D; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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causes drastic inflammatory changes in the donor organ before
transplantation (29, 30).

Studies support the role of apoptosis in acute kidney injury
(31, 32). Proximal tubular epithelial cells are susceptible to
apoptosis, and damage to this region results in organ failure
(9). However, preventing apoptosis alone cannot significantly
improve renal function after transplantation; therefore, we aimed
to explore the mechanism of pyroptosis in brain-dead donors.
Here, our results suggested that pyroptosis was induced in
kidney tissues after BD, and Z-YVAD-FMK treatment effectively
improved the renal function and reduced renal injury in a brain-
dead rat model thereafter.

We examined the expression of classical and non-classical
pathway-related molecules in a brain-dead rat model. Caspase-
1/11 belong to the proinflammatory caspase subfamily and
play key roles in immune response-related signaling. Mice with
caspase-1/11 gene knockout are more tolerant to Escherichia coli-
induced septic shock than those lacking caspase-1 and IL-1β,
suggesting that caspase-1/11 associated pathways act together in
mice along with septic shock. Initially, caspase-1 and caspase-
11 were thought to be associated with independent pathways;
however, later, they were discovered as part of a complex
regulatory network with mutual correlation and interaction
(33, 34). Here, we found that both caspase-1 and caspase-11
were increased in BD rats and associated with BD-induced
kidney injury.

Cao et al. (35) confirmed that NLRP3 inflammasome
activation mediated blood-brain barrier dysfunction in cerebral
ischemia, and inhibition of the same reduced blood-brain barrier
injury after ischemia (35). In our BD model, expression of
NLRP3 in the kidney was significantly increased, suggesting that
it was one of the main receptors associated with inflammasome
formation and initiation of the canonical pyroptotic pathway.
NLRP3 promotes the activation of caspase-1, induces release
of IL-1β and IL-18, and leads to renal injury, confirming
that certain stimulating factors induced by BD activate NLRP3
in rats and promote occurrence of canonical pyroptosis
thereafter (36).

GSDMD serves as a key executioner of pyroptosis in
experimental cerebral ischemia and reperfusion model
both in vivo and in vitro (21). Here, a significant increase
in GSDMD was detected in the kidneys of BD rats,
demonstrating that GSDMD cleavage was necessary and
sufficient for inflammatory caspase activation-induced
pyroptosis. Both mRNA and protein expression of GSDMD
in the BD + Z-YVAD-FMK group were significantly
decreased, indicating that caspase-1 expression was
inhibited by Z-YVAD-FMK, and the expression of GSDMD
correspondingly decreased.

Pyroptosis is involved in the cryopreservation and auto-
transplantation of mouse ovarian tissues, and its inhibition
can improve ovarian graft function (37). In our study, Z-
YVAD-FMK effectively protected renal function in BD rats.
In the H/R model, we verified that caspase-1, caspase-
11, and GSDMD were significantly upregulated; whereas,
addition of Z-YVAD-FMK abrogated this effect. NRK-52E cell
viability decreased significantly in the H/R environment and

Z-YVAD-FMK treatment increased the cell viability significantly
(Figure 5F).

Previous studies on pyroptosis (38) have mainly focused
on the role of caspase-1 in the canonical pathway; here, we
focused on whether caspase-11-mediated pyroptosis could be
involved in BD-related organ injury. The level of caspase-
11 in brain-dead kidney tissues was significantly increased,
as determined by IHC, mRNA and protein expression.
However, caspase-11-mediated atypical pyroptotic pathway
was not affected by the caspase-1 inhibitor. Caspase-11 was
knocked down by an siRNA, and the results revealed that
H/R activated both canonical and non-canonical pyroptosis.
Z-YVAD-FMK inhibited the expression of IL-1β and IL-18
(Figures 6A,B), thereby indicating the increased protective effect
of Z-YVAD-FMK on cell viability after H/R. However, caspase-
11 knockdown did not exhibit a protective effect on cell
viability after H/R. Therefore, we concluded that canonical
pyroptosis was the major pathway that affected H/R injury in
NRK-52E cells.

This study has a few limitations. This is a rat model and the
results are therefore not automatically transferable to humans.
The sample size (especially of the control groups) is naturally
small in animal experiments. We did not explore the role of
pyroptosis in kidney injury beyond 6 h. Thus, further studies are
required to understand the potential mechanisms of action. In
addition, the solvent of Z-YVAD-FMK in this was DMSO and
limited the further studies in human.

In summary, our study shows that pyroptosis promote
inflammation and induce kidney injury after brain death in
rats. Z-YVAD-FMK reduced the inflammation and cell injury
in rats and cell experiment. Pyroptosis could be considered as a
therapeutic target for BD-induced kidney injury.
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