
Observational Study Medicine®

OPEN
A novel RNA binding prot
ein-associated
prognostic model to predict overall survival in
hepatocellular carcinoma patients
Ye Liu, MDa, Xiaohong Liu, MDb, Yang Gu, MDb, Haofeng Lu, MDa,∗

Abstract
Hepatocellular carcinoma (HCC) is 1 of the deadliest malignancies worldwide. Despite significant advances in diagnosis and
treatment, themortality rate fromHCCpersists at a substantial level. Construction of a prognostic model that can reliably predict HCC
patients’ overall survival is urgently needed.
Two RNA-seq dataset (the Cancer Genome Atlas and International Cancer Genome Consortium) and 1 microarray dataset

(GSE14520) were included in our study. RNA-binding proteins (RBPs) in HCC patients was examined by differentially expressed
genes analysis, functional enrichment analysis and protein-protein interaction network analysis. Subsequently, the Cancer Genome
Atlas dataset was randomly divided into training and testing cohort with a prognostic model developed in the training cohort. In order
to evaluate the prognostic value of the model, a comprehensive survival assessment was conducted.
Five RBPs (ribosomal protein L10-like, enhancer of zeste homolog 2 (EZH2), peroxisome proliferator-activated receptor gamma

coactivator 1 alpha (PPARGC1A), zinc finger protein 239, interferon-induced protein with tetratricopeptide repeats 1) were used to
construct the model. The model accurately predicted the prognosis of liver cancer patients in both the training cohort and validation
cohort. HCC patients could be assigned into a high-risk group and a low-risk group by this model, and the overall survival of these 2
groups was significantly different (P< .05). Furthermore, the risk scores obtained by this model were highly correlated with immune cell
infiltration.
The prognostic model helps to identify HCC patients at high risk of mortality, which optimizes decision-making for individualized

treatment.

Abbreviations: AUC = area under the curve, BP = biological process, EZH2 = enhancer of zeste homolog 2, GEO = gene
expression omnibus, HCC = hepatocellular carcinoma, IFIT1 = interferon-induced protein with tetratricopeptide repeats 1, KEGG =
Kyodo Encyclopedia of Genes and Genomes, OS = overall survival, PPARGC1A = peroxisome proliferator-activated receptor
gamma coactivator 1 alpha, PPI = protein-protein interaction, RPL10L = ribosomal protein L10-like, ROC = receiver operating
characteristic, TCGA = the Cancer Genome Atlas, ZNF239 = zinc finger protein 239.
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lar carcinoma (HCC).[2,3]WHO listed in their scientific report that
1. Introduction

Liver cancer is the fourth most prevalent cause of cancer-related
mortality, which has the sixth highest incidence in the world.[1]

Approximately 90% of liver cancers originated from hepatocellu-
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awide rangeof risk factors for tumordevelopment inHCC, suchas
nonalcoholic fatty liver, hepatitis B and C virus, alcohol
consumption and diabetes mellitus.[4] The 5-year survival rate
of HCC is 18%, which is the next most deadly malignancy
following the pancreatic carcinoma.Moreover, the 5-year survival
rate for patients from Asian countries, such as China, has been
reported to be as low as about 12%.[5] HCC is prone to recur after
hepatectomy, with a 5-year recurrence rate of up to 70%.[6]

Despite great efforts to improve the early detection rate and
develop new treatment strategies, the prognosis of patients with
HCC is still poor, especially in patients with advanced metastatic
HCC. At present, the accuracy of histopathological diagnosis in
clinical prognosis prediction is insufficient, which limits the
treatment of HCC. Therefore, it is critical to develop a high-
precisionmolecular predictionmodel in the future clinical practice.
It is generally acknowledged and accepted that RNA-binding

proteins (RBPs) act to bind RNA via 1 or more spherical RNA-
binding domains and modify the destiny or function of the bound
RNAs.[7,8] RBPs can act on diverse kinds of RNA types, such as
mRNAs, tRNAs, snoRNAs, snRNAs and ncRNAs. It is assumed
that roughly 50% of RBPs contribute directly or indirectly to the
post-transcriptional modulation in gene expression.[9] RBPs can
form different ribonucleoprotein complexes to regulate RNA
splicing, localization, stability, translation, polyadenylation, and
degradation.[10] Given the critical role of RBPs in post-transcrip-
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tional modulation, it is unsurprising that RBPs are highly
associated with a variety of biological functions and diseases.[11]

By modulating the mRNAs of many oncogenes, growth factors,
and cell cycle modulators, RBPs affect the expression patterns of
cancer-related genes, as is well established.[12] Liang et al. reported
that overexpression of IFITM3was associated with poor outcome
in HCC cases, and inhibition of IFITM3 could restrain HCC cell
proliferation, migrations, invasion and apoptosis.[13] Dong et al.
found thatRBM3overexpression indicated thatHCCpatients had
short relapse free survival and poor overall survival (OS).[14]

While several studies have investigated the relationship
between RBPs and outcomes in patients with HCC, most have
focused on the impact of a single gene on prognosis. In order to
explore the important role of RBPs in HCC in a more
comprehensive and in-depth way, we developed a reliable
prognostic model of prognostic risk to determine the outcome
of patients with HCC. Moreover, we examined the association
between risk factors (risk scores and risk genes) derived from the
model and clinical characteristics.
2. Materials and methods

2.1. Data source

The expression profile data of RNA-binding proteins in HCC
patients and the respective clinical data had been obtained from
the Cancer Genome Atlas (TCGA) databank (https://portal.gdc.
cancer.gov/repository). A RNA-seq dataset (ICGC) and a
microarray dataset (GSE14520) used for validation were derived
from the International Cancer Genome Consortium (https://dcc.
icgc.org/) and the Gene Expression Omnibus (GEO) databank
(https://www.ncbi.nlm.nih.gov/geo/), respectively. Patients with
a total survival time of less than 1 month and incomplete clinical
information were excluded. Immune infiltration data of B cells,
CD4+ T cells, CD8+ T cells, neutrophils, dendritic cells and
macrophages was derived from the Cistrome project (http://
www.cistrome.org/).[15,16] 1542 RBPs summarized by predeces-
sors were included in our study.[17] Our research is based on 3
public databases: TCGA, GEO, and ICGC. Patients included in
the database have obtained ethical approval. Users can download
the data for free to do research and publish relevant articles. So
there are no ethical issues or other conflicts of interest.
2.2. Identification of differentially expressed RBPs

The RNA-seq data was annotated by human gene annotation
files (GRCh38.99), which had been obtained from the ENSEMBL
(http://asia.ensembl.org/index.html). The expression of mRNAs
were analyzed and normalized with the “edge” R package.[18]

The differentially expressed mRNAs with jlog 2 fold change > 1
and FDR < 0.05 were considered significant. The heat map and
the volcano map were drawn with pheatmap package and
ggplot2 package.
2.3. Functional enrichment analysis and Protein-protein
interaction (PPI) network construction of differentially
expressed RBPs

With the Kyodo Encyclopedia of Genes and Genomes (KEGG)
pathway assays and GO enrichment analysis, we investigated the
possible biological functions of these differentially expressed
RBPs. Functional enrichment analysis results were obtained by
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clusterProfiler package and org.Hs.eg.db package. The enrich-
ment results must meet the requirement that both P value was less
than .05 to be considered statistically significant. The differently
expressed RBPs were uploaded to the String database (https://
string-db.org/) to explore their interactions, and the PPI network
was subsequently visualized with Cytoscape software.[19,20]
2.4. Establishment of the prognostic risk model

The whole TCGA cohort was randomly divided into a training
and a testing cohort. Initially, univariate Cox regression model
was performed to select the prognosis-associated RBPs, with P
value< .05. Then, Lasso regression was employed to further
screen out the prognostic-associated RBPs and delete prognostic-
associated RBPs that correlated highly with 1 another. Finally,
Applications of multivariate Cox regression were conducted to
develop a model of prognostic risk. Based on the regression
coefficient from multivariate Cox regression analysis and mRNA
expression level, the prognostic risk model was shown as risk
score = (CoefficientRBP1�expression of RBP1) + (Coeffi-
cientRBP2�expression of RBP2) + (CoefficientRBPn�expres-
sion of RBPn).[21,22] The optimal cut-off values for risk scores
were identified using the Survminer R package to classify patients
into high- and low-risk catalogues. The predicting accuracy of
this model was assessed by Kaplan-Meier survival curves and the
approach of the time-dependent receiver operating characteristic
curve (ROC) analysis. The prognostic risk model was further
evaluated by using the distribution of risk scores, the scatter plot
of survival status and the expression heat map. Besides, the model
of prognostic risk was verified in the testing, TCGA, GSE14520,
and ICGC cohort.
2.5. Independent prognostic role of the prognostic risk
model

Uni- and multi-variate Cox regression analysess had been
adopted to investigated whether the prognostic risk model was
independent of other clinical data (age, sex, histological grade,
and pathological stage and risk score) for HCC patients. With the
clinical characteristics as the independent variable and OS as the
dependent variable, the ratio of hazard and 95 per cent
confidence interval were determined. P value less than .05 was
considered to be significant.
2.6. Building and validating a predictive nomogram

The present research constructed a nomogram to predict the 1-
year, 3-year, and 5-year OS probability for HCC patients by
utilizing independent prognostic factors that were selected by
multivariate Cox regression analysis. The accuracy of the
nomogram was validated by comparing the prediction probabil-
ity of the nomogram with the actual observation probability
through the calibration curves. The better coincidence with the
reference line indicated the higher accuracy of nomogram
prediction. ROC curves were also used to evaluate the predictive
accuracy of the nomogram.
2.7. Statistical analysis

R software (version 3.6.1) and Perl (version 5.26.3) were used to
analyze the RNA expression spectrum and respective clinical
information data of HCC patients. The rank correlation between
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Table 1

Patients’ characteristics in the GEO, TCGA, and ICGC cohorts.

TCGA (n, %) GSE14520 (n, %) ICGC (n, %)

Age
<=65 209 (65.5%) 200 (90.5%) 88 (38.4%)
>65 110 (34.5%) 21 (9.5%) 141 (61.6%)

Gender
Female 100 (31.3%) 30 (13.6) 61 (26.6%)
Male 219 (68.7%) 191 (86.4) 168 (73.4%)

TNM stage
Stage I 160 (50.2%) 93 (42.1%) 36 (15.7%)
Stage II 76 (23.8%) 77 (34.8%) 105 (45.9%)
Stage III 80 (25.1%) 49 (22.2%) 69 (30.1%)
Stage IV 3 (0.9%) 2 (0.9%) 19 (8.3%)

Histological grade
G1 44 (13.8%)
G2 154 (48.3%)
G3 109 (34.2%)
G4 12 (3.8%)

Survival status
Alive 212 (66.5%) 136 (61.5%) 189 (82.5%)
Dead 107 (33.5%) 85 (38.5%) 40 (17.5%)

Median follow-up time (yr)a 1.67 (1.00–3.32) 4.36 (1.48–4.82) 2.14 (1.40–3.04)
Risk
Low 232 (72.7%) 85 (38.5%) 145 (63.3%)
High 87 (27.3%) 136 (61.5%) 84 (36.7%)

GEO = gene expression omnibus, TCGA = the Cancer Genome Atlas.
a median values are shown with 25th–75th percentiles in parenthesis.
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the risk score and level of immune infiltration was assessed with
the Pearson correlation coefficient test, the independent t-test was
utilized to evaluate the differences between the variables.
Statistical significance was identified by P< .05.
3. Results

3.1. Screening of differentially expressed RBPs in HCC
patients

Patients’ characteristics in the GEO, TCGA, and ICGC cohorts
were showed in the Table 1, we choose these 3 cohorts because
they contain a large number of patients. The expression of 1542
RBPs in HCC patients from TCGA dataset were analyzed. As
shown in the heat map and volcano map (Fig. 1A, B), 133
differentially expressed RBPs could be identified in HCC tissues
versus normal tissues, including 111 differentially expressed
RBPs that were upregulated and 22 that were downregulated.

3.2. Functional enrichment analysis and PPI network
establishment of differentially expressed RBPs

In order to reveal possible biological functions of differentially
expressed RBPs, we performed GO term and KEGG pathway
analysis. There were 247 pathways considering to be significantly
enriched, including 152 biological process (BP) terms, 49 cellular
component terms, 46 molecular function terms. The most
significant BP, cellular component, molecular function concen-
trate on the regulation of mRNA metabolic process, cytoplasmic
ribonucleoprotein granule, catalytic activity and acting on RNA,
respectively (Fig. 1C). Meanwhile, KEGG pathway analysis
identified 6 significantly enriched pathways: mRNA surveillance
3

pathway, RNA degradation, Spliceosome, RNA transport,
Ribosome and Ribosome biogenesis in eukaryotes (Fig. 1D).
To further investigate the potential interactions between
differentially expressed RBPs, we developed a PPI network
based on data from the STRING databank by utilizing software
Cytoscape (Fig. 1E). Figure 1F showed the top ten hub genes of
the PPI network. The top ten hub genes were PABPC1, PIWIL1,
ELAVL2, GSPT2, LIN28A, SNRPE, BOP1, DDX39A, DDX39B,
DDX4.
3.3. Identify the prognostic RBPs included in the risk
model in the training cohort

Patients with OS time of under 1month and incomplete clinical
data in the entire TCGA cohort were excluded, resulting in the
inclusion of 319 patients in model construction. The entire TCGA
cohort was split into a testing cohort (n=159) and a training
cohort (n=160) randomly. After removing RBPs not in
GSE14520, a total of 81 differentially expressed RBPs remained
for further study. For the purpose of identifying the prognostic
relevance of RBPs, approach of univariate Cox regression was
applied to evaluate the expression of these RBPs in the training
cohort, yielding 23 RBPs that were associated with prognosis
(Fig. 2A). Lasso regression analysis was used to eliminate genes
that lead to overfitting of the model and to pick out 10 candidate
prognostic-associated RBPs (Fig. 2B). Subsequently, all the
candidate RBPs were measured by the approach of multivariate
Cox regression assay. In the end, 5 RBPs were identified to
establish the prognostic risk model. The 5 RBPs were ribosomal
protein L10-like (RPL10L), EZH2, PPARGC1A, zinc finger
protein 239 (ZNF239) and interferon-induced protein with
tetratricopeptide repeats 1 (IFIT1; Fig. 2C).

http://www.md-journal.com


Figure 1. Differentially expressed RBPs for functional enrichment profiling and protein-protein interaction (PPI) network formation. The heat map and volcano plot of
differentially expressed RBPs (A, B). GO and KEGG analyses of differentially expressed RBPs (C, D). PPI network of differentially expressed RBPs, the pink nodes
represent upregulated differentially expressed RBPs, the green nodes represent downregulated differentially expressed RBPs (E). The top ten hub RBPs (F).
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3.4. Establishment of the model for the prognostic risk in
the training cohort
With the purpose of investigating the capacity of these 5 prospective
RBPs in predicting the outcomes of patientswithHCC, these 5RBPs
4

havebeenadopted todevelopaprognosticmodel.The risk scorewas
determined by the following method: Risk score= (0.1400�
RPL10L expression) + (0.4536�EZH2 expression) + (-0.1195�
PPARGC1A expression) + (0.1537�ZNF239 expression) +



Figure 2. Identification of risk RBPs in the prognostic risk model. Identification of 23 prognostic-associated RBPs through univariate Cox regression analysis (A).
Further analysis through Lasso regression analysis (B). Risk gene in the prognostic risk model (C).
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(-0.2530� IFIT1 expression). The optimal cut-off value of -0.142
for the risk scorewas determined utilizing the SurvminerR package.
Patients in the training cohort were divided to high-risk (n=41) and
low-risk (n=119) groups in accordance with cut-off values. In
accordance of Kaplan-Meier analysis, the high-risk group had
remarkable poorer OS than the low-risk group (P< .001; Fig. 3A).
The prognostic value of the 5 RBPs characteristics was further
assessed with time-dependent ROC analysis. For 1-year survival, 3-
year survival, and 5-year survival, the area under the ROC curve
(AUC)was 0.763, 0.763, and 0.731, respectively. (Fig. 3B). The risk
score analysis for the prognostic risk model in the training cohort
was depicted in Figure 3C, which indicated that prognosis for the
5

high-risk group has been shown to be unfavorable in comparison to
the low risk group.

3.5. Validation of the prognostic risk model

With the aim of evaluating whether the 5-RBPs related
prognostic risk model had parallel predictive value in cohorts
of other HCC patients, the same formula was used to determine
risk score for the testing cohort, the TCGA full cohort, the
GSE14520 cohort and ICGC cohort separately. Individuals in
the testing and the entire TCGA cohort were sorted to high- and
low-risk groups in accordance with the optimal cut-off value for
the training cohort. Through the Survminer R package as the
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Figure 3. Validation of the risk model in the training cohort. Kaplan–Meier analysis (A), time-dependent ROC analysis (B) and risk score analysis (C) for the
prognostic risk model in the training cohort. ROC = receiver operating characteristic.
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training cohort, we obtained the optimum cutoff value of 1.111
in the GSE14520 cohort and -0.683 in the ICGC cohort. The 1-,
3-, and 5-year AUC of the testing cohort, TCGA cohort,
GSE14520 cohort and ICGC cohort were showed in Figure 4,
respectively. Our findings showed that in the testing cohort,
TCGA cohort, GSE14520 cohort as well as ICGC cohort,
Prognosis for the high-risk group has shown to be unfavorable in
comparison to the low risk set, which conforms the results of the
training set. The expression levels of EZH2, RPL10L, ZNF239 in
the high-risk category were higher compared to the low-risk
category, while PPARGC1A, IFIT1 level was reduced compared
to the low-risk category (Fig. 4). Taking all into consideration,
these findings suggested that our model of prognostic risk could
reliably predict the OS of HCC patients.

3.6. Independent prognostic role of the prognostic risk
model in the whole TCGA cohort
We evaluated the prognostic value of different clinical variables
in the TCGA cohort of HCC patients by uni- and multi-variate
Cox regression assay. Both uni- and multivariate Cox regression
assays indicated that risk score and pathological stage were
independent prognostic role. Among the parameters of age,
gender, histological grade and pathological stage and risk score,
1-, 3-, and 5-year AUC of risk score were the largest and the
6

hazard rate of the risk score was also the largest (Fig. 5), which
indicated that risk score predicted OS at 1, 3, and 5years more
accurately than other clinical characteristics.

3.7. Constructing a predictive nomogram in the whole
TCGA cohort

A nomogram created using 2 independent prognostic factors
including pathological stage and risk score was used to predict
OS at 1, 3, and 5years in the whole TCGA cohort (Fig. 6A). ROC
curve was used to evaluate the prediction accuracy of nomogram.
The area under the ROC curve for 1-,3-, and 5-year was 0.793,
0.786, 0.767 (Fig. 6B), which manifested that the nomogram had
very good prediction accuracy. Calibration curve analysis
demonstrated that the 1-, 3-, and 5-year survival rates that were
predicted by the nomogram corresponded well with the observed
survival rates. (Fig. 6C, D, E). Time-dependent ROC analysis was
used to assess the accuracy of different nomograms constructed
from risk score and clinical features (Fig. 6F, G, H). The
predictive ability of the nomogram constructed by age, gender,
grade, stage, and risk score and the nomogram constructed by
stage and risk score was better than other nomograms, and their
predictive abilities were similar. In order to facilitate the
evaluation by clinicians, we finally used the nomogram
constructed by stage and risk score.



Figure 4. Validation of the risk model in the testing cohort, whole TCGA cohort, GSE14520 cohort and ICGC cohort. Time-dependent ROC analysis, risk score
analysis and Kaplan–Meier analysis in the testing cohort (A). Time-dependent ROC analysis, risk score analysis and Kaplan–Meier analysis in the whole TCGA
cohort (B). Time-dependent ROC analysis, risk score analysis and Kaplan–Meier analysis in the GSE14520 cohort (C). Time-dependent ROC analysis, risk score
analysis and Kaplan–Meier analysis in the ICGC cohort (D). ROC = receiver operating characteristic, TCGA = the Cancer Genome Atlas.

Liu et al. Medicine (2021) 100:29 www.md-journal.com
3.8. Clinical utility of the prognostic risk model in the
whole TCGA cohort
For the purposes of assessing the clinical utility of the predictive
model, the correlation between risk factors (risk score and risk
genes) derived from the model and the clinical properties of the
7

entire TCGA cohort was assessed. As shown in Figure 7,
compared with low histological grades, high histological grades
had significant correlations with higher expression of EZH2,
ZNF239, and risk score, and lower expression of IFIT1 and
PPARGC1A (all P< .05). Compared with low pathological stage,

http://www.md-journal.com


Figure 5. Independent prognostic role of the model of prognostic risk in the whole TCGA cohort. Uni- (A) and multi-variate Cox regression assay (B) of the whole
TCGA cohort. Time-dependent ROC analysis of different clinical parameters in the whole TCGA cohort at 1, 3, and 5years (C, D, E). TCGA = the Cancer Genome
Atlas.
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high pathological stage had higher values of EZH2 and risk score,
and lower values of IFIT1 and PPARGC1A (all P<0.05). The
value of IFIT1 for male was higher than that for female, and the
value of ZNF239 was lower than female. The expression of
RPL10L in elderly patients was greater than that of young
patients. These findings demonstrated that these RBP genes were
intimately associated with the development of HCC.
Tumor-infiltrating immune cells played a key function in the

genesis and progress of tumors.[21] Therefore, the potential
association between risk score and level of immune infiltration in
the whole TCGA set was analyzed. As shown in Figure 8, risk
score had a positive correlation with neutrophil, B cell, CD4/CD8
+ T cells, dendritic, and macrophage (all P< .05). These findings
revealed that the score obtained by our model might reflect the
status of the tumor immune cell infiltration in HCC patients.

4. Discussion

Various researches have established that RBPs aberrantly express
themselves in diverse human diseases, including those of human
malignancies.[13,14] Many RBPs have been verified as key
molecules in the occurrence and development of cancer.
Abnormal expression of RBPs has also been strongly associated
with the outcome of cancer victims. Therefore, RBPs may be
essential for the progression and prognosis of HCC.
In our study, a total of 133 differentially expressed RBPs were

obtained by comparing liver cancer tissues with normal tissues
based on the data from TCGA-LIHC. To investigate the possible
8

biological functions of differentially expressed RBPs, GO term
and KEGG pathway analyses were performed. Moreover, to
further research the underlying interaction of differentially
expressed RBPs, we constructed the PPI network and identified
ten hub RBPs. These results will lay a foundation for the future
study of the mechanism of HCC occurrence and progression.
Next, the 23 prognostic-associated RBPs in the training cohort
were obtained by applying univariate Cox regression assay.
Lasso- and multi-variate Cox regression analyses were used to
screen out paramount RBPs (RPL10L, EZH2, PPARGC1A,
ZNF239, IFIT1) from the prognostic-associated RBPs. Subse-
quently, a prognostic model of RNA-binding proteins was
developed in accordance with the regression coefficients from
multivariate Cox regression analysis and the mRNA expression
status of the 5 RBPs. The Kaplan-Meier survival curves and time-
dependent ROC curve analyses revealed that this model
possessed superior performance in diagnosis and could screen
out the patients with poor prognosis. Besides, we verified the
stability and reliability of the model in the testing cohort, whole
TCGA-LIHC cohort, GSE14520 cohort and ICGC cohort. It was
shown by uni-and multivariate Cox regression assays that our
model, as well as pathological stage, could serve as independent
predictors of prognosis in HCC patients. Research has shown
that pathological stage could independently predict the prognosis
of liver cancer patients,[23] which is consistent with our results.
Further research found that our model predicted OS at 1-, 3-, and
5years in liver cancer patients more accurately than other clinical
parameters. We also found that risk factors (risk score and risk



Figure 6. Establishment of a nomogram for predicting overall survival for HCC patients. Nomogram combining risk score with pathological stage (A). Time-
dependent ROC analysis of the nomogram (B). The calibration plot for validation of the nomogram (C, D, E). Time-dependent ROC analysis appraises the accuracy
of the nomograms. The red, blue, green or yellow line represents the nomogram, the yellow line represents the nomogram constructed by age, gender, grade, stage
and risk score (F, G, H).
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gene) obtained in the model were closely related to the progress of
HCC, which, on the other hand, confirmed that our model had
good prediction performance. These findings suggest that our
prognostic risk model could reliably predict the OS of HCC
patients.
In the current study, among these 5 RBPs, EZH2, PPARGC1A

and IFIT1 have been reported to be essential to the progression
and prognosis of cancer. Song et al demonstrated increased levels
of H3K27me3 by overexpression of EZH2 and silenced the Wnt
signaling inhibitor expression, leading to initiation of Wnt/
b-Catenin signaling and subsequent induction of cell prolifera-
tion and tumor development.[24] Kido et al. conformed that
9

PPARGC1A was beneficial to the survival of individuals with
liver malignancies and had a negative correlation with the
expression of the testis specific protein Y.[25] Zhang et al
identified elevated expression of IFIT1 as a positive outcome
indicator of progression-free survival as well as the period of OS
in glioblastoma.[26] In our study, we found that PPARGC1A and
IFIT1 were favorable factors for prognosis of HCC, while EZH2
was a risk factor for prognosis of HCC, which indicated that they
had the prospect of becoming a new molecular target for liver
cancer treatment.
Numerous researches and clinical studies have confirmed the

significance of immune infiltration in solid neoplasms.[27] Wei
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Figure 7. Association of variables in the modelling with clinical attributes of patients in entire TCGA cohort. EZH2 expression and histological grade (A). EZH2
expression and pathological stage (B). IFIT1 expression and gender (C). IFIT1 expression and histological grade (D). IFIT1 expression and pathological stage (E).
PPARGC1A expression and histological grade (F). PPARGC1A expression and pathological stage (G). RPL10L expression and age (H). ZNF239 expression and
gender (I). ZNF239 expression and histological grade (J). Risk score and histological grade (K). Risk score and pathological stage (L).
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et al reported that sperm-associated antigen 5 was a marker of
adverse outcome, and its expression was positively associated
with the infiltration of neutrophils, CD8+ T cells, B cells,
dendritic and macrophages.[28] For the sake of evaluating
whether our model had an impact on immune cell infiltration
in HCC, we performed an analysis of the correlation between risk
score and exposure to immune infiltration levels. We found that
risk score had a positive correlation with B cell, CD4+ T cell, CD8
+ T cell, dendritic, macrophage and neutrophil, which also
indicated that our model had excellent predictive performance.
Recently, there are a lot of studies on the construction of

predictive models in HCC. For example, a 4-gene based
prognostic model (CENPA, SPP1, MAGEB6, and HOXD9)
with the area under the ROC curve of 0.767, 0.737, and 0.692 for
1-year, 3-year, and 5-year was established.[22] Besides, a 9-
mRNA signature (RGCC, CDH15, XRN2, RAB3IL1, THEM4,
PIF1,MANBA, FKTN, and GABARAPL) with the area under the
ROC curve of 0.781, 0.707, and 0.704 for 1-year, 3-year, and 5-
year was constructed.[29] In the present study, we developed a
reliable model with the area under the ROC curve for 1-, 3-, and
5-year was 0.793, 0.786, 0.767 to further improve the prediction
ability of the prediction model. Importantly, our model was
superior to previous models in predicting immune cell infiltration
10
and HCC progression. However, there are also some limitations
in our research. Firstly, the current research results rely on gene
mining methods and a prospective cohort study is required to
validate the results. Additionally, the potential mechanisms of
how the RBPs-associated gene affects the progression of liver
cancer needs further study.
5. Conclusions

We developed and validated 5 RBPs-related models for prognosis
to reliably predict OS in HCC patients. Scoring of risk prediction
facilitates the screening of patients at high risk of mortality,
thereby optimizing decision-making for individualized treatment.
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