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The generation of the B cell response upon vaccination is characterized by the induc-
tion of different functional and phenotypic subpopulations and is strongly dependent
on the vaccine formulation, including the adjuvant used. Here, we have profiled the
different B cell subsets elicited upon vaccination, using machine learning methods for
interpreting high-dimensional flow cytometry data sets. The B cell response elicited by
an adjuvanted vaccine formulation, compared to the antigen alone, was characterized
using two automated methods based on clustering (FlowSOM) and dimensional reduc-
tion (t-SNE) approaches. The clustering method identified, based on multiple marker
expression, different B cell populations, including plasmablasts, plasma cells, germinal
center B cells and their subsets, while this profiling was more difficult with t-SNE anal-
ysis. When undefined phenotypes were detected, their characterization could be
improved by integrating the t-SNE spatial visualization of cells with the FlowSOM
clusters. The frequency of some cellular subsets, in particular plasma cells, was signifi-
cantly higher in lymph nodes of mice primed with the adjuvanted formulation com-
pared to antigen alone. Thanks to this automatic data analysis it was possible to
identify, in an unbiased way, different B cell populations and also intermediate stages
of cell differentiation elicited by immunization, thus providing a signature of B cell
recall response that can be hardly obtained with the classical bidimensional gating
analysis. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of Inter-

national Society for Advancement of Cytometry.
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Born more than 50 years ago, as recently celebrated (1), flow cytometry is still one
of the leader technologies in immunology and cell biology. Multiple parameters of
cells mixed in heterogeneous samples can be quickly and simultaneously detected
during their flow in a stream through photonic detectors. The progress of the tech-
nology has led to the development of instruments capable of measuring more than
30 parameters on large number of cells, promoting the necessity of developing
advanced mathematical approaches for their analysis. Flow cytometric analysis of
cell subsets has traditionally been performed with “manual gating” based on the
measurement of two parameters visualized on bidimensional plots. This approach is
still one of the most used by flow cytometrists and allows the detection of multiple
populations among mixed cell samples but is inevitably biased by the operator
choices and limited in the discovery of yet undefined populations. Indeed, when
many parameters are investigated, is not feasible to visualize all the possible
bidimensional combinations of marker expression, and only a subjective gating
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strategy can be followed. Moreover, the coexpression of more
than two markers on the surface of the same cells can be
obtained only by the Boolean approach, but the graphical out-
put is not easy and the number of all possible combinations
exponentially increases with the increase of parameters. High-
throughput flow cytometry leads to the paradox that we rou-
tinely generate more data than the amount that we are able to
fully analyze and interpret, thus losing many of the acquired
information. This leads to the need of novel bioinformatics
tools capable of clustering cells on the base of their simulta-
neous marker expression in an unbiased way (2).

Flow cytometric data analysis includes data preprocessing,
data exploration, visualization of results, and statistical tests.
The two most used approaches to explore and visualize such
kind of data are dimensionality reduction and unsupervised
clustering. The first one allows to display high-dimensional data
in a lower-dimensional space, using two or three surrogate
dimensions where each cell is represented as a dot. Frequently
used tools in flow cytometry are based on t-distributed stochas-
tic neighbor embedding algorithm (t-SNE) (3), such as vi-SNE
(4), ACCENSE (5), or Rtsne (the version available as R pack-
age), which aims to find a lower-dimensional projection that
strongly preserves the similarity in the original, high-
dimensional space (6). t-SNE method has been shown to work
very well with flow cytometric data, enabling to dissect different
cell types within heterogeneous samples, and to compare simi-
larities between different samples (4).

Algorithms based on an unsupervised clustering
approach stratify cells with similar marker profiles in clusters,
which can subsequently be interpreted as cell populations.
These clustering packages include tools such as FlowMeans
(7), flowClust (8), and FlowSOM (9). FlowSOM is considered
one of the best high-performance algorithms in automated
identification of cell subsets showing an extremely fast
runtime (10). It has also been used for characterizing both the
cell phenotype and the cellular functionality, such as the
simultaneous production of intracellular cytokine and degran-
ulation (11–14). The FlowSOM algorithm is based on a self-
organizing map (SOM), where similar cells are assigned to
the same node. In order to reduce the final number of clus-
ters, the nodes of the SOM are usually grouped into
metaclusters with a hierarchical clustering algorithm, as the
one implemented in ConsensusClusterPlus package (15). The
metaclustering process groups together nodes with similar
markers expression, thus increasing performance in popula-
tion identification (10).

Deep analysis of both T and B responses after vaccination
can be obtained with multiparametric flow cytometry, measur-
ing the frequency, the phenotype, and the functional features
of antigen-specific cells (16–22). The dissection of the mecha-
nisms of immune memory generation and reactivation upon
antigen/pathogen encounter is fundamental for understanding
the processes that drive protective immune responses (23–25).
Nevertheless, the spatial and temporal profiling of B cell
response dynamics is complex as different organs are involved
in the course of the immune response. Moreover, activation of
B cells leads to the generation of subtypes of cells with different

functions, such as plasmablasts, short-or long-lived plasma cells
(PCs), memory cells (26). The presence of the adjuvant, espe-
cially in the primary immunization, allows to enhance and
modulate the immune responses to vaccination (13,27,28) and
ensures the induction of long-lived immunological memory
necessary for protection (29).

Here we performed an automated analysis of multi-
parametric flow cytometric data using two machine learning
methods, one based on clustering (FlowSOM) and the other
on dimensional reduction (t-SNE), to automatically profile all
the possible B cell subsets elicited by vaccination. The auto-
mated methods used allow to characterize the B cell subtypes
in un unbiased way, defining different phenotypes on the basis
of the simultaneous expression of multiple surface markers.
The chimeric antigen H56, a promising vaccine candidate
against Mycobacterium tuberculosis (30) was used as model
vaccine antigen, and administered by the parenteral route alone
or combined with the CAF01 adjuvant, a liposome system
capable to elicit both humoral and cellular responses (18,31).
Boosting was performed with a lower dose of antigen alone,
according to an immunization schedule already tested (13).
The analysis was aimed to identify, in an automated and unbi-
ased way, different B cell subtypes elicited by booster immuni-
zation and determine their frequency among mice primed with
or without the adjuvant component.

MATERIALS AND METHODS

Mice
Seven-week-old female C57BL/6 mice, purchased from
Charles River (Lecco, Italy) were housed under specific
pathogen-free conditions in the animal facility of the Labora-
tory of Molecular Microbiology and Biotechnology (LA.M.M.
B.), Department of Medical Biotechnologies at University of
Siena. This study was carried out in accordance with national
guidelines (Decreto Legislativo 26/2014). The protocol was
approved by the Italian Ministry of Health (authorization n�

1004/2015-PR, 22 September 2015).

Immunizations and Cell Preparation
Groups of eight mice were immunized by the subcutaneous
route at the base of the tail, with the chimeric tuberculosis
vaccine antigen H56 (2 μg/mouse; Statens Serum Institut,
Denmark), alone or combined with the adjuvant CAF01
(250 μg dimethyldioctadecylammonium [DDA] and 50 μg
trehalosedibehenate [TDB]/mouse; Statens Serum Institut,
Denmark), and boosted with a lower dose of H56 antigen
(0.5 μg/mouse). Draining lymph nodes (sub iliac, medial, and
external) were collected five days after booster immunization.
Samples were mashed onto 70 μm nylon screens (Sefar Italia,
Italy) and washed two times in RPMI medium (Lonza, Bel-
gium) supplemented with 100 U/ml penicillin/streptomycin
and 10% fetal bovine serum (GIBCO, USA).

Flow Cytometric Staining
Samples were incubated for 30 min at 4�C in Fc-blocking solu-
tion (complete medium with 5 μg/ml of CD16/CD32 mAb
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[clone 93; eBioscience, CA]). Cells were washed and surface
stained with optimal dilutions of BUV395-conjugated anti-
CD3 (clone 145-2C11), BUV737-conjugated anti-CD19
(clone1D3), BV510-conjugated anti-IgD (11-26c.2a),
AF700-conjugated anti-CD45R (B220, clone RA3-6B2), FITC-
conjugated anti-GL7 (clone GL-7), PE-Cy7-conjugated anti-
CD95 (clone Jo2), BV421-conjugated anti-TACI (clone 8F10),
PE-conjugated anti-CD138 (clone 281-2), BB700-conjugated
anti-CD38 (clone 90/CD38), BV650-conjugated anti-IgM
(clone II/41), BV605-conjugated anti-IgG1 (clone A85-1), PE-
CF594-conjugated anti-CXCR4 (clone 2B11/CXCR4), and
AF647-conjugated anti-CD73 (cloneTY/239), all from BD Bio-
sciences. Nonviable cells were excluded from the analysis with
the LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit,
according to the manufacturer instruction (Invitrogen, USA)
and single cells were discriminated using scatter area (SSC-A)
versus scatter width (SSC-W) parameters. Antibody optimal
dilution was assessed with the Staining Index formula [(MFI
positive - MFI negative)/2 x rSD]. Fluorescence-minus-one
controls were used to detect the background fluorescence for
each fluorochrome. About 7 × 105 cells were stored for each
sample and acquired on LSRFortessa X20 flow cytometer
(BD Biosciences).

Data Preprocessing
The B cell population analyzed in our data set was gated on
live, singlet, CD3−, IgD−, CD19+ lymphocytes using FlowJo
v10 (TreeStar, USA). The analysis was then carried on using
R (v3.5.2) platform, an open-source software environment for
statistical analysis, computation, and visualization. Flow cyto-
metry standard (FCS) files were exported as uncompensated
data in R environment as a single flowSet object (list of FCS),
that was then compensated with FlowCore package v1.48.1
(32) and logicle transformed (33) using the estimateLogicle
function for automatic parameters selection for each fluores-
cence marker. Events out of 0.1–99.9 percentile range of each
marker were considered as outlier and removed. As each
marker has a different fluorescence expression range, that
could differently contribute to the analysis (34), a scaling fac-
tor, calculated to normalize marker expression, was defined
for each marker as μ/(Max-Min) where μ is the average of all
marker expression ranges and Max-Min is the expression
range for each single marker.

FlowSOM
Clustering analysis of flowSet was performed following the
FlowSOM function pipeline (package v1.14.1). Grid size of
10 × 10 was selected as optimal for the identification of rare
subpopulations. Scaling factors defined in preprocessing were
imported in FlowSOM function as “importance” parameter.
Similar nodes were merged together (metaclustering step) set-
ting number of metaclusters = 15. The Euclidean distance
was used in both the FlowSOM clustering and metaclustering.
Thresholds to bisect positive and negative cells for each
marker expression were automatically set with flowDensity
package. Two thresholds were set for CD38 marker, in order
to separate negative from intermediate cells, and intermediate

from very bright cells. FlowSOM results were displayed as an
heatmap reporting the percentage of positive cells for each
marker within the metacluster.

RTSNE

t-Distributed Stochastic Neighbor Embedding was performed
with Rtsne package v0.15. Data from each FCS were
concatenated in a single matrix object and multiplied by the
scaling factors defined in preprocessing. Rtsne function was
run setting perplexity = 30, selected as optimal value in a
range between 5 and 50 (Supporting Information Fig. S1) (3).

Statistical Analysis
Mann–Whitney test was used for assessing statistical differ-
ence between groups of mice receiving priming with antigen
alone or antigen with adjuvant. P-values were corrected for
multiple test with Benjamini-Hochberg False Discovery Rate
(35). Statistical significance was defined as adjusted P-value
(FDR) < 0.05. Validation for the FlowSOM and Mann–
Whitney U test was performed with bootstrapping (36). ith

bootstrap sample was generated randomly sorting 250 cells
(with replacement) from ith sample. Sample variability was
taken in account employing the method of leaving one mice
out from the bootstrapping analysis. The process was
repeated 1,000 times and only metaclusters that were signifi-
cant (FDR < 0.05) in >50% of times were discussed. Hungar-
ian method (37) was used to match FlowSOM metaclusters
with metaclusters identified in each bootstrap iteration. A dis-
tance matrix, reporting one clustering by row and the other
one by columns, was calculated so that each element in the
matrix represents the sum of the cells in both clusters sub-
tracted by twice the cells detected in the intersection of the
two clusters. The value = 0 indicated the maximum corre-
spondence between the two analyzed clusters (since means
that all elements are in the intersection), while the higher the
value the more different were the two clusters. The
“solve_LSAP” function from clue package was used to identify
the optimal assignment of rows to columns with minimum
cost (setting argument maximum = FALSE).

RESULTS

FlowSOM and t-SNE were used as tools for the identification
of B cell subsets in multiparametric data sets derived from
cells isolated from draining lymph nodes of mice primed with
adjuvanted or non-adjuvanted vaccine and boosted with anti-
gen alone (Fig. 1). Multidimensional analysis of B cells was
based on the expression of B220 (pan-B cell marker in the
mouse) (38), CD38 (highly expressed on mature and memory
B cells, while it is reduced to an intermediate expression in
germinal center B cells) (39), GL7 and CD95 (coexpressed by
B cells involved in the GC reaction) (27), CD73 (memory B
cells) (40), IgG1 and IgM (B cell receptors (BCR) in switched
or unswitched B cells, respectively) (41), TACI and CD138
(coexpressed by terminally differentiated PCs) (42) and
CXCR4 (chemokine receptor involved in long-lived PCs hom-
ing into bone marrow niches) (43). The flow of the process
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(Fig. 1) was based on an initial manual gating strategy per-
formed with FlowJo for excluding non-viable cells, doublets,
T lymphocytes, and a large part of naïve B cells (IgD+) and
selecting CD19+ B cells (Fig. 1). After a data preprocessing
step, including compensation and logicle transformation, the
analysis of B cell subsets was performed with the automated
tools FlowSOM and t-SNE, capable of simultaneously consid-
ering the expression of all markers on single cells to identify
distinct phenotypic subsets. The data-driven analysis allowed
the identification of B cell subtypes elicited in response to
immunization with adjuvanted versus nonadjuvanted vaccine
formulations (Fig. 1).

Automatic B Cell Subset Identification with FlowSOM
CD19+ B cells identified in each single FCS file were merged
into a single flowSet object that was imported in R environment.
In this way, it was possible to visualize the data of the two
groups of mice in the same plot. Fluorescent signals were com-
pensated and transformed with logicle transformation. The data
set was analyzed with a clustering approach, aiming to automati-
cally identify clusters of similar cells. FlowSOM uses an algo-
rithm based on a SOM built assigning similar cells to nodes (9).
In a second optional step, similar nodes are metaclustered
together with a hierarchical process (15). The metaclustering
step facilitates the interpretation of the results, as the high

Figure 1. Experimental design and workflow of data analysis. C57BL/6 mice were subcutaneously primed with antigen alone (Ag) or

combined with the CAF01 adjuvant (Ag + Adj) and boosted with antigen alone 28 days later. Draining lymph nodes (sub iliac, medial, and

external) were collected five days after booster immunization. Cells collected were stained with antibodies in order to identify different B

cells subsets, and analyzed with flow cytometry. B cells were sequentially gated as lymphocytes live single CD3− IgD− CD19dim/high cells in

FlowJo v10 as shown in dot-plots. Gated B cells were exported in R environment as uncompensated flowSet, an R object that includes all

FCS files. In the preprocessing step, data were compensated, logicle transformed, and scaled. The flowSet was analyzed with both

clustering algorithm (FlowSOM) and dimensionality reduction (t-SNE) in order to identify, on the basis of surface markers expression,

different B cell subsets induced by vaccination. [Color figure can be viewed at wileyonlinelibrary.com]
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number of nodes in the SOM cannot be easily associated with
different cell populations. In order to ensure the identification of
all the relevant cell subpopulations, the number of metaclusters
was set at 15, a value that exceeds the expected cell subtypes (6).
The FlowSOM analysis, reported as SOM grid or minimum
spanning tree, in which each node was represented by a star
chart with all parameters inside and different B cell subsets were
displayed as colored metaclusters, is shown in Supporting Infor-
mation Figure S2. However, as the visualization of our data set
appeared unclear due to the high number of parameters, we
adopted an heatmap in which each metacluster was reported as
a row and surface markers as columns, and the percentages of
cells positive for each marker inside the cluster was visualized as
color-scale from blue (0% of positive cells) to red (100%)
(Fig. 2A). Positive and negative cells were defined using the
threshold estimated with FlowDensity package. As the expres-
sion of CD38 through different B cells subtypes varies from
intermediate to very high levels (39) cells were classified as
bright (CD38high) and intermediate (CD38dim) subpopulations
(Fig. 2A).

Different stages of plasmablasts were identified in
metaclusters 9, 1, 2, 3, and 8 in which cells were still
CD38high, frequently B220+ and BCR+, and showed already

the upregulation of TACI but not yet of CD138, two markers
indicative of terminally differentiated PCs (Fig. 2A). PCs were
identified into metaclusters 5 and 7 according to the
coexpression of CD138 and TACI, and the loss of B220. Cells
of metacluster 7 lost the sIg expression and showed an inter-
mediate expression of CD38, suggesting a more advanced ter-
minal differentiation to PCs compared to metacluster 5. Both
metaclusters also expressed high levels of CXCR4 (Fig. 2A).
Metaclusters 15 and 12 represented possible stages of differ-
entiating cells, that have already downregulated B220 and
CD38, expressed TACI and CD95, with CXCR4 (metacluster
15) or IgG1 (metacluser 12).

GC B cells, defined as CD95+ GL-7+ B220+ (metaclusters
14, 11, 6, 10, and 13) were subdivided into five different sub-
sets. In some cases cells expressed CD38dim (metaclusters
11, 14, and 6), but differed for the surface expression of immu-
noglobulins (Ig), as they were IgG1+ (metacluster 14), IgM+

(metacluster 6) or surface Ig (sIg) negative (metacluster 11).
Most of cells in metaclusters 11 and 14 expressed also
the memory marker CD73. Differently, many cells into
metaclusters 10 and 13 were CD38high, TACI+ and IgG1+

(metacluster 13) (Fig. 2A). The different subsets identified, dif-
fering for chemokine receptor and BCR expression, can be

Figure 2. FlowSOM analysis and metacluster frequency in mice immunized with adjuvanted or non-adjuvanted vaccines. (A) Fifteen

metaclusters from FlowSOM analysis were visualized as heatmap. Each row represents a different metacluster, while columns represent

analyzed markers. The percentage of cells expressing a marker within a metacluster is reported and visualized with a color scale from

blue (0%) to red (100%). B cell populations were indicated on the left (PCs, plasma cells; TBD, to be defined; GC, germinal center). (B) Box
and whiskers plots showing the percentage of metaclusters in mice primed with antigen alone (Ag) or antigen and adjuvant (Ag + Adj).

Values from individual animals were reported as circles. Mann–Whitney test corrected for multiple test (Benjamini-Hochberg method) was

used for assessing statistical differences between groups (*FDR < 0.05 or **FDR < 0.01). Only metaclusters that were significant

(FDR < 0.05) in >50% of bootstrapping analysis were shown as significant. [Color figure can be viewed at wileyonlinelibrary.com]
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indicative of the dynamic processes taking place inside the ger-
minal center, that involves cells in the stage of centroblasts or
centrocytes. Finally, more undifferentiated cells were included
in metacluster 4, in which cells still expressed B220, CD38high,
and IgM (in more than 68% of cells), a profile typical of
mature naïve B cells (Fig. 2A).

Modulation of the Reactivated B Cell Subtypes
According to the Vaccine Formulation
In order to analyze the distribution of B cell populations in
mice primed with or without the adjuvant component, the
frequencies of metaclusters shown in the heatmap (Fig. 2A)
were visualized as boxplots (Fig. 2B). This analysis was
obtained extracting the frequencies of identified metaclusters
from FCS file of individual animals. Mice primed with
adjuvanted formulation showed a significant higher percent-
age of terminally differentiated PCs grouped in metacluster
7 (23.7% versus 0.4% median frequency in mice immunized
with antigen alone; FDR < 0.01), and reactivated B cells of
metacluster 12 (1.5% versus 0.3%; FDR < 0.05). The stronger
reactivation of B cells in mice immunized with adjuvanted
vaccine formulation was also confirmed by the significant
lower frequency of mature naïve IgM+ B cells detected in
metacluster 4 compared to mice primed with antigen alone
(5.5% versus 21.4% in antigen alone group FDR < 0.01).
Metaclusters 4 and 7 were confirmed in 100% of boo-
tstrapping resampling, while metacluster 12 was significant in
60% of repetitions. Bootstrapping resampling was performed
by leaving one mouse out from the data set in order to take
into account the sample variability.

Automated B Cell Subset Identification with t-SNE
The other automated method commonly used for multi-
parametric flow cytometry data analysis is the dimensional
reduction approach, that allows to display high-dimensional
data in a lower-dimensional space, using two or three surrogate
dimensions. Our data set was analyzed with the t-SNE algo-
rithm, that grouped cells in distinct areas with continent-like
structure, in which the expression of each parameter was visu-
alized with color code from dark blue (lowest expression) to
dark red (highest expression) (Fig. 3). The spatial distribution
of different subsets allowed to identify PCs and GC B cells
(Fig. 3). PCs were grouped in the upper right region of the plot
as B220− CD138+ TACI+. Some of these cells were also positive
for CXCR4 (Fig. 3). GC B cells, localized in the upper left side
of the graph, were identified as B220+ GL7+ CD95+ CD38dim

(Fig. 3). Many of these cells were also positive for the memory
marker CD73, and IgG1 (Fig. 3). Naïve B cells, representing
the central region of the plot, expressed B220, high level of
CD38 and partially IgM (Fig. 3). Overall, the t-SNE visualiza-
tion gave a good overview of each marker distribution in
dimension-reduced data space, but it was complex to delineate
the coexpression of multiple markers on the identified cell sub-
populations. Moreover, the exact quantification of the subpop-
ulations identified with t-SNE in the different groups, as
performed with FlowSOM metaclusters (Fig. 2B), can be
obtained only after a subsequent step of automated clustering

(for example with the DBSCAN algorithm of ACCENSE (5))
or manual gating with FlowJo. Nevertheless, gating on the t-
SNE map followed by phenotypic analysis can lead to over-
fragmentation of immunophenotypes that complicates, rather
than simplifies, multidimensional data analysis (44).

In order to evaluate if the two methods defined the same
type of cellular subsets, cells were shown in the t-SNE
dimensionally reduced space colored according to FlowSOM

Figure 3. Surface markers distribution in t-SNE dimensional

reduced space. Cells were visualized in a dimensionally reduced

space grouped by their immunophenotype similarities. Relative

antigen expression was visualized by the color tone (from blue to

red). Gray lines surrounded PCs (CD138+ TACI+) in upper right

region and GC B cells (GL7+ CD95+) in left side of t-SNE map.

[Color figure can be viewed at wileyonlinelibrary.com]
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metaclusters (Fig. 4). The metaclustered cells were uniformly
arranged into the distinct t-SNE areas with a strong agree-
ment of markers expression, as shown for example by the
localization of PCs identified into metacluster 7, that cor-
responded to the t-SNE region positive for CD138 and TACI
markers (Fig. 4).

As t-SNE preserves the local structure so that points that
are close to one another in the high-dimensional data set will
tend to be close to one another also in the dimensionally
reduced space, the localization of metaclusters 12 and 15 pro-
vided additional information on these cells that showed a less
defined phenotype. Metacluster 15 was localized next to ter-
minally differentiated PCs of metacluster 7 suggesting a possi-
ble transient stage of cell differentiation toward this subtype
of cells, while cells of metacluster 12 were close to
metaclusters 9 and 13. The integration of the two methods on
a single graph, roughly provides also information on the rela-
tive abundance of the identified metaclusters within the ana-
lyzed sample (Fig. 4).

DISCUSSION

In this study we employed automated computational tools for
data-driven analysis of cells elicited by vaccination with an
adjuvanted vaccine formulation compared to antigen alone.
Computational analysis of multiparametric flow cytometric
data performed employing clustering approach (FlowSOM)
allowed to group B cells into different subsets on the basis of
their marker expression, thus identifying phenotypes other-
wise difficult to detect with the classical bidimensional gating.
The analysis provided also a signature of B cell recall response
specific for the vaccine formulation used. The dimensionality
reduction (t-SNE) tool was less efficient in defining cell sub-
sets that differed for only one or two markers, therefore the
identification of intermediate stage of differentiating cells and
the evaluation of multiple markers coexpression on the iden-
tified cell subpopulations were complex. Nevertheless, the

integration of the t-SNE spatial visualization of cells with the
FlowSOM clusters could help in characterizing less defined
phenotypes.

The FlowSOM approach clusters cellular subsets on the
basis of multiple markers coexpression, but due to the high
number of markers included in the staining, it is not straight-
forward the visualization of data inside the nodes. To over-
come this limitation, we changed the FlowSOM cluster
visualization from a grid to an heatmap, in which the per-
centage of positive cells, calculated respect to an automatically
set threshold value, was reported giving the possibility to bet-
ter identify the phenotype of clustered cells. Nevertheless,
with this type of data analysis, the information on the fluores-
cence intensity, that is, the amount of marker expression on
the cell surface, is lost. This can be a limit for markers, such
as the CD38 molecule, that can be negatively, intermediately,
or very brightly expressed according to the cell subtype. For
this reason, we considered two different thresholds for the
CD38 expression, one that distinguished negative from inter-
mediate and another separating intermediate from high
expressing cells. The analysis confirmed that the intermediate
and bright expression of CD38 correlated with different cell
subsets.

The number of clusters to be included into the FlowSOM
analysis is a very important choice, as a high number could
lead to a better purity but also to the fragmentation of results
in too many groups (9). We used the FlowSOM default set-
ting to determine the number of nodes, while we increased
the metacluster number to 15, a relatively high value that
exceeds the expected cell subtypes. This value allowed the
identification of particular subsets of cell (such as IgM+ plas-
macells, centrocytes within the germinal center B cells and
subsets of plasmablasts) that would be missed with a lower
number of metaclusters.

The t-SNE analysis returned a good visualization of each
marker distribution in the dimension-reduced data space at
single cell level, but the analysis of the coexpression of two
and more markers on the identified grouped cells was diffi-
cult. t-SNE analysis results therefore highly and rapidly infor-
mative in heterogeneous samples in which different cell types
are well separated in the dimensionally reduced data space,
but it is less efficacious in separating cell subtypes, in which
many parameters are coexpressed on the same cells.

Our data set included not only terminally differentiated
cells, but also transient stages of differentiation, that can be
identified with automatic data analysis while are hardly iden-
tified with the classical bidimensional gating analysis. Indeed,
computational tools were able to further subdivide these B
cell populations based on the expression of additional cell
markers, thus providing important information on activation
and developmental state of B cells in different immunization
conditions.

Upon the second contact with antigen, reactivated mem-
ory B cells differentiate into proliferating plasmablasts from
which can originate both terminally differentiated antibody-
secreting PCs, mainly found in the extrafollicular areas of sec-
ondary lymphoid tissues, and memory-GC reactivating cells,

Figure 4. FlowSOM clusters in t-SNE dimensional reduced space.

The analysis outputs obtained with the two computational tools

were overlaid, and cells displayed as single point in t-SNE map

were colored according to FlowSOM metaclusters labeled from

1 to 15. [Color figure can be viewed at wileyonlinelibrary.com]
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which can then give rise to further memory B cells and long-
lived PC with improved antigen-affinity (24). These two arms
of the B cell response—the extrafollicular short-lived PC, with
the rapid antibody secretion, and the GC reaction with the
production of memory cells and long-lived PCs as terminal
fates—are the main effector cells. The differentiation of B cells
into plasmablasts and PCs (collectively termed antibody-
secreting cells [ASCs]) is essential for the production of the
protective antibodies (45), therefore their measurements can
provide data to inform the induction of humoral response
upon vaccination.

Plasmablasts, indicating proliferating cells were identified
in Metaclusters 9, 1, and 2. This subset of cells still expressed
the BCR and B220, together with TACI, while CD138 was
not yet expressed. Also cells of Metaclusters 1 and 8 were
included into the plasmablast population, as they still
expressed high levels of CD38 (46). Terminally differentiated
PCs, generally identified as B220− CD138+ TACI+ cells, were
included into metaclusters 5 and 7 according to the
coexpression of CD138 and TACI. Cells of metacluster 7 lost
the sIg expression and showed an intermediate expression of
CD38, suggesting a more advanced terminal differentiation to
PCs compared to metacluster 5. They also expressed high
levels of CXCR4, a receptor required intrinsically within PCs
for homing into the bone marrow (42), thus suggesting a pos-
sible phenotype of long-lived PC. These cells were signifi-
cantly higher in mice immunized with the CAF01-adjuvanted
vaccine compared to the group primed with the antigen
alone. Metaclusters 12 and 15 could represent transient
stages, not clearly identifiable. The integration of the
FlowSOM metaclusters into the t-SNE map suggests that cells
from metacluster 12 could be a subset of reactivated
plasmablasts while cells in metacluster 15 could include cells
committed to a PC fate yet, as in the t-SNE map they were
localized next to terminally differentiated PCs.

Within B220+ GL7+ CD95+ GC B cells were indeed iden-
tified five different subgroups, that differently expressed the
chemokine receptor CXCR4, the surface BCR, the memory
CD73 marker and the CD38 (metaclusters 6, 10, 11, 13, and
14). The GC follicle is polarized into a so-called dark zone of
rapidly dividing centroblasts processing antibody maturation
and a “light zone” of small non-dividing centrocytes that
undergo selection based on the affinity of their surface anti-
body (47). In mice, proliferating centroblasts in the dark zone
express the CXCR4 receptor (48). The expression of CXCR4
was observed in more than 71% of metacluster 11 cells, and
correlated with the absence of sIg (IgG1− IgM−), the presence
of the CD73 memory marker and the intermediate expression
of CD38, suggesting the identification of centroblasts B cells.
More than 40% of cells grouped in metaclusters 6 and 14 were
also CXCR4 positive, and they mutually expressed IgM
(metacluster 6) or the switched IgG (metacluster 14). Possibly,
these cells were trafficking between the dark and the light
zone of the GC, where the B cells re-express the BCR on their
surface.

Recent insights into B-cell memory development pointed
to two pathways of memory cell formation, in which CD38+

GL7+ precursors were identified as source of both GC-
independent and GC-dependent memory B cells. These pre-
cursors were capable of differentiating directly into memory
B cells, mainly of the IgM+ variety, without passing through a
GC cell intermediate stage, or alternatively into GC B cells,
some of which then became memory B cells (49). A good
candidate to mark GC-derived but not GC-independent
memory B cells was the surface marker CD73, a nucleotidase
that plays a key role in Ig class switch recombination (50).
Based on these suggestions, we can speculate that
metaclusters 11 and 14 are compatible with GC-dependent
memory B cells (B220+ CD38dim CD73+ IgM− GL7+ CD95+)
while cells in metacluster 6 could be part of an extra-follicular
differentiation pathway (B220+ CD38dim CD73− IgM+ GL7+

CD95+). Finally, undifferentiated cells (B220+ CD38high and
mostly IgM+) were grouped in metacluster 4, and were signif-
icantly higher in mice immunized with antigen alone.

The automated analysis of our data set allowed to iden-
tify in an unbiased way cellular phenotypes, that included not
only terminally differentiated cells but also transient stages of
differentiation, providing important information on activation
and developmental state of B cells in different immunization
conditions. The assessment of the frequency, phenotype, and
function of lymphocytes represents a powerful tool in the
characterization of the vaccine immune response in addition
to the classical measures of humoral immunity.
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