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Abstract: Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor-α
progesterone receptor and human epidermal growth factor receptor-2. Treatment for this breast
cancer subtype is restricted to multidrug chemotherapy and survival pathway-based molecularly
targeted therapy. The long-term treatment options are associated with systemic toxicity, spontaneous
and/or acquired tumor resistance and the emergence a of drug-resistant stem cell population. These
limitations lead to advanced stage metastatic cancer. Current emphasis is on research directions that
identify efficacious, naturally occurring agents representing an unmet need for testable therapeutic
alternatives for therapy resistant breast cancer. Chinese herbs are widely used in traditional Chinese
medicine in women for estrogen related health issues and also for integrative support for cancer
treatment. This review discusses published evidence on a TNBC model for growth inhibitory effects
of several mechanistically distinct nontoxic Chinese herbs, most of them nutritional in nature, and
identifies susceptible pathways and potential molecular targets for their efficacy. Documented
anti-proliferative and pro-apoptotic effects of these herbs are associated with downregulation of
RB, RAS, PI3K, and AKT signaling, modulation of Bcl-2/BAX protein expressions and increased
caspase activity. This review provides a proof of concept for Chinese herbs as testable alternatives for
prevention/therapy of TNBC.

Keywords: breast cancer; growth inhibition; Chinese herbs

1. Introduction

Progression of breast cancer to advanced stage metastatic disease represents a major
cause of mortality in women. The American Cancer Society projects the incidence of newly
diagnosed female breast cancer as 281,550 and cancer related deaths as 43,600 in 2022 [1].
Amongst the molecular subtypes of breast cancer, the triple-negative breast cancer (TNBC)
represents an aggressive subtype that is diagnosed in about 20% of the new breast cancer
cases [2]. TNBC lacks the expressions of estrogen receptor-α (ER-α), progesterone receptor
(PR) and of amplified human epidermal growth factor recptor-2 (HER-2), and is at high
risk for developing chemo-resistance and distant metastasis [3]. At the molecular levels
TNBC exhibits aberrant signaling of the tumor suppressor RB gene, and activation of rat
sarcoma (RAS), phosphoinositide 3 kinase (PI3K) and protein kinase B (AKT) signaling
pathways that facilitate hyper-proliferation, increased migration/invasion and subsequent
survival of cancer cells [4].

Conventional chemotherapy includes treatment with cytotoxic agents such as an-
thracyclins, cisplatins and taxols, endocrine therapy includes treatment with selective
estrogen receptor modulators such as tamoxifen and raloxifene, treatment with selective
estrogen receptor disruptors such as fulvestrant, treatment with aromatase inhibitors such
as letrozol and exemestane, and HER-2 targeted therapy includes treatment with small
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molecule inhibitors such as lapatinib and neratinib. These options represent treatments
of choice for the hormone responsive Luminal A and Luminal B subtypes. In contrast,
because of lack of expressions of hormone and growth factor receptors, TNBC does not
respond to the aforementioned options. The treatment of choice for this subtype includes
multi-drug chemotherapy containing anthracyclins, taxols and cisplatin, or small molecule
inhibitor-based RAS, PI3K, AKT and mammalian target of rapamycin (mTOR) pathway
selective targeted therapy [5].

The long-term treatment options for molecular subtypes of breast cancer including
TNBC are frequently associated with systemic toxicity, spontaneous or acquired tumor
resistance and emergence of a therapy resistant cancer stem cell population, all of which
favor progression of therapy resistant disease [6]. These limitations of long-term therapeutic
options emphasize investigations that focus on identification of efficacious non-toxic agents
that display distinct specificity and selectivity for cancer cells. Such promising agents may
represent testable alternatives for therapy resistant breast cancer.

Several pharmacological agents that function via distinct mechanism of action have
documented preventive efficacy in preclinical models of breast cancer [7]. These agents at
their respective therapeutic doses exhibit dose limiting systemic toxicity and adverse side
effects. In contrast, dietary phytochemicals present in vegetables and fruits are unlikely
to possess adverse systemic toxicity [8], and therefore, may represent testable alternatives
against chemo-endocrine therapy. Growth inhibitory effects of naturally-occurring bioac-
tive agents such as polyphenols, flavones, phytoalexins, terpenes, coumarins and saponins,
as well as those of vitamins and micro-nutrients have been documented [9,10].

A number of herbs commonly used in traditional Chinese medicine have exhibited
anti-proliferative and pro-apoptotic effects in a cellular model for the Luminal A breast can-
cer subtype [11–13] and also in a model for the triple-negative breast cancer subtype [14–16].
At the mechanistic levels, the anti-proliferative effects of the herbs are associated with
inhibition of cell cycle progression, and modulated expression of cell cycle regulatory
proteins functioning at G1 and/or G2 phases of the cell cycle. The pro-apoptotic effects of
the herbs are associated with upregulation of apoptotic cell population at the sub G0 phase
of the cell cycle, modulation of the expressions of apoptotic proteins Bcl-2 and BAX and
induction of pro-apoptotic caspase activity, the latter representing a specific marker of the
intrinsic apoptotic process.

Chinese herbs, many of them nutritional in nature, have been traditionally used for
the management of general health concerns and also for women’s estrogen health issues,
including breast diseases. These herbs lack clinical systemic toxicity, and because of their
nontoxic nature and documented human use [17–20], may represent testable alternatives
for secondary prevention/therapy of TNBC.

The present review provides an overview of conventional and targeted chemo-endocrine
therapy and their limitations, and effective dietary phytochemicals and Chinese nutritional
herbs and their advantages over chemotherapy. In addition, this review discusses the
evidence for validation of an experimental approach using a cellular model for TNBC to
evaluate the growth inhibitory efficacy of Chinese herbs. The experiments are focused on
(i) the development and characterization of a cellular model for TNBC, (ii) the screening of
Chinese herbs for their growth inhibitory efficacy and (iii) identifying potential mechanistic
leads. These research directions have provided mechanistic leads to suggest that Chi-
nese herbs may represent nontoxic testable alternatives for secondary prevention/therapy
of TNBC.

2. Experimental Model

The human breast carcinoma derived MDA-MB-231 cells lack the expressions of ERα,
PR and amplified HER-2 [21,22]. This cell line represents a preclinical cellular model for
the TNBC subtype of clinical breast cancer.

To examine specific growth characteristics of the TNBC model, comparative experi-
ments were performed to monitor the status of proliferative end points in the tumorigenic
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triple- negative MDA-MB-231 cells and the non-tumorigenic triple negative 184-B5 cells
and the data as summarized from [14–23] demonstrate that relative to the non-tumorigenic
cells, the tumorigenic cells exhibit a decrease in the population doubling time, and in the
ratio between quiescent and proliferative cells, while saturation density exhibits an increase
in favor of the tumorigenic cells. Anchorage independent (AI) growth represents a specific
and sensitive in vitro marker for in vivo tumor growth. The data on AI colony number
as summarized from [14–23], also exhibit a substantial increase in the tumorigenic cells
(Table 1).

Table 1. Hyper-proliferation in the TNBC model.

Proliferation End Point
Cellular Model

p-Value Relative to 184-B5
184-B5 MDA-MB-231

PDT (h) a 34.1 ± 1.7 15.0 ± 2.2 0.040 −56.0%

Sat. Den. (×105) b 23.7 ± 1.3 32.9 ± 2.3 0.048 +38.8%

G1: S + G2/M c 1.8 ± 0.3 0.6 ± 0.3 0.030 −66.7%

AI Colony Number d 1.2 ± 1.0 750.0 ± 76.0 <0.001 +624×
a determined from the exponential growth phase at day four after seeding of 1.0 × 105 cells. b determined as
viable cell number at day seven after seeding of 1.0 × 105 cells. c determined from cell cycle analysis at day
four after seeding. Data expressed as mean ± SD, n = 3 per treatment group and analyzed by Student t test.
d determined at day 21 after seeding of 0.5 × 106 cells by AI growth assay. Data expressed as mean ± SD, n = 3
per treatment group and analyzed by Student t test. PDT, population doubling time; Sat. Den., saturation density;
AI, anchorage independent; SD, standard deviation. Data summarized from [14–23].

These data provide evidence that the hyper-proliferative tumorigenic cells maintain a
persistent risk of developing cancer.

2.1. Mechanistic Assays

The mechanistic assays have utilized optimized and published protocols for cell
viability measuring viable cell number, AI colony formation measuring AI colony number,
cell cycle progression measuring the cell population in G1, S and G2/M phases of the
cell cycle, cellular apoptosis measuring the cell population in the sub G0 phase of the
cell cycle, and pro-apoptotic caspase 3/7 activity measuring relative luminescent units
(RLU). In addition, the Western blot based protein expression assay was used to monitor
the activation of RB, RAS, PI3K and AKT pathways as determined from the ratio of
phosphorylated: total proteins.

2.2. Test Agents

A selection of nontoxic Chinese herbs have demonstrated efficacy against hormone
receptor positive, HER-2 receptor negative human mammary carcinoma derived MCF-7
cells [12]. These herbs are used as test agents in the present model for TNBC. The origin of
the source for the test agent and major constituent bio-active agents that have published
growth inhibitory evidence are presented in Table 2.

Table 2. Chinese herbs screened in the TNBC model.

Herb Origin Bio-Active Agent Reference

Cornus officinalis
(CO) fruit anthocyanins [11,14]

Cuscuta sinensis (CS) seed flavonoids [12,19], personal
communication

Dipsacus asperoides
(DA) root saponins [12], personal

communication
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Table 2. Cont.

Herb Origin Bio-Active Agent Reference

Drynaria firtunie (DF) bark flavonoids [12,19,24], personal
communication

Epimedium
grandiflorum (EG) Leaf, stem icariin, icaritin,

prenylflavone [12,13]

Eucommia ulmoides
(EU) bark lignans, tanins, saponins [12,19]

Lycium barbarum
(LB) bark lignans, tanins, saponins [12,19], personal

communication

Ligustrum lucidum
(LL) fruit terpenoids [12]

Psoralea corylifolia
(PC) seed Coumarins, flavonoids,

meroterpenes [15]

Smilax glabra (SG) bark Falvonoids, saponins [24], personal
communication

Taraxacum
mangolicum (TM) leaf flavonoids [24], personal

communocation

Viola yeodoensis (VY) leaf terpenoids [24], personal
communication

It is conceivable that the content of bioactive agents in the herbs is likely to be highly
variable because of differing climatic and soil conditions, and anti-proliferative effects of
individual agents on cancer cells may involve distinct mechanisms of action [11–16].

The herbal formulations for the clinical use that contain several herbs in combination
are routinely brewed in water to prepare herbal tea for patient consumption. Therefore to
simulate clinical condition, non-fractionated aqueous extracts of the herbs, as presented
in Table 2, are used for the present experiments. The aqueous extracts are prepared
following an optimized water extraction method that is used routinely in the published
studies [11–16]. This procedure is consistent with the method of preparation for patient
consumption. The stock solutions of the aqueous extracts were diluted in the culture
medium at the concentrations of 1 mg/mL. These stock solutions were used for treatment
at µg/mL concentrations.

A comparative study using an isogenic model with modulated function of estrogen
receptor-α (ER-α) function demonstrated that based on their preferential growth inhibitory
effects, Chinese herbs may be selectively efficacious on ER functional (ER-F) or ER non-
functional (ER-NF) phenotype [12]. Promising herbs effective for the ER-NF phenotype
provided a rationale to examine their growth inhibitory efficacy in the present TNBC model.

2.3. Anti-Proliferative Effects of Chinese Herbs

In the experiments to examine growth inhibition in response to treatment with the
herbs, a viable cell number was determined using the growth inhibitory dose response assay
of seven day duration. These dose response experiments provided a basis to determine the
half-maximum (IC50) and the maximum cytostatic (IC90) concentrations.

The data presented in Table 3 indicate that CO, PC, DA, LB, VY and EU are the most
effective herbs for inhibiting the growth, exhibiting an effective IC50 concentration range
of 1 µg/mL to 21 µg/mL, respectively. LL, CS and EG exhibited a concentration range
of 88 µg/mL to 102 µg/mL. In contrast, DF and TM exhibited a substantially higher IC50
concentrations of 650 µg/mL and 800 µg/mL, respectively, While TM exhibited only a
limited efficacy (IC50 > 1000 µg/mL) against TNBC cells.



Pharmaceuticals 2021, 14, 1318 5 of 14

Table 3. Ranking of growth inhibitory efficacy of Chinese herbs by IC50.

Herb Inhibitory Concentration
(IC50 µg/mL) a

CO 1.0 ± 0.3

PC 6.0 ± 1.1

DA 15.0 ± 3.7

LB 17.7 ± 4.5

VY 18.0 ± 4.5

EU 20.9 ± 5.2

LL 87.6 ± 21.7

CS 90.4 ± 22.4

EG 102.4 ± 25.6

DF 650.0 ± 24.4

TM 800.0 ± 20.7

SG >1000
a Non-fractionated aqueous extract. IC50 concentrations are extrapolated from the primary dose response in a
seven-day growth assay. Data are presented as mean ± SD, n = 3 per treatment group.

The data presented in Table 4 indicate that CO, PC, DA, LB and EU are the most
effective herbs, exhibiting effective IC90 concentrations ranging from 5 µg/mL to 38 µg/mL,
respectively. VY and LL exhibited IC90 concentrations of 200 µg/mL and 274 µg/mL. CS
and DF exhibited a substantially higher IC90 concentrations of 671 µg/mL and 1000 µg/mL,
while EG, SG and TM exhibited only a limited efficacy (IC90 > 1000 µg/mL). Percent
proliferating tumor cell population represent the cells that survive in response to the
treatment with the herbs. This cell population ranges from 9.7% to 14.7% of the untreated
control cells.

Table 4. Ranking of growth inhibitory efficacy of Chinese herbs by IC90.

Herb Inhibitory Concentration
(IC90 µg/mL) a

CO 5.0 ± 1.5

PC 20.0 ± 3.5

DA 30.0 ± 4.0

LB 32.0 ± 4.0

EU 38.0 ± 5.0

VY 200.0 ± 17.5

LL 274.0 ± 24.0

CS 671.0 ± 26.0

DF 1000.0 ± 13.6

EG, SG, TM >1000
a Non-fractionated aqueous extract. IC90 concentrations are extrapolated from the primary growth inhibitory
dose response in a seven-day growth assay. Data are presented as mean ± SD, n = 3 per treatment group.

The data presented in Table 4 indicate that CO, PC, DA, LB and EU are the most
effective herbs, exhibiting effective IC90 concentrations ranging from 5 µg/mL to 38 µg/mL,
respectively. VY and LL exhibited IC90 concentrations of 200 µg/mL and 274 µg/mL. CS
and DF exhibited a substantially higher IC90 concentrations of 671 µg/mL and 1000 µg/mL,
while EG, SG and TM exhibited only a limited efficacy (IC90 > 1000 µg/mL).
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AI colony formation: The long-term growth inhibitory effects of the herbs at their
respective IC90 concentrations were examined using the AI colony formation assay. The
number of AI colonies formed at day 21 after seeding provided the quantitative end point.
The data were expressed as mean AI colony number ± SD. It is notable that DA, PC and
CO at their respective IC90 concentrations exhibited a range of about 93% to 84% inhibition,
respectively. In contrast, LL, DF, SG, LB, VY, EU and TM exhibited a range of about 55% to
47% inhibition respectively, and CS and EG were not effective (Table 5).

Table 5. Inhibition of anchorage independent colony formation.

Treatment AI Colony
Number a p-Value % Inhibition

Control 750 ± 76 - - - -

DA 55 ± 6 0.001 92.7

PC 69 ± 7 0.001 90.8

CO 120 ± 12 0.001 84.0

LL 339 ± 34 0.042 54.8

DF 372 ± 38 0.042 50.4

SG 373 ± 37 0.042 50.3

LB 373 ± 36 0.042 50.3

VY 375 ± 36 0.042 50.3

EU 396 ± 40 0.046 47.2

TM 396 ± 38 0.046 47.2

CS 649 ± 66 NS 13.5

EG 716 ± 73 NS 4.5
a determined at day 21 after seeding on 0.5 × 106 cells by AI growth assay. Data expressed as mean ± SD, n = 3
per treatment group and analyzed by one-way ANOVA with Dunnett’s multiple comparison test (α = 0.05).
AI, anchorage independent; ANOVA, analysis of variance; NS, not significant.

The AI colony formation represents an in vitro end point for growth that is specific for
tumorigenic cells, and exhibits a positive correlation with the tumor formation in vivo [25].
Thus, the AI growth assay has been utilized as an in vitro surrogate end point biomarker
for cancer risk [11–16]. The data on the reduction in AI colony number therefore suggest
that the Chinese herbs may effectively reduce breast cancer risk.

In herbal formulations for TNBC patients, 15 g of CO, PC, DA, LB, EU and VY in dry
raw herb form are usually included as component herbs. For LL, CS, EG and DF, at least
30 g of each are necessary to achieve a comparable outcome. At these concentrations the
herbs do not exhibit toxic side effects (Dr. George YC Wong, Personal communication).
This clinical observation is consistent with the growth inhibitory effects exhibited by the
herbs tested at their respective IC50 and IC90 concentrations in the cell viability assay.
The IC90 (maximally cytostatic) concentrations are defined as the highest concentrations
that result in the number of viable cells that are higher than the initial seeding density.
The toxic concentrations are defined as the concentrations that result in the number of
viable cells that are lower than the initial seeding density. The herbs at their respective
toxic concentrations have not been used. The present preclinical data and the clinical
observations, taken together, indicate that these Chinese herbs are within the effective
nontoxic range for TNBC.

The growth inhibitory effects of the Chinese herbs have provided a rationale for the
experiments focused on cell cycle progression and cellular apoptosis that may provide
leads for the mechanisms of action and identification of potential molecular targets for
their efficacy.
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Cell cycle progression: The experiment presented in Figure 1 demonstrated that PC
and CO increased the G1: S + G2/M ratio, while DA induced a reduction in this ratio. These
changes are due to selective G1 or G2 arrest, respectively. Data summarized from [14–16].
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Figure 1. Effect of Chinese herbs on cell cycle progression. Treatment with PC and CO at their respective IC90 doses
increased the ratio, while treatment with DA at IC90 dose reduced the ratio. The data are presented as G1: S + G2/M ratio
mean ± SD, n = 3 per treatment group, and analyzed by ANOVA with Dunnett’s multiple comparison test (α = 0.05).
Contr., control; PC, Psoralea corylifolia; CO, Cornus officinalis. SD, standard deviation; ANOVA, analysis of variance. Data
summarized from [14–16].

The data as summarized from [14–16] suggest that the herbs affect distinct phases of
the cell cycle important for either G1 to S phase transition or G2 to M phase transition of
the cycling cells. These data provide a rationale to examine the status of G1 specific and G2
specific signaling molecules as mechanistic leads.

RB signaling: The tumor suppressor RB gene plays an important role in the regulation
cell cycle progression by affecting the G1 to S phase transition and functions via the cyclin
D-CDK4/6-pRB/E2F signaling cascade. The post-translational modification of RB by
phosphorylation, hyper-phosphorylation-induced release of E2F transcription factor and
expression of RB target genes are established mechanisms of action [26,27]. The TNBC
molecular subtype is notable for defective RB function where pRB status represents a
marker for abnormal tumor suppressive function of the RB gene [28,29]. During RB
signaling the status of phosphorylation is altered, while that of the total protein remains
essentially unchanged. Thus, phosphorylated: total protein ratio represents an important
marker for pathway activation [26,29].

The data demonstrate that treatment with DA resulted in about an 80% inhibition
in pRB. Treatment with PC resulted in about a 74% inhibition in pRB. Treatment with
CO resulted in about a 31% inhibition in pRB, relative to the untreated control (Figure 2).
Thus, reduction of pRB: RB ratio may be indicative of the efficacy of these herbs to inhibit
aberrant RB signaling. Based on the inhibition in the pRB; RB ratio, these data provided a
rank order of DA > PC > CO. Data summarized from [14–16].

Cyclin dependent kinase inhibitors: Cyclin dependent kinases CDK4 and CDK6 are
critical for G1 to S phase transition [30]. Small molecule inhibitors selective for CD4/CDK6,
such as palbociclib and ribociclib, have shown clinical efficacy in the ER positive/HER-
2 negative metastatic breast cancer, and are used in combination with small molecule
inhibitors of aromatase activity [31–33]. Notably, efficacy of the CDK4/6 inhibitors has
also been demonstrated in TNBC [34–37]. However, clinical use of CDK4/6 inhibitors is
associated with systemic toxicity and acquired tumor resistance.

The data demonstrate that treatment with PC results in in about a 38% inhibition of
CDK4 and about a 74% inhibition of CDK6. Treatment with DA results in about a 48%
inhibition of CDK4 and about a 29% inhibition of CDK6 (Figure 3). Data summarized
from [15,16].
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Figure 2. Effect of Chinese herbs on RB Signaling. Treatment with DA, PC and CO at their respective IC90 doses decreased
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Collectively, these data suggest that PC and DA may function as natural inhibitors
of CDK4 and CDK 6, and thereby, may provide testable alternatives against the clinical
limitations of toxicity and tumor resistance.

RAS, PI3K, AKT signaling: Activation of the oncogenic RAS gene represents a com-
mon event in signaling via the RAF-MEK-ERK (MAPK pathway) or via the PI3K-AKT
pathway [38]. These two pathways represent the survival pathways commonly activated
in cancer cells. The phosphorylated protein: total protein ratio represents an important
marker of activation of these signaling pathways. Activation of MEK, ERK PI3K and
AKT represent therapeutic targets that respond to clinically efficacious small molecule
inhibitors [39–42].
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These data on the status of ERK, PI3K and AKT signaling demonstrate that treatment
with DA results in about a 70% reduction in the pERK: ERK ratio, about a 51% reduction in
the pPI3K: PI3K ratio and about a 54% reduction in the pAKT: AKT ratio, relative to the
control (Figure 4). Data summarized from [16].
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Figure 4. Effect of Chinese herbs on RAS, PI3K, and AKT signaling. Treatment with DA at its
IC90 dose inhibited the phosphorylated: total protein ratio. Data presented as arithmetic means
of phosphorylated: total protein ratio of ASU from duplicate determinations. ERK, extracellular
receptor kinase; PI3K, phosphatidylinositol 3-kinase, AKT, Protein kinase B; ASU, arbitrary scanning
unit. Contr, control; Treatment: DA, Dipsacus asperoides. Data summarized from [16].

Collectively, these data suggest that DA inhibits RAS, PI3K and AKT signaling. In this
context it is notable that rosemary extract inhibits AKT and mTOR signaling in the TNBC
cells [43], and lycopene inhibits the PI3K/AKT/mTOR pathway in oral cancer cells via
reducing the phosphorylation of PI3K, AKT and mTOR [44].

Cellular apoptosis: During normal homeostatic growth control in non-tumorigenic
cells, proliferation and apoptosis are stringently regulated [45]. In hyper-proliferative
tumorigenic cells, the apoptotic pathways are frequently downregulated, and induction of
cellular apoptosis by chemotherapeutic agents represents a marker for their efficacy [46–48].

The pro-apoptotic effects of the herbs were examined by determining the status of the
sub G0 (apoptotic) cell population and by the extent of induction of pro-apoptotic caspase
3/7 activity.

The data demonstrate that treatment with the herbs resulted in an increase of cells in
the sub G0 phase of the cell cycle (Figure 5A) and an increase the pro-apoptotic caspase
3/7 activity (Figure 5B). Data summarized from [14–16].

Thus, modulations in the sub G0 population and caspase 3/7 activity by the herbs
provide evidence for induction of cellular apoptosis in the present TNBC model. The data
from the two end points provided a rank order of DA > CO > PC. Furthermore, these
data also provide a rationale to examine the status of select pro-apoptotic or anti-apoptotic
molecules that may function as potential molecular targets for the efficacy of the herbs.

The herbal formulas used for patients in the traditional Chinese medicine are pre-
pared from a mixture of several herbs, and individual herbs may have multiple water
soluble constituents. The clinical efficacy of the herbal formulas is predominantly due to
synergistic interaction of potential bioactive constituents. The efficacy of herbs used in
the present TNBC model is likely due to multiple water soluble bioactive agents present
in the non-fractionated aqueous extract, and therefore cannot be ascribed to any specific
bioactive agent.
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Figure 5. (A): Effect of Chinese herbs on cellular apoptosis. Treatment with DA, CO and PC at their respective IC90 doses
increased % sub G0 population. The data are presented as % sub G0 population mean ± SD, n = 3 per treatment group.
(B): Effect of Chinese herbs on Caspase 3/7 activity. Treatment with DA, CO and PC at their respective IC90 doses increased
caspase 3/7 activity. The data are presented as RLU mean ± SD, n = 3 per treatment group. The data are analyzed by
ANOVA with Dunnett’s multiple comparison test. (α = 0.05). Contr.; control; DA, Dipsacus asperoides; CO, Cornus
officinalis; PC, Psoralea corylifolia; RLU, relative luminescent unit; SD, standard deviation; ANOVA, analysis of variance.
Data summarized from [14–16].

3. Conclusions

The data for the present model system validates an experimental approach to evaluate
Chinese herbs for their growth inhibitory efficacy against prevention of TNBC. Systemic
toxicity and acquired tumor resistance represent commonly encountered limitations in
chemotherapy and molecularly targeted therapy. These limitations suggest a lack of
effective conventional therapeutic options for TNBC [49], and thereby emphasize the signif-
icance of identification of naturally-occurring nontoxic testable alternatives for secondary
prevention/therapy of TNBC. In this context it is notable that sulforaphane, a bioactive
agent present in broccoli and isothiocyanate present in cruciferous vegetables have docu-
mented inhibitory efficacy against breast cancer stem-like cells in vitro and in vivo [24,50].
Herbal formulations containing a mixture of several herbs are used in traditional Chinese
medicine. These formulations affect complex biological activities that are relevant to cancer
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progression. Chinese herbs function as estrogenic, anti-inflammatory, anti-angiogenic and
immune-modulatory agents, affecting multiple signaling pathways [51]. In TNBC these
herbs are effective via inhibition of PI3K, AKT, mTOR, MAPK and Wnt/β-catenin signaling
pathways [52]. Growth inhibitory effects of herbal saponins involve the PI3K/AKT/mTOR
pathways in a TNBC model [53], and berbamine used in traditional Chinese medicine in-
hibits cellular proliferation, migration and invasion via the PI3K/AKT/MDM2/p53/mTOR
pathways in a TNBC model [54]. Ginsenoside represents a potent bioactive agent present
in the Panax ginseng herb. In the MDA-MB-231 TNBC model ginsenoside functions as
an anti-proliferative/pro-apoptotic agent [55,56], as an anti-invasive agent [57,58], and
as an anti-metastatic agent [59,60]. Most of the inhibitory effects of Ginsenoside involve
PI3K, AKT, mTOR, EGFR-MAPK and STAT-3/NFkB signaling pathways. In addition,
ginsenoside reverses paclitaxel resistance and augments doxorubicin induced apoptosis in
TNBC models [61,62]. Thus, in addition to the growth inhibitory efficacy of the Chinese
herbs discussed in the present review, published evidence suggests that in vitro and in vivo
inhibitory effects of Chinese herbs involve multiple signal transduction pathways and
multiple molecular targets.

The published evidence generated from the cellular models for the Luminal A sub-
type [11–13] and the TNBC subtype [11–16] provide mechanistic leads for the efficacy of
Chinese herbs in breast cancer subtypes that differ in their status of hormone receptors. The
growth inhibitory effects of Chinese herbs at relatively low concentrations suggest their
potential significance as testable alternatives against prevention of therapy-resistant breast
cancer. In this context, it needs to be recognized that in vivo translation of the in vitro data
represents a speculative extrapolation. Evidence based translation will only be possible by
future experiments involving transplantation of TNBC cells in to appropriate recipients
and analysis of the tumors formed.

Future prospects: The present review provides a scientifically robust foundation for
investigations designed to identify efficacious Chinese herbs that selectively inhibit growth
of cancer cells.

Complex herbal formulas contain combinations of several herbs, each with multiple
potential active agents. Thus, investigations focused on identification of relevant mecha-
nisms and potential molecular targets for efficacy are faced with formidable scientific issues.
Research directions focused on chemical composition of the herbs, network pharmacology,
structure-activity studies and possible synergistic interactions between individual bioactive
agents are likely to provide important mechanistic leads, and thereby, may overcome the
limitations of scientific/technical issues.

Promising herbs could be prioritized for in vivo studies using the xeno-transplant
model to evaluate the status of absorption, distribution, metabolism and excretion (ADME)
and their pharmaco-kinetic patterns in the tumor-bearing recipients. These directions are
likely to provide a basis for in vivo safety, efficacy and tumor selectivity of the herbs. Ex-
vivo models from TNBC patient-derived tumor explants and tumor organoids [63,64] rep-
resent additional research directions that may provide a clinically translatable, mechanism-
based rationale for future investigations focused on the applicability of Chinese herbs for
secondary prevention/therapy of the TNBC patient.
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