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Abstract Understanding the principles governing neuronal diversity is a fundamental goal for

neuroscience. Here, we provide an anatomical and transcriptomic database of nearly 200

genetically identified cell populations. By separately analyzing the robustness and pattern of

expression differences across these cell populations, we identify two gene classes contributing

distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal

populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust

expression differences. Long neuronal effector genes, such as channels and cell adhesion

molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than

robustness of expression differences. By linking transcriptional identity to genetic strains and

anatomical atlases, we provide an extensive resource for further investigation of mouse neuronal

cell types.

DOI: https://doi.org/10.7554/eLife.38619.001

Introduction
The extraordinary diversity of vertebrate neurons has been appreciated since the proposal of the

neuron doctrine (Ramon y Cajal, 1894). Classically, this diversity was characterized by neuronal mor-

phology, physiology, and circuit connectivity, but increasingly, defined genetically through driver

and reporter strains (Gong et al., 2003; Madisen et al., 2010; Taniguchi et al., 2011; Shima et al.,

2016) or genomically by their genome-wide expression profiles. The first genome-wide studies of

mammalian neuronal diversity employed in situ hybridization or microarrays (Sugino et al., 2006;

Doyle et al., 2008), while more recent studies have utilized advances in single-cell (SC) RNA-seq

(Zeisel et al., 2015; Zeisel et al., 2018; Tasic et al., 2016; Tasic et al., 2018; Paul et al., 2017). In

theory, SC RNA-seq can be applied in an unbiased fashion to discover all cell types that comprise a

tissue, but manipulation of these cell types to better understand their biological composition and

function often require the use of genetic tools such as mouse driver strains. Differences in techniques

for cell isolation, library preparation or clustering of single cell profiles have not yet led to a consen-

sus view of the number or identity of the neuronal cell types comprising most parts of the mouse

nervous system. Furthermore, the relationship between cell populations defined transcriptionally

and those that can be specified genetically and anatomically using existing strains has received far

less attention (though see Tasic et al., 2018).

Here, we attempt to strengthen the link between genomically and genetically defined cell types

in the mouse brain by performing RNA-seq on a large set of genetically identified and fluorescently

labeled neurons from micro-dissected brain regions. In total, we profiled 179 sorted neuronal
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populations and 15 nonneuronal populations. Because each sample of sorted cells may contain more

than one ’atomic’ cell type, we refer to these as genetically- and anatomically-identified cell popula-

tions (GACPs). To assess homogeneity, we quantitatively compared our sorted cell populations to

publicly available single-cell datasets, which revealed a comparable level of homogeneity, but a

much lower level of noise in the sorted population profiles.

Although neuronal diversity has long been recognized, the question of how this diversity arises

has not been addressed sufficiently in a genomic context (Arendt et al., 2016; Muotri and Gage,

2006). We identify two different sets of genes that distinguish GACPs based on the robustness or

pattern of their expression differences. The most robust expression differences are those of homeo-

box transcription factors. These genes also have the lowest transcriptional noise suggesting differen-

tial chromatin regulation. Chromatin accessibility measurements reveal that the promoters and gene

bodies of these genes are indeed more closed. In contrast, the genes capable of distinguishing the

largest numbers of GACPs are neuronal effector genes like receptors, ion channels and cell adhesion

molecules. Interestingly, genes defined by the robustness and patterns of their expression differen-

ces also differ in their transcript length. Genes with robust, low-noise expression tend to be shorter,

while genes with the greatest capacity to distinguish populations tend to be longer.

Here, we provide important new resources for mapping brain cell types including a large set of

low-noise profiles from genetically identified neurons, anatomical maps of their distributions, and a

method to compare and contextualize single-cell RNA-seq datasets. We implement a novel strategy

to mine information from large surveys of cell types, and demonstrate the utility of this strategy in

generating specific biological insights into the genes contributing to neuronal diversity.

Results

A dataset of genetically identified neuronal transcriptomes
To identify genes contributing most to mammalian neuronal diversity, we collected transcriptomes

from 179 genetically and anatomically identified populations of neurons and 15 populations of non-

neuronal cells in mice (Table 1; Figure 1; Figure 1—figure supplement 1; Supplementary file

1,2). The great majority (186/194) were identified both genetically and anatomically, with the

remaining identified only anatomically, by their location and projection patterns. Each collected pop-

ulation represents a group of fluorescently labeled cells dissociated and sorted from a specific

micro-dissected region of the mouse brain or other tissue. The pipeline for collecting GACP tran-

scriptomes is depicted in Figure 1A (see Materials and methods for additional details). Mouse lines

were first characterized by generating a high-resolution atlas of reporter expression (Figure 1B)

then, regions containing labeled cells with uniform morphology were chosen for sorting and RNA-

seq. In total, we sequenced 2.3 trillion bp in 565 libraries. This effort (NeuroSeq) constitutes the larg-

est and most diverse single collection of genetically identified cell populations profiled by RNA-seq.

The raw data is deposited to NCBI GEO (GSE79238). The processed data, including anatomical

atlases, RNA-seq coverage, and TPM are available at http://neuroseq.janelia.org (Figure 1C).

To determine the sensitivity of our transcriptional profiling, we used ERCC spike-ins. Amplified

RNA libraries had an average sensitivity (50% detection) of 23 copy*kbp of ERCC spike-ins across all

libraries (Figure 1D). Since manually sorted samples had 132 ± 16 cells (mean ± SEM), this indicates

our pipeline had the sensitivity to detect a single copy of a transcript per cell 80% of the time. This

high sensitivity allowed for deep transcriptional profiling in our diverse set of cell populations.

To assess the extent of contamination in the dataset, we checked expression levels of marker

genes for several nonneuronal cell populations (Figure 1—figure supplement 2B). As previously

shown (Okaty et al., 2011), manual sorting produced, in general, extremely clean data.

To assess the homogeneity of the sorted, pooled samples, we compared our datasets to publicly

available single cell (SC) datasets. To compare across different datasets, we used a method based

on linear decomposition by non-negative least squares (NNLS) (See Figure 2 and Figure 2—figure

supplement 1–6). This method tests the degree to which individual profiles can be decomposed

into linear mixtures of profiles from another dataset. Such mixtures or impurities can arise in at least

two ways (Figure 2A): by pooling similar cell types prior to sequencing in the case of sorted data-

sets, or by pooling similar profiles after sequencing, at the clustering stage, in the case of SC data-

sets. Although NNLS is a widely used decomposition procedure, it has not previously been applied
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Table 1. Summary of profiled samples.

Region/type Transmitter #groups Subregions #samples

CNS neurons Olfactory (OLF) glu 10 AOBmi, MOBgl, PIR, AOB, COAp 30

GABA 4 AOBgr, MOBgr, MOBmi 11

Isocortex glu 22 VISp, AI, MOp5, MO, VISp6a, SSp, SSs, ECT, ORBm, RSPv 68

GABA 3 Isocortex, SSp (Sst+, Pvalb+) 7

glu,GABA 1 RSPv 3

Subplate (CTXsp) glu 1 CLA 4

Hippocampus (HPF) glu 24 CA1, CA1sp, CA2, CA3, CA3sp, DG, DG-sg, SUBd-sp, IG 65

GABA 4 CA3, CA, CA1 (Sst+, Pvalb+) 12

Striatum (STR) GABA 12 ACB, OT, CEAm, CEAl, islm, isl, CP 33

Pallidum (PAL) GABA 1 BST 4

Thalamus (TH) glu 11 PVT, CL, AMd, LGd, PCN, AV, VPM, AD 29

Hypothalamus (HY) glu 11 LHA, MM, PVHd, SO, DMHp, PVH, PVHp 36

GABA 4 ARH, MPN, SCH 15

glu,GABA 2 SFO 3

Midbrain (MB) DA 2 SNc, VTA 5

glu 2 SCm, IC 6

5HT 2 DR 10

GABA 1 PAG 4

glu,DA 1 VTA 3

Pons (P) glu 7 PBl, PG 22

NE 1 LC 2

5HT 2 CSm 7

Medulla (MY) GABA 7 AP, NTS, MV, NTSge, DCO 18

glu 6 NTSm, IO, ECU, LRNm 20

ACh 2 DMX, VII 6

5HT 1 RPA 3

GABA,5HT 1 RPA 4

glu,GABA 1 PRP 3

Cerebellum (CB) GABA 10 CUL4, 5mo, CUL4, 5pu, CUL4, 5gr, PYRpu 25

glu 4 CUL4, 5gr, NODgr 10

Retina glu 5 ganglion cells (MTN, LGN, SC projecting) 14

Spinal Cord glu 1 Lumbar (L1-L5) dorsal part 3

GABA 4 Lumbar (L1-L5) dorsal part, central part 12

PNS Jugular glu 2 (TrpV1+) 7

Dorsal root ganglion (DRG) glu 2 (TrpV1+, Pvalb+) 5

Olfactory sensory neurons (OE) glu 4 MOE,VNO 9

nonneuron Microglia 2 MOp5(Isocortex),UVU(CB) (Cx3cr1+) 6

Astrocytes 1 Isocortex (GFAP+) 4

Ependyma 1 Choroid Plexus 2

Ependyma 2 Lateral ventricle (Rarres2+) 6

Epithelial 1 Blood vessel (Isocortex) (Apod+, Bgn+) 3

Epithelial 1 olfactory epithelium 2

Progenitor 1 DG (POMC+) 3

Pituitary 1 (POMC+) 3

Table 1 continued on next page
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to expression profiles. Therefore, we performed a number of control experiments to validate its use.

First, we cross-validated the decompositions by dividing each dataset in half and testing the ability

to decompose one half by the other (Figure 2—figure supplement 1). This revealed that some Neu-

roSeq samples had overlapping coefficients and so could not be well distinguished. For example,

pairs of populations identified in layer 2/3 of two different regions in the same strain (AI.

L23_glu_P157/ORBm.L23_glu_P157) or by retrogradely labeled cells in the same layer and region

from two different targets (SSp.L23_glu_M1.inj/SSp.L23_glu_S2.inj and SSp.L5_glu_BPn.inj/SSp.

L5_glu_IRT.in) were hard to distinguish. On the other hand, overlapping coefficients were also pres-

ent for some pairs of cell populations in the SC datasets (such as Oligo Serpinb1a/Oligo Synpr in the

Tasic dataset and MGL1/MGL2/MGL3 in the Zeisel dataset). On average the purity, defined as how

well a single sample can be decomposed into the most closely corresponding sample, was similar

across the three datasets (Figure 2—figure supplement 1D). As a second control, we demonstrated

that NNLS decomposition could be used to recover the numbers of cell types isolated from distinct

strains in a SC dataset, after mixing these profiles together, despite the fact that this information

was not included in the fitting procedure (Figure 2—figure supplement 2). Finally, NNLS

(Figure 2B,C) produced comparable or cleaner decompositions than a competing Random Forest

algorithm (Figure 2—figure supplement 6). These results indicate that NNLS can be used to reliably

decompose mixtures of cellular profiles. Similar average coefficients (i.e. similar purity) were

obtained for decompositions of the NeuroSeq data by SC datasets and by decomposing these data-

sets by each other (Figure 2, Figure 2—figure supplement 3–6). Hence our decomposition results

indicate that although heterogeneity may exist in some of our sorted samples, it is comparable to

the inaccuracies introduced by clustering SC profiles.

Since merging or splitting of closely related clusters either prior to sequencing or during the clus-

tering process can lead to poor discrimination between samples, we also measured the separability

of cell population profiles obtained in each study (Figure 2—figure supplement 7). As expected,

the clusters of sorted population samples, which are averages across one hundred cells or more,

were much more cleanly separable than SC clusters. Taken together, NNLS decomposition and sep-

arability provide a quantitative framework for assessing the trade-offs between homogeneity and

reproducibility when measuring population transcriptomes from GACPs and SCs.

To demonstrate the utility of the dataset, made possible by its broad sampling of neuronal popu-

lations, we extracted pan-neuronal genes (genes expressed commonly in all neuronal populations

but expressed at lower levels or not at all in nonneuronal cell populations; Figure 1—figure supple-

ment 3). Here, broad sampling of cell populations is essential to avoid false positives (Zhang et al.,

2014b; Mo et al., 2015; Stefanakis et al., 2015). Because of the high sensitivity and low noise, we

were able to be conservative and exclude genes expressed in most but not all neuron types.

Extracted pan-neuronal genes contain well-known genes such as Eno2 (Enolase2), which is the neu-

ronal form of Enolase required for the Krebs cycle, Slc2a3 (chloride transporter) required for inhibi-

tory transmission, and Atp1a3 (ATPase Na+/K + transporting subunit alpha 3), which belongs to the

complex responsible for maintaining electrochemical gradients across the membrane, as well as

genes not previously known to be pan-neuronal, such as 2900011O08Rik (now called Migration

Inhibitory Protein; Zhang et al., 2014a). Synaptic genes are often differentially expressed among

neurons, but interestingly, some were included in this pan-neuronal list such as Syn1, Stx1b, Stxbp1,

Sv2a, and Vamp2. These appear to be common synaptic components, and highlight essential parts

of these complexes. Thus, the dataset should be useful for many other applications, especially those

requiring comparisons across a wide variety of neuronal cell types.

Table 1 continued

Region/type Transmitter #groups Subregions #samples

non brain Pancreas 2 Acinar cell, beta cell 7

Myofiber 2 Extensor digitorum longus muscle 7

Brown adipose cell 1 Brown adipose cell from neck. 4

total 194 565

DOI: https://doi.org/10.7554/eLife.38619.006
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medium (middle) and high (bottom) magnifications. (C) Web tools available at http://neuroseq.janelia.org (D) Sensitivity of library preparation measured

from ERCC detection across all libraries. The 50% detection sensitivity of the assay itself was 23 copy*kbp.
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Figure 1 continued on next page
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Metrics to quantify diversity
Analysis of expression differences between individual groups is the basis of most profiling efforts.

Variance-based metrics, such as Analysis of Variance (ANOVA) F-Value, or coefficient of variation

(CV) are commonly used for this purpose. However, these metrics are jointly affected by the pattern

of differential expression and the robustness of the differences, and so cannot readily separate these

two features (Figures 3 and 4; Figure 3—figure supplement 1). Since these features may differ in

their biological significance, we searched for the simplest way to quantitatively separate them. This

led us to adopt two easily calculated variants of widely used metrics for differential expression and

fold-change.

To quantify the contribution of each gene to cell type diversity, we measured the fraction of cell

population pairs in which the gene is differentially expressed. (For differential analysis, the limma-

voom framework was used, see Materials and methods). This differentially expressed fraction (DEF)

is closely related to the Gini-Simpson diversity index (Simpson, 1949) widely used in ecology to

measure species diversity in a community (see Appendix 1). DEF ranges from 0 to 1. The maximum

observed value of 0.65 indicates that the gene distinguishes 65% of the pairs, while a value of 0 indi-

cates that the gene distinguishes none (i.e. it is expressed at similar levels in all cells). DEF is easy to

calculate and approximates the mutual information (MI) between expression levels and cell popula-

tions (Appendix 1).

The robustness of an expression difference depends on its magnitude relative to the underlying

noise. Robustness is often quantified as a Signal-to-Noise Ratio (SNR). Since the signals we are inter-

ested in are the gene expression differences distinguishing cell types, we computed the ratio of the

mean fold-change expression differences between distinguished pairs to the mean fold-change

between undistinguished pairs. This fold-change ratio (FCR) indicates the robustness of pair distinc-

tions but is independent of the number of pairs distinguished. High FCR genes robustly distinguish

cell populations and are therefore suitable as ’marker genes’.

Unlike DEF and FCR, variance-based methods like ANOVA F-values and CV are either affected by

both MI and SNR (ANOVA; Figure 4A–C and Figure 3—figure supplement 1) or by neither (CV;

Figure 3—figure supplement 1). The fact that ANOVA does not distinguish between information

content and SNR can be appreciated from the fact that the most significant ANOVA genes

(Figure 4A–C) include both high DEF and high FCR genes. Therefore, DEF and FCR are useful

because they provide independent measures of the robustness and magnitude of differential expres-

sion between cell populations.

To determine the types of genes most differentially expressed (highest DEF) and most robustly

different (highest FCR) between cell populations, we performed over-representation analysis using

the HUGO Gene Groups (Braschi et al., 2018, Figure 4D,E). The most robust expression differences

(highest FCR) were those of homeobox transcription factors (TFs) and G-protein coupled receptors

(GPCRs; Figure 4D). High DEF genes are enriched for neuronal effector genes including receptors,

ion channels and cell adhesion molecules (Figure 4E). High FCR and High DEF enrichments were

based on the HUGO gene groups, but similar results were obtained using the PANTHER gene fami-

lies (Mi et al., 2017) and Gene Ontology annotations (Ashburner et al., 2000, Figure 4—figure

supplement 1). In the case of the high FCR genes, the Gene Ontology categories differed, since this

ontology lacks a separate category for homeobox transcription factors. Instead multiple parent cate-

gories (e.g. sequence-specific DNA binding, RNA polymerase II regulatory region DNA binding etc.)

were overrepresented.

Figure 1 continued

The following figure supplements are available for figure 1:

Figure supplement 1. GACP samples.

DOI: https://doi.org/10.7554/eLife.38619.003

Figure supplement 2. Quality control measures.

DOI: https://doi.org/10.7554/eLife.38619.004

Figure supplement 3. Pan-neuronal genes.

DOI: https://doi.org/10.7554/eLife.38619.005
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Figure 2. Decomposition by non-negative least squares (NNLS) fitting. (A) Diagram illustrating potential sources of heterogeneity at the separation

phase in profiles from sorted cells (left) or at the clustering phase in profiles from single cells (right). (B,C) NNLS coefficients of NeuroSeq cell

populations decomposed by two scRNA-seq datasets: (Tasic et al., 2018; Zeisel et al., 2018). (D) Mean purity scores for NeuroSeq and SC datasets.

The purity score for a sample is defined as the ratio of the highest coefficient to the sum of all coefficients. Error bars are Std. Dev.

DOI: https://doi.org/10.7554/eLife.38619.007

The following figure supplements are available for figure 2:

Figure supplement 1. Self decompositions by NNLS.

DOI: https://doi.org/10.7554/eLife.38619.008

Figure supplement 2. A validation of NNLS decomposition.

DOI: https://doi.org/10.7554/eLife.38619.009

Figure supplement 3. NNLS decomposition of SC datasets: Tasic by Zeisel.

DOI: https://doi.org/10.7554/eLife.38619.010

Figure supplement 4. NNLS decomposition of SC datasets: Zeisel by Tasic.

DOI: https://doi.org/10.7554/eLife.38619.011

Figure supplement 5. NNLS decomposition of interneuron datasets.

DOI: https://doi.org/10.7554/eLife.38619.012

Figure 2 continued on next page
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Thus, using these two simple metrics we identify synaptic and signaling genes as the most differ-

entially expressed, and homeobox TFs and GPCRs as the most robustly distinguishing families of

genes. These two categories of genes drive neuronal diversity by endowing neuronal cell types with

specialized signaling and connectivity phenotypes, and by orchestrating cell-type-specific patterns of

transcription. In addition, their distinct contributions to distinguishing neuronal types suggests possi-

ble differences in the regulation of these two categories of genes.

Homeobox TFs have the highest SNRs and can form a combinatorial
code for cell populations
FCR, like SNR, is a ratio between signal and noise, and so can reflect high expression levels in most

ON cell types (high signal), low expression levels in most OFF cell types (low noise), or both. Homeo-

box genes are not among the most abundantly expressed genes. Their average expression levels

(~30 FPKM) are significantly lower than, for example, those of neuropeptides (~90 FPKM). This sug-

gests that the high FCRs of homeobox TFs depend more on low noise than high signal. In fact, many

Figure 2 continued

Figure supplement 6. Random forest decomposition.

DOI: https://doi.org/10.7554/eLife.38619.013

Figure supplement 7. Separability of cell population clusters.

DOI: https://doi.org/10.7554/eLife.38619.014
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Figure 3. Gene expression metrics related to information content and robustness (Left) Cartoon illustrating the

process of calculating fold-change ratio (FCR) and differentially expressed fraction (DEF) for four different

hypothetical genes that differ in the information content (2 and 4 vs. 1 and 3) and signal-to-noise ratio (SNR; 1 and

2 vs. 3 and 4) of their expression patterns across cell populations. (Middle) Expression signals are used to construct

matrices for each gene of the log fold-changes between populations (fold-change matrix) and the distinctions

between populations based on those differences (Differentiation Matrix; DM; see Materials and methods). (Right)

The differentially expressed fraction (DEF) is the fraction of the total pairs of cell populations distinguished (i.e. of

nonzero values in DM excluding diagonal). The fold-change ratio (FCR) is the average expression difference

between distinguished pairs divided by the average expression difference between undistinguished pairs. Orange

and blue bars show that the resulting DEF and FCR calculations capture the variations in information and SNR

across the four genes.

DOI: https://doi.org/10.7554/eLife.38619.015

The following figure supplement is available for figure 3:

Figure supplement 1. Simulated data reveal features of expression metrics.

DOI: https://doi.org/10.7554/eLife.38619.016
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homeobox TFs have uniformly low expression in OFF cell types (Figure 5A top). We quantified this

’OFF noise’ for all genes and found that homeobox genes are enriched among genes that have both

low OFF noise and at least moderate ON expression levels (red dashed region in Figure 5B; see

also Figure 5—figure supplements 1 and 2). Homeobox genes were not enriched in a group of

high OFF noise genes (blue dashed region in Figure 5B; data not shown) that was matched for maxi-

mum expression level (Figure 5—figure supplement 1C). The enrichment of homeoboxes was also

observable in two of the single-cell datasets encompassing multiple brain regions (Figure 5—figure

supplement 3).

Tight control of expression may reflect closed chromatin. To test this, we measured chromatin

accessibility using ATAC-seq (see Materials and methods). As expected, compared to high-noise

genes (Figure 5C bottom), genes with low OFF noise had fewer and smaller peaks within the vicinity

of their transcription start site (TSS) and gene body (Figure 5C top, Figure 5D), consistent with the

idea that chromatin accessibility contributes to their low OFF noise. Functionally, the tight control of

homeobox TF expression levels may reflect their known importance as determinants of cell identity,

and that establishing and maintaining robust differences between cell types may require tight ON/

OFF regulation rather than graded regulation.

Homeobox containing TFs can be subdivided into subfamilies based on their structure. The differ-

ent homeobox subfamilies differed in their OFF noise and hence in their FCR values. Some families

(e.g. HOXL, NKL, PRD) had very low OFF noise and high FCR, while others (e.g. CERS, PROS, CUT)

had higher OFF noise and lower FCR (Figure 5—figure supplement 4).
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Figure 4. DEF and FCR capture distinct aspects of expression diversity related to information content and

robustness. (A) Highly variable genes (warm colored dots; color scale shows significance of ANOVA across cell

populations) include both genes with high FCR and low DEF (like Tfap2c and Hoxa9) and genes with lower FCR

and high DEF (like Chrm1 and Slc17a6). (B) Expression profiles of example genes labeled in A. Sample key in

horizontal color bar as in Figure 1—figure supplement 1–3. Red ticks at left indicate 0; Vertical scale is

log2ðFPKM þ 1Þ; blue ticks = 6) (C) DMs for example genes, calculated as shown in Figure 3. (D, E) HUGO gene

groups enriched in the top 1000 FCR and top 1000 DEF genes. Red lines indicate the p = 10-5 threshold used to

judge significance.

DOI: https://doi.org/10.7554/eLife.38619.017

The following figure supplement is available for figure 4:

Figure supplement 1. PANTHER and GO enrichment analysis for high FCR and high DEF genes.

DOI: https://doi.org/10.7554/eLife.38619.018

Sugino et al. eLife 2019;8:e38619. DOI: https://doi.org/10.7554/eLife.38619 9 of 29

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.38619.017
https://doi.org/10.7554/eLife.38619.018
https://doi.org/10.7554/eLife.38619


0 1 2 3 4 5 6 7 8
max expression (log2(FPKM+1))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
F

F
n

o
is

e

homeobox

Enriched families in low OFF noise genes

OFF state noiseExamples of genes with low & high OFF noise
B

D

A

C

E

Mean ATAC profile

Lhx1 (low OFF noise)

0 60TPM

CA1

CA1-3

entorhinal

L6

L5

Purkinje

granule
0.80RPM

Calb2 (high OFF noise)

6

6

0

0

0 60TPM

CA1

CA1-3

entorhinal

L6

L5

Purkinje

granule
0.80RPM

-1kb TSS TES +1kb
0.0

0.1

0.2

0.3

0.4

m
e

a
n

 c
o

v
e

ra
g

e
 (

R
P

M
) low OFF noise

high OFF noise

Calb2

30kbp

11kbp

ATAC-Seq 

R
N

A
-S

e
q

lo
g

2
(F

P
K

M
+

1
)

lo
g

2
(F

P
K

M
+

1
)

R
N

A
-S

e
q

Lhx1

Calb2

Lhx1

20

-2

-lo
g

1
0 (p

-v
a

lu
e

)

0 20 40 60
-log10(p value)

C-type lectin domain containing
Endogenous ligands

Calycin structural superfamily
Complement system

G protein-coupled receptors
Immunoglobulin superfamily domain containing

Intermediate filaments
CD molecules
Homeoboxes

Orthogonality (HUGO)

0 500 1000 1500
0.0

0.2

0.4

0.6

1.GPCR

2.Homeoboxes

34

5
6

78
9

10

family size

m
e

a
n

(1
-c

o
rr

.c
o

e
f.
)

Figure 5. Mechanisms contributing to low noise and high information content of homeobox TFs. (A) Example expression patterns of a LIM class

homeobox TF (Lhx1) and a calcium binding protein (Calb2) with similar overall expression levels. Sample key as in Figure 1—figure supplement 1–

3. (B) (upper) OFF state noise (defined as standard deviation (std) of samples with FPKM<1) plotted against maximum expression. (lower) HUGO gene

groups enriched in the region indicated by red dashed box in the upper panel (see Figure 5—figure supplement 1 for PANTHER and Gene Ontology

enrichments). (C) Average (replicate n = 2) ATAC-seq profiles for the genes shown in A. Some peaks are truncated. Expression levels are plotted at

right (gray bars). (D) Length-normalized ATAC profile for genes with high (> 0.3, blue dashed box in B, n = 853) and low (< 0.2, red dashed box in B,

n = 1643) OFF state expression noise. (E) Each circle represents the orthogonality of expression patterns calculated using HUGO gene groups.

Orthogonality is a measure of the degree of non-redundancy in a set of expression patterns. Since the dispersion of orthogonality depends on family

size, results are compared to orthogonality calculated from randomly sampled groups of genes (green solid lines: mean and Std. Dev.; green dashed

lines: 99% confidence interval). Families, Z-scores, family size: 1. GPCR: 17.1, n = 277; 2. Homeoboxes: 16.6, n = 148; 3. Ion channels: 10.7, n = 275; 4.

C2 domain containing: 7.8, n = 159; 5. Zinc fingers: 6.9, n = 1002; 6. Immunoglobulin superfamily domain containing: 6.7, n = 292; 7. PDZ domain

containing: 6.3, n = 144; 8. Fibronectin type III domain containing: 5.9, n = 143; 9. Endogenous ligands: 5.1, n = 165; 10. Basic helix-loop-helix proteins:

4.9, n = 77.

DOI: https://doi.org/10.7554/eLife.38619.019

The following figure supplements are available for figure 5:

Figure supplement 1. Properties of Low OFF noise genes.

DOI: https://doi.org/10.7554/eLife.38619.020

Figure 5 continued on next page
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The ability of gene families to provide information about cell identities reflects both how informa-

tive individual family members are, and the relationships between them. If the information across

family members is independent, the overall information is increased relative to the case in which mul-

tiple members contain redundant information. This aspect of ’family-wise’ information is not cap-

tured by ’gene-wise’ metrics like mean DEF, or by enrichment analysis (Figure 4D,E). One means of

capturing the additive, non-redundancy within a gene family is to measure the orthogonality of

expression patterns among the member genes. This analysis (Figure 5E) reveals that homeobox TFs

and GPCRs have the greatest orthogonality between cell types among HUGO groups (as well as in

PANTHER families, Figure 5—figure supplement 1E). Related to this, we found that the homeobox

family can distinguish more than 99% of GACP pairs, suggesting these TFs comprise a combinatorial

code for the cell populations profiled. To illustrate this, we computed the minimum set of homeobox

TFs needed to distinguish the populations studied and found that a set of as few as 8 could distin-

guish 99% of GACP pairs (Figure 5—figure supplement 2B). Combinatorial codes could also be

produced from other highly orthogonal gene families, as illustrated for GPCRs Figure 5—figure sup-

plement 2C). As illustrated in these heat maps, expression differences for homeobox TFs had higher

contrast, consistent with the fact that individually, homeobox TFs have the highest FCR (Figure 4D)

and lowest OFF noise (Figure 5B). In summary, we found that many homeobox genes are expressed

with a very high SNR and are one of the groups of genes with the most orthogonal expression pat-

terns. This suggests that, similar to other tissues (Pereira et al., 2015; Gendrel et al.,

2016; Zheng et al., 2015; Dasen and Jessell, 2009; Philippidou and Dasen, 2013), homeobox TFs

play an important role in specifying cell types in the brain.

Diversity arising from alternative splicing
Alternative splicing is known to increase transcriptome diversity (Andreadis et al., 1987). To assess

the contribution of alternative splicing to diversifying transcriptomes across cell populations, we

quantified the branch probabilities at each alternative splice donor site within each gene (Figure 6A

top). The branch probabilities at each donor site are the relative frequencies with which particular

splice acceptors are chosen, and can be estimated from observed junction read counts. Branch prob-

abilities are highly bimodal (Figure 6A bottom), suggesting that most branch point choices are

made consistently, in an all-or-none fashion, for any given cell population.

To test the significance of differential splicing across cell populations, we utilized a statistical test

based on the Dirichlet-Multinomial distribution and the log-likelihood ratio test, developed in Leaf-

Cutter (Li et al., 2018). We used pair-wise differential expression of each branch to calculate a

branch DEF, much as we previously calculated the differentially expressed fraction (DEF) from

expression values (Figure 3). Examples of branches with high DEFs are shown in Figure 6B. The list

includes known examples like the site of the flip and flop variants of the AMPA receptor subunit

Gria2 (Sommer et al., 1990). Another previously known example is the splicing regulator muscle-

blind like splicing factor 2 (Mbnl2), which is known to regulate splicing in the developing brain

(Charizanis et al., 2012) and is known to be spliced at multiple sites, including the one shown in

Figure 6B (Pascual et al., 2006).

In order to determine which families of genes are highly differentially spliced, we computed a

splice DEF per gene by combining the ability of a gene’s alternatively spliced sites to distinguish a

pair of samples (i.e. a pair is distinguished by a gene if any alternatively spliced site in the gene can

distinguish the pair). Using this combined splice DEF, we found that RNA binding proteins, espe-

cially splicing related factors (such as Pcbp2 and Mbnl2) are highly alternatively spliced among neu-

ronal cell types (Zheng and Black, 2013), but over-represented categories also included other

families such as Glutamate receptors and G-protein modulators (Figure 6C).

Figure 5 continued

Figure supplement 2. Homeobox TFs form a combinatorial code.

DOI: https://doi.org/10.7554/eLife.38619.021

Figure supplement 3. OFF noise in single-cell datasets.

DOI: https://doi.org/10.7554/eLife.38619.022

Figure supplement 4. OFF noise and gene length in Homeobox subfamilies.

DOI: https://doi.org/10.7554/eLife.38619.023
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To begin to assess the functional impact of alternative splicing, we determined which alternative

sites lead to inclusion or exclusion of a known protein domain using the Pfam database (Finn et al.,

2015). In addition to providing information relevant to the potential functions of many previously

unknown isoforms, our analysis also provides a more comprehensive view of known splice events.

Two examples are shown in Figure 6D. Alternative splicing of Amyloid precursor-like protein 2

(Aplp2) is known to regulate inclusion of a bovine pancreatic trypsin inhibitor (BPTI) Kunitz domain

(Sandbrink et al., 1997) and this domain is known to regulate proteolysis of the related protein

APP, the amyloid precursor protein implicated in Alzheimer’s disease (Beckmann et al., 2016). Dif-

ferential inclusion of this exon is known to occur between neurons and nonneurons. Intriguingly, we
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found that splicing at this site in hippocampal interneurons differs not only from that in forebrain

excitatory neurons, but also from other forebrain inhibitory neurons in neocortex and striatum.

Kalirin (Kalrn) is a RhoGEF kinase implicated in Huntington’s disease, schizophrenia and synaptic

plasticity (Penzes and Jones, 2008). Kalrn is known to be regulated via binding of adaptor proteins

to its SH3 (SRC homology 3) domains (Schiller et al., 2006) which is regulated by alternative splicing

of this domain. In addition to expanding the number of known variants (blue exons and junctions in

Figure 6D) we reveal their detailed distribution across the profiled set of neural populations. In total,

the data reveal a detailed quantitative view of hundreds of thousands of known and unknown cell-

type-specific splicing events, providing an unmatched resource for investigating their functional

significance.

Not all splicing events alter the inclusion or exclusion of known protein domains. Many splicing

events introduce frame shifts or new stop codons and hence are predicted to lead to nonsense-

mediated decay (NMD). Coupling of regulated splicing to NMD is believed to be an important

mechanism for regulating protein abundance (Lewis et al., 2003). Consistent with previous observa-

tions (Yan et al., 2015; Mauger and Scheiffele, 2017), we noticed that most alternative sites con-

tain branches that can lead to NMD (Figure 6E). This suggests that alternative splicing may

contribute not only to the diversity of isoforms present, but also to diversity defined on the basis of

transcript abundance.

The present results provide a comprehensive resource of known and novel splicing events across

a large number of neuronal cell types. Altogether, nearly 70% of alternative sites lead to differential

inclusion of a known Pfam domain or NMD (Figure 6E), and thus to functional or quantitative diver-

sity across cell types.

Long genes contribute disproportionately to neuronal diversity
We found that neuronal effector genes (ion channels, receptors and cell adhesion molecules, etc.)

have the greatest ability to distinguish cell populations (Figure 4E). Previously, these categories of

genes have been found to be selectively enriched in neurons and to share the physical characteristic

of being long (Sugino et al., 2014; Gabel et al., 2015; Zylka et al., 2015). Consistent with this,

DEF, which approximates the mutual information (MI) between expression levels and cell popula-

tions, is significantly correlated with length (Figure 7A; correlation coefficient = 0.19; p=7.5e-189),

reaching a maximum for the very longest genes. Long genes (�100 kb) have nearly twice the aver-

age ability to distinguish cell populations (DEF) as shorter genes (Figure 7A), and provide greater

family-wise separation between cell types (Figure 7C). Analyzing publicly available single-cell data

confirms that this bias is broadly observable (Figure 7—figure supplement 1). In contrast, FCR,

which measures the signal-to-noise or robustness of expression differences, is higher for shorter

genes, reaching a maximum for genes below 10 kbp in length (Figure 7B).

Recently, (Raman et al., 2018) have argued that many prior observations of long gene bias are

not significant when controlling for baseline variability in length-dependent expression. In order to

assess the applicability of this argument to the present observations, we compared the fold-changes

across length between groups and within replicates of individual groups as in Raman et al. (2018).

An example of this test applied to two populations is shown in Figure 7—figure supplement 2A,B.

Even after applying corrections for multiple comparisons across all bins, the long gene bins

(�100 kb) are highly significant. Panels C,D of this figure illustrate the results of performing this com-

parison for all GACPs in our dataset. The median fraction of significant long gene bins (0.89) greatly

exceeded the fraction of short gene bins (0.1). A more detailed analysis of the test developed by

Raman et al. and its application to other observations will be published elsewhere.

In addition to being differentially expressed, long genes are likely to have a larger number of

exons and hence a greater potential for differential splicing. To evaluate the degree to which differ-

ential splicing of long genes contributes to distinguishing cell populations we plotted the splice DEF

(Figure 6) as a function of gene length. As expected, DEF calculated from differential splicing also

increased with gene length (Figure 7D), although the slope was more gradual and the maximum

DEF value achieved was less than that for gene expression (Figure 7A). For each gene, we measured

the fraction of cell populations pairs that could be distinguished on the basis of differential expres-

sion, differential splicing, or both. This revealed that for the current dataset, the average alterna-

tively spliced gene distinguishes only 1.4% of cell populations, but distinctions based on expression

of these same genes were nearly 10 times more common (13.9%, Figure 7E).
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Finally, to determine whether neuronal long gene expression contributes more to profiles in

some anatomical regions than in others, we plotted the fraction of the longest genes expressed in

neuronal and nonneuronal populations across each of the major brain regions studied. The results

confirm strong differences between neurons and nonneurons and show the strongest long gene

expression in forebrain regions, with weaker expression evident in hindbrain (Figure 7F). Analyses of

single-cell datasets revealed similar trends (Figure 7—figure supplement 3).

Discussion

A resource of genetically identified neuronal transcriptomes
The dataset presented here is the largest collection of transcriptomes of anatomically and geneti-

cally specified neuronal cell types available in a mammalian species (Table 1). The approach

employed in this study provides a complementary view of neuronal diversity to that afforded by SC
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Figure 7. Long genes have a greater capacity for distinguishing cell populations. (A) DEF as a function of gene

length. For violin plots in A, B, D, genes are sorted by length and binned (four bins per log unit). (B) Robustness of

expression difference (FCR) as a function of gene length. (C) Orthogonality of expression patterns calculated as in

Figure 5E, but using long neuronal genes (n = 1829, �100 kb) and short neuronal genes (n = 10572, <100 kb)

rather than functionally defined gene families. Z-score is 33.2 for long and 22.1 for short neuronal genes. Both are

highly different from randomly sampled genes (green solid lines mean and Std. Dev.; dashed lines = 99%

confidence interval), but long genes provide greater separation. (D) Splice DEF as a function of gene length. (E)

Fraction of pairs distinguished by splicing (splice-only), transcript abundance (exp-only), or by both measures. (F)

Variation in long gene expression in neuronal and nonneuronal populations across major brain regions studied.

Error bars are SEM. (CTXsp consisted of single region: Claustrum.)

DOI: https://doi.org/10.7554/eLife.38619.025

The following figure supplements are available for figure 7:

Figure supplement 1. DEF length bias in SC datasets.

DOI: https://doi.org/10.7554/eLife.38619.026

Figure supplement 2. Significant length differences using the test proposed by Raman et al. (2018) evaluating

length dependent differences by comparing expression ratios between groups to those within a single group.

DOI: https://doi.org/10.7554/eLife.38619.027

Figure supplement 3. Regional bias of long gene expression in SC datasets.

DOI: https://doi.org/10.7554/eLife.38619.028
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sequencing. By sorting and pooling ~100 cells chosen based on genetic and anatomical similarity,

we generated profiles with low noise and high depth, but, where tested, with a comparable degree

of homogeneity, as that obtained in recent SC studies.

The fact that each transcriptome corresponds to a genetically (or retrogradely) labeled population

will foster reproducible studies across investigators. The few profiles in our study that mapped to

more than one SC profile (Figure 2), may represent cell types better distinguishable using SCs or

improved genetic markers, or alternatively, may represent cell populations that are highly overlap-

ping. The optimal granularity with which cell types may be distinguished remains an open question.

Pooling cell profiles either prior to sequencing, as in this study, or after sequencing at the clustering

phase, as in SC studies, risks compromising profile homogeneity. However, over-fragmenting clus-

ters risks the opposite problem of reducing the reliability and reproducibility with which populations

can be distinguished across studies. Given the complementary advantages of improved reproducibil-

ity and separability afforded by pooling profiles, and of reduced heterogeneity afforded by maxi-

mally separating profiles, further integration of these approaches with other modalities, such as FISH

(Moffitt et al., 2016) are needed to accurately profile the full census of brain cell types. By linking

these efforts to genetically identified neurons, the present dataset provides a useful resource for

these efforts.

A transcriptional code for neuronal diversity
We utilized easily calculated metrics that capture essential features of the robustness and informa-

tion content of transcriptome diversity. These measures are simply versions of Fold-Change (FCR)

and Differential Expression (DEF) adapted to the analysis of many separate populations simulta-

neously. Importantly, they capture independent components of the differences captured by vari-

ance-based metrics like ANOVA and CV (Figure 4A, Figure 3—figure supplement 1). Metrics like

ANOVA are influenced jointly by signal-to-noise and mutual information, while FCR and DEF better

separate them (Figure 3—figure supplement 1) and so these metrics may be more broadly useful

when making genome-wide comparisons across many populations. In the present dataset, FCR and

DEF identified two very different sets of genes contributing to neuronal diversity: high FCR, low-

noise genes, exemplified by homeobox transcription factors, and high DEF, long neuronal effector

genes like ion channels, receptors and cell adhesion molecules.

The homeobox family of TFs exhibited the most robust (high FCR) expression differences across

cell types (Figure 4D). These ON/OFF differences were characterized by extremely low expression

in the OFF state (Figure 5). Mechanistically, the low expression was associated with reduced

genome accessibility measured by ATAC-seq (Figure 5C,D), presumably reflecting epigenetic regu-

lation of the OFF state, known to occur for example at the clustered Hox genes via Polycomb group

(PcG) proteins (Montavon and Soshnikova, 2014). Although this regulation has been studied most

extensively at Hox genes, genome-wide ChIP studies reveal that PcG proteins are bound to over

100 homeobox TFs in ES cells (Boyer et al., 2006). Our results indicate that strong cell-type-specific

repression persists in the adult brain, presumably due to the continued functional importance of pre-

venting even partial activation of inappropriate programs of neuronal identity.

Although individually, homeobox TFs contain less information about cell types than long neuronal

effector genes, their patterns of expression are highly orthogonal and therefore their joint expres-

sion pattern is highly informative. As a group, homeobox TFs distinguished more than 99% of neuro-

nal cell types profiled (Figure 5—figure supplement 2). (Note this includes several Purkinje and

hippocampal pyramidal cell groups that may actually represent duplicate examples of the same cell

types). Historically, homeobox TFs are well known to combinatorially regulate neuronal identity in

Drosophila and C. elegans (Pereira et al., 2015; Gendrel et al., 2016) and the vertebrate brainstem

and spinal cord (Dasen and Jessell, 2009; Philippidou and Dasen, 2013). Our results suggest a

broader importance of homeobox TFs throughout the mammalian nervous system. Continued

expression of these factors in adult neurons suggests that they likely also contribute to the mainte-

nance of neuronal identity.

Long genes and neuronal diversity
Our study suggests that long neuronal effector genes contribute disproportionately to neuronal tran-

scriptional diversity (Figure 7). Previously, it was reported that differences in transcript length can
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bias differential expression analysis of RNA-seq data (Oshlack and Wakefield, 2009). To ensure that

we avoided this bias, we used counts of reads only from within the one kbp-long 3’ ends of the

genes for calculating expression values. Recently, an alternative statistical analysis has been used to

argue that some of these length biases may be artefactual (Raman et al., 2018). Despite concerns

about the rigor of this analysis (manuscript in preparation), we found that the observed length biases

remain highly significant, even within this statistical framework (Figure 7—figure supplement 2),

suggesting that they are robust features of the transcriptional differences between neuronal

populations.

Long genes are expressed at higher levels in neurons than in nonneuronal cells in the nervous sys-

tem, a bias that was also present in SC datasets (Figure 7—figure supplements 1 and 2) and that

has been reported previously (Sugino et al., 2014; Gabel et al., 2015; Zylka et al., 2015). These

differences are greatest in the forebrain (Figure 7F; Figure 7—figure supplement 2), perhaps

reflecting the large numbers of distinct cell types in these regions and the enhanced ability of these

genes to distinguish GACPs based on their expression. However, we and others did not measure

cell-type-specific protein expression, and so cannot be sure that the long gene bias extends to the

level of neuronal proteins.

Long genes tend to have larger numbers of exons and therefore are likely to be expressed in a

larger number of distinct isoforms as a result of alternative splicing (alternative start sites also con-

tribute). We quantified differential splicing from analysis of junctional reads. Interestingly, branch

probabilities at most sites of alternative splicing were highly bimodal (Figure 6A), suggesting that

within each GACP, splicing is largely all or none, a finding previously reported in single immune cells

(Shalek et al., 2013) but not found in some single neuron studies (Gokce et al., 2016). This led to

patterns that often flipped between high and low probabilities for a given branch as one traversed

major brain region boundaries (Figure 6B). More than two thirds of these splicing events lead to

inclusion or exclusion of known protein domains (Figure 6E), but many of these, as well as some of

the remaining events that do not modify domain structure, also introduce a frame shift or premature

stop codon, and so are predicted to lead to nonsense mediated decay (NMD). We did not directly

test the contribution of NMD to transcript abundance, but our splicing results are consistent with

the idea that this may be an important mechanism for regulating transcript stability and hence tran-

script abundance across different cell populations (Yan et al., 2015; Traunmüller et al., 2014).

While differential splicing is able to distinguish fewer GACPs than transcript abundance (Figure 7E),

this may be an underestimate for two reasons. First, as just noted, splicing may influence transcript

abundance through NMD, and second, the sensitivity to detect splicing differences depends on an

adequate number of junctional reads. Deeper sequencing could increase the apparent contribution

of this component of neuronal diversity.

Long genes are enriched in the signaling molecules, receptors and ion channels responsible for

input/output transformations in neurons, and the cell adhesion molecules that specify neuronal con-

nectivity. The finding that these genes play an important role in diversifying cortical interneurons

(Paul et al., 2017), as well as distinguishing the larger set of populations studied here, is sensible in

light of the phenotypic diversity required for neuronal communication and connectivity. These genes

are long because of long introns that are rich in sequences derived from transposons and other ret-

roelements (Grishkevich and Yanai, 2014). Whether or how this increased length has any functional

significance for the regulation of these genes is unclear from our studies, but it is intriguing that

these long genes are disrupted in forms of autism spectrum disorder (Zylka et al., 2015; Wei et al.,

2016) and in the related developmental disorder Rett Syndrome (Sugino et al., 2014; Gabel et al.,

2015), where loss of the chromatin protein Mecp2 leads to selective upregulation of long neuronal

genes in a highly cell-type-specific fashion. These studies suggest the possibility that long neuronal

genes are subject to distinct modes of regulation, with particular significance for neuronal diversity.

In contrast to long neuronal effector genes, which tend to be expressed later in development as

neurons mature phenotypically (Okaty et al., 2009), low noise, high FCR genes are frequently critical

for early development. These genes, such as many of the homeobox TFs, are often quite short and,

at least in the case of the Hox genes, are known to be remarkably transposon impoverished

(Waterston et al., 2002; Simons et al., 2006). This may reflect selection against transposon inser-

tion, but may also reflect chromatin that is non-permissive for insertion in germ cells and the early

embryo, where heritable transposition occurs. The high FCR/low OFF noise of many of these genes

detected here may reflect a transcriptional signature of this class of genes. Consistent with this view,
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low OFF noise genes were nearly six times shorter than high OFF noise genes (Figure 5—figure sup-

plement 1D). Highly restrictive chromatin at these genes may be established early in development

to protect them from disruptive transposition (Montavon and Soshnikova, 2014). If so, this tightly

closed state is maintained in postmitotic neurons where it may also prevent transcriptional signals

associated with inappropriate neural identities. This feature was not uniformly present across all sub-

families of homeobox transcription factors. Interestingly, however, the families with the highest FCR

and lowest noise also had the shortest length, while those with higher noise expression (and lower

FCR) were longer (Figure 5—figure supplement 4).

The observation that long genes contribute disproportionately to neuronal transcriptional diver-

sity is surprising both because of the increased metabolic cost of expressing them (Castillo-

Davis et al., 2002), and since these genes are frequent sites of genome instability associated with

genetic lesions leading to autism and other developmental disorders (Wei et al., 2016). These

apparent disadvantages may be too weak to lead to selection against long gene expression in mam-

malian neurons. If this is not the case, however, it raises the question of why the mechanisms used to

prevent elongation of shorter, low OFF noise genes were not also applied to neuronal effector

genes. This could simply reflect developmental or later functional constraints that exclude the use of

these epigenetic protection mechanisms. Alternatively, length itself may confer some advantages

that outweigh other disadvantages. This could occur either through benefits provided by the diversi-

fication of alternative splicing, or through regulatory features contained within intronic sequences

(Zhao et al., 2018).

Materials and methods

Cell types and mouse lines
We assume that cell types are organized hierarchically in a tree-like fashion proceeding from major

branches (e.g. ’cortical excitatory neuron’) to more specialized subtypes, with the terminal ’leaf-level’

branches comprising ’atomic’ cell types. Profiled cell populations are defined operationally by the

intersection of a transgenic mouse strain (or in some cases anatomical projection target) and a brain

region. Mouse lines profiled in this study are summarized in Supplementary file 1. Most were

obtained from GENSAT (Gong et al., 2007) or from the Brandeis Enhancer Trap Collection

(Shima et al., 2016). For Cre-driver lines, the Ai3, Ai9 or Ai14 reporter (Madisen et al., 2010) was

crossed and offspring hemizygous for Cre and the reporter gene were used for profiling. Information

on samples profiled is in Supplementary file 2. Populations profiled are designed to sample regions

and cell types across the mouse brain within the limits of available resources. In addition several

non-brain samples were profiled as out-groups. Replicate numbers (averaging three across all popu-

lations) are in Supplementary file 2. Replicates were obtained in single animals, except for a few

cases in which pooling across animals was needed due to difficulty in sorting. Our study used a small

number of replicates (n = 2–4) per population to maximize the number of populations studied, while

still allowing calculation of summary statistics. No explicit power analysis was performed. No attempt

was made to remove outliers. Sequenced libraries were not used when total reads were low (<5M

reads). Out of 179 neuronal GACPs, there are 165 groups which have more than one replicate. Of

these, 14 were recent additions, and most analyses were performed with the remaining 151 groups.

All experiments were conducted in accordance with the requirements of the Institutional Animal

Care and Use Committees at Janelia Research Campus and Brandeis University.

Tissue data
In addition to cell-type-specific data obtained in this study, we analyzed publicly available RNA-seq

data using tissue samples. Information on these samples are described in Supplementary file 3.

Atlas
Animals were anesthetized and perfused with 4% paraformaldehyde and brains were sectioned at

50�m thickness. Every fourth section was mounted on slides and imaged with a slide scanner

equipped with a 20x objective lens (3DHISTECH; Budapest, Hungary). In house programs were used

to adjust contrast and remove shading caused by uneven lighting. Images were converted to a

zoomify-compatible format for web delivery and are available at http://neuroseq.janelia.org.
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Cell sorting
Manual cell sorting was performed as described (Hempel et al., 2007; Sugino et al., 2014). Briefly,

animals were sacrificed following isoflurane anesthesia, and 300�m slices were digested with pronase

E (1 mg/ml, P5147; Sigma-Aldrich) for 1 hr at room temperature, in artificial cerebrospinal fluid

(ACSF) containing 6,7-dinitroquinoxaline-2,3-dione (20�M; Sigma-Aldrich), D-(�)�2-amino-5-phos-

phonovaleric acid (50�M; Sigma-Aldrich), and tetrodotoxin (0.1�M; Alomone Labs). Desired brain

regions were micro-dissected and triturated with Pasteur pipettes of decreasing tip size. Dissociated

cell suspensions were diluted 5–20 fold with filtered ACSF containing fetal bovine serum (1%;

HyClone) and poured over Petri dishes coated with Sylgard (Dow Corning). For dim cells, Petri

dishes with glass bottoms were used. Fluorescent cells were aspirated into a micropipette (tip diam-

eter 30–50�m) under a fluorescent stereomicroscope (M165FC; Leica), and were washed three times

by transferring to clean dishes. After the final wash, pure samples were aspirated in a small volume

(1~3�l) and lysed in 47�l XB lysis buffer (Picopure Kit, KIT0204; ThermoFisher) in a 200�l PCR tube

(Axygen), incubated for 30 min at 40˚C on a thermal cycler and then stored at �80˚C. Detailed infor-

mation on profiled samples are provided in Supplementary file 2.

RNA-seq
Total RNA was extracted using the Picopure kit (KIT0204; ThermoFisher). Either 1 �l total, or 1�l per

50 sorted cells of 10-5 dilution of ERCC spike-in control (#4456740; Life Technologies) was added to

the purified RNA and vacuum concentrated to 5 �l and immediately processed for reverse transcrip-

tion using the NuGEN Ovation RNA-Seq System V2 (#7102; NuGEN) which yielded 4~8�g of ampli-

fied DNA. Amplified DNA was fragmented (Covaris E220) to an average of ~200 bp and ligated to

Illumina sequencing adaptors with the Encore Rapid Kit (0314; NuGEN). Libraries were quantified

with a KAPA Library Quant Kit (KAPA Biosystems) and sequenced on an Illumina HiSeq 2500 with 4

to 32-fold multiplexing (single end, usually 100 bp read length, see Supplementary file 2).

RNA-seq analysis
Adaptor sequences (AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC for Illumina sequencing

and CTTTGTGTTTGA for NuGEN SPIA) were removed from de-multiplexed FASTQ data using cuta-

dapt v1.7.1 (http://dx.doi.org/10.14806/ej.17.1.200) with parameters ’–overlap = 7 –minimum-

length = 30’. Abundant sequences (ribosomal RNA, mitochondrial, Illumina phiX and low complexity

sequences) were detected using bowtie2 (Langmead and Salzberg, 2012) v2.1.0 with default

parameters. The remaining reads were mapped to the UCSC mm10 genome using STAR

(Dobin et al., 2013) v2.4.0i with parameters ’–chimSegmentMin 15 –outFilterMismatchNmax 3’.

Mapped reads are quantified with HTSeq (Anders et al., 2015) using Gencode.vM13

(Harrow et al., 2012).

Annotations
For reference annotations we used Gencode.vM13 (Harrow et al., 2012) downloaded from http://

www.gencodegenes.org/, and NCBI RefSeq (Pruitt et al., 2014) downloaded from the UCSC

genome browser.

Pan-neuronal genes
Pan-neuronal genes satisfied the following conditions: (1) mean neuronal expression level (NE) > 20

FPKM, (2) minimum NE > 5 FPKM, (3) mean NE > maximum nonneuronal expression level (NNE), (4)

minimum NE > mean NNE, (5) mean NE > 4x mean NNE, (6) mean NE > mean NNE + 2x standard

deviation of NNE, (7) mean NE � 2x standard deviation of NE > mean NNE.

DEF/FCR/DM calculation
To calculate DEF, the following criteria were used to assign a ’1’ or ’0’ to each element in the differ-

entiation matrix (DM): absolute log fold change >2 and q-value <0.05. Q-values were calculated

using the limma package including the voom method (Law et al., 2014). To adjust the power to be

similar across cell types, two replicates (the most recent two) were used for all cell populations with

more than two replicates. We have tried the same calculations with three replicates (using a fewer

number of cell populations) and obtained similar results (data not shown). To avoid possible bias in
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variances due to transcript length differences (Oshlack and Wakefield, 2009), we quantified counts

using reads from within the 3’ 1 kbp of each gene. For genes with transcript lengths shorter than

one kbp, we used the whole gene length. We also calculated DEF and FCR across five SC datasets:

For (Zeisel et al., 2015; Tasic et al., 2016) and (Tasic et al., 2018), we used log fold change >1 and

q-value <0.05 calculated using the limma/voom method for differential gene expression. For

(Saunders et al., 2018) and (Zeisel et al., 2018), only cluster average expression was available, and

log fold change >1 was defined as the criterion for differential expression.

Overrepresentation, orthogonality and minimal gene sets
Overrepresentation analysis was performed using the top-level HUGO gene groups (Figures 4–

6) and was supplemented (Figure 6, Figure 4—figure supplement 1, Figure 5—figure supple-

ments 1 and 3) using the PANTHER Classification System and the Molecular Function component of

the Gene Ontology Annotation (GOM). Orthogonality quantifies the non-redundancy across expres-

sion patterns. We calculated orthogonality (Figure 5E) as the mean pairwise decorrelation (1- Pear-

son’s corr. coef.) over a family of genes. Gene groups with less than 50 members were excluded,

since variance of this measure was much larger in small groups of randomly selected genes (dashed

green lines in Figure 5E). Minimal gene sets capable of serving as combinatorial codes across cell

populations (Figure 5—figure supplement 2) were calculated by a greedy algorithm using the Dif-

ferentiation Matrix (DM) defined in Figure 3. Specifically, from a set of genes (such as homeobox

TFs or other families), the gene with the highest DEF was chosen as the first member of the set. Suc-

cessive members were chosen, irrespective of their individual DEF, so as to maximize the combined

DEF of the set. The combined DEF is the fraction of pairs distinguished by any gene in the group,

and is calculated from the combined DM, which is the logical OR of the individual DMs for each

gene in the group. This procedure continued until the combined DEF exceeded the desired thresh-

old (0.99 in the case of Figure 5—figure supplement 2). The homeoboxes set was constructed by

merging the HUGO Homeoboxes gene group and the PANTHER homeobox protein TFs (PC00119)

and had 156 genes. The GPCRs set is a merging of G protein-coupled receptors in HUGO and

G-protein coupled receptors (PC00021) in PANTHER and has 347 genes.

Calculation of differential splicing
To identify differential splicing, we utililzed a statistical test based on the Dirichlet-Multinomial distri-

bution and the log-likelihood ratio test, developed in LeafCutter (Li et al., 2018). However, instead

of using a group of connected introns as a unit for tests (as done in LeafCutter), we used a group of

introns originating from an alternative donor site. Total junctional reads at an alternative donor > 10

was a prerequisite for testing. DM for alternative donors were then calculated as 1 for pairs of cell

populations with p<0:05 and maximum delta-PSI > 0.1, and 0 for others. (delta-PSI: absolute differ-

ence of PSI, proportion-spliced-in,)

NNLS/random forest decomposition
The following single-cell datasets were downloaded and used for decomposition: (Zeisel et al.,

2015) (NCBI GEO GSE60361), (Tasic et al., 2016) (NCBI GEO GSE71585), (Tasic et al., 2018)

(http://celltypes.brain-map.org/rnaseq), (Zeisel et al., 2018) (http://mousebrain.org/),

(Saunders et al., 2018) (dropviz.org). Deposited count data were converted to log2ðCPM þ 1Þ and

used for comparison. The NeuroSeq dataset was quantified using RefSeq and featurecount

(Liao et al., 2014) and converted into log2ðCPM þ 1Þ. Subsets of genes common to NeuroSeq, Tasic

2018 and Zeisel 2018 datasets were used for decomposition. To account for differences in distribu-

tions of logCPM values between datasets, they were quantile-normalized to an average profile gen-

erated from the decomposed dataset. Since most genes in the single-cell profiles exhibited noisy

expression patterns, using the entire gene set for decomposition was not feasible. Therefore, we

selected genes deemed most informative for distinguishing cell classes based on the ANOVA F-sta-

tistic across cell classes (obtained using limma/voom in R). However, simply taking the top ANOVA

genes led to highly biased gene selection since some cell types exhibited much larger transcriptional

differences than others (e.g. many ANOVA selected genes were specific to microglia). We therefore

selected genes to reduce the redundancy between distinguished cell populations. Beginning with

the highest ANOVA gene (highest ANOVA F-value), genes were selected only if their DM
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(Differentiation Matrix defined in Figure 3) differed from those previously selected, enforced by

requiring a Jaccard index threshold of 0.5, across all studies. We chose the top 500 genes meeting

this criterion. Decompositions were performed on average profiles created by averaging NeuroSeq

replicates or by averaging single-cell profiles using cluster assignments provided by the authors.

NNLS was implemented using the R nnls library. For Random forest, the randomForest R package

was used.

ATAC-seq
Seven cell types, Purkinje and granule cells from cerebellum, pyramidal cells in layer

5 and 6 from neocortex, in the deep layers of entorhinal cortex, and in CA1 and CA1-3 of hippocam-

pus, labeled in mouse lines P036, P033, P078, 56L, P038, P064, and P036 respectively (all from

Shima et al., 2016) were profiled with ATAC-seq. They were isolated by FACS to obtain ~40,000

labeled neurons. ATAC libraries for Illumina next-generation sequencing were prepared in accor-

dance with a published protocol (Buenrostro et al., 2013). Briefly, collected cells were lysed in

buffer containing 0.1% IGEPAL CA-630 (I8896, Sigma-Aldrich) and nuclei pelleted for resuspension

in tagmentation DNA buffer with Tn5 (FC-121–1030, Illumina). Nuclei were incubated for 20–30 min

at 37˚C. Library amplification was monitored by real-time PCR and stopped prior to saturation (typi-

cally 8–10 cycles). Library quality was assessed prior to sequencing using BioAnalyzer estimates of

fragment size distributions looking for a ladder pattern indicative of fragmentation at nucleosome

intervals as well as qPCR to determine relative enrichment at two housekeeping genes compared to

background (specifically the TSS of Gapdh and Actb were assessed relative to the average of three

intergenic regions). For sequencing, Illumina HiSeq 2500 with 2 to 4-fold multiplexing and paired

end 100 bp read length was used. In addition to ATAC-seq, RNA-seq was performed on replicate

samples of ~2000 cells collected in a similar way, and library prepared using the same method

described above.

ATAC-seq analysis
Nextera adaptors (CTGTCTCTTATACACATCT) were trimmed from both ends from de-multiplexed

FASTQ files using cutadapt with parameters ”-n 3 -q 30,30 m 36’. Reads were then mapped to

UCSC mm10 genome using bowtie2 (Langmead and Salzberg, 2012) with parameters ”-X2000 –

no-mixed –no-discordant’. PCR duplicates were removed using Picard tools (http://broadinstitute.

github.io/picard, v2.8.1) and reads mapping to mitochondrial DNA, scaffolds, and alternate loci

were discarded. BigWig genomic coverage files were generated using bedtools (Quinlan and Hall,

2010) and scaled by the total number of reads per million.

Anatomical region abbreviations
Region abbreviations: ACB: Nucleus accumbens AD: Anterodorsal nucleus AI: Agranular insular area

AMd: Anteromedial nucleus, dorsal part AOBgr: Accessory olfactory bulb, granular layer AOBmi:

Accessory olfactory bulb, mitral layer AP: Area postrema ARH: Arcuate hypothalamic nucleus AV:

Anteroventral nucleus of thalamus CA: Hippocampus Ammon’s horn CA1: Hippocampus field CA1

CA1sp: Hippocampus field CA1, pyramidal layer CA3: Hippocampus field CA3 CEAm: Central amyg-

dalar nucleus, medial part CEAl: Central amygdalar nucleus, lateral part CL: Central lateral nucleus

of the thalamus COAp: Cortical amygdalar area, posterior part CP: Caudoputamen CSm: Superior

central nucleus raphe, medial part CUL4,5gr: Cerebellum lobules IV-V, granular layer CUL4,5mo:

Cerebellum lobules IV-V, molecular layer CUL4,5pu: Cerebellum lobules IV-V, Purkinje layer DCO:

Dorsal cochlear nucleus DG: Hippocampus dentate gyrus DMHp: Dorsomedial nucleus of the hypo-

thalamus, posterior part DMX: Dorsal motor nucleus of the vagus nerve DR: Dorsal nucleus raphe

ECT: Ectorhinal area IC: Inferior colliculus IG: Induseum griseum IO: Inferior olivary complex isl:

Islands of Calleja islm: Major island of Calleja LC: Locus ceruleus LGd: Dorsal part of the lateral

geniculate complex LHA: Lateral hypothalamic area MM, Medial mammillary nucleus MO: Somato-

motor area MOBgl: Main olfactory bulb, glomerular layer MOBgr: Main olfactory bulb, granular layer

MOBmi: Main olfactory bulb, mitral layer MOE: main olfactory epithelium MOp5: Primary motor

area, layer 5 MV: Medial vestibular nucleus NTS: Nucleus of the solitary tract NTSge: Nucleus of the

solitary tract, gelatinous part NTSm: Nucleus of the solitary tract, medial part ORBm: Orbital area,

medial part OT: Olfactory tubercle PAG: Periaqueductal gray PBl: Parabrachial nucleus, lateral
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division PCN: Paracentral nucleus PG: Pontine gray PIR: Piriform area PRP: Nucleus prepositus PVH,

Paraventricular hypothalamic nucleus PVHd: Paraventricular hypothalamic nucleus, descending divi-

sion PVHp, Paraventricular hypothalamic nucleus, parvicellular division PVT: Paraventricular nucleus

of the thalamus PYRpu: Cerebellum Pyramus (VIII), Purkinje layer RPA: Nucleus raphe pallidus RSPv:

Retrosplenial area, ventral part RT, Reticular nucleus of the thalamus SCH: Suprachiasmatic nucleus

SCm: Superior colliculus, motor related SFO: Subfornical organ SNc: Substantia nigra, compact part

SO: Supraoptic nucleus SSp: Primary somatosensory area SSs: Supplemental somatosensory area

SUBd-sp: Subiculum, dorsal part, pyramidal layer VII: Facial motor nucleus VISp: Primary visual area

VISp6a: Primary visual area, layer 6a VNO: vemoronasal organ VPM: Ventral posteromedial nucleus

of the thalamus VTA: Ventral tegmental area
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Allen Brain Map ,
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Appendix 1

DOI: https://doi.org/10.7554/eLife.38619.033

Relationship between DEF and Gini-Simpson index or MI
Here we explore in more detail the relationship between DEF (differentially expressed fraction

of populations) and Gini-Simpson index (GSI) or MI (mutual information). DEF of a gene is

equivalent to the Gini-Simpson index calculated using distinguishable levels of expression of

the gene and it is also closely related to mutual information between (discretized) expression

levels and cell population labels.

Assume there are Ne distinguishable expression levels of a gene and there are ni cell

population groups in level i. Then, the Gini-Simpson index (GSI) is:

GSI ¼ 1�
XNe

i¼1

p2i (1)

¼ 1�
XNe

i¼1

niðni� 1Þ

NðN� 1Þ
(2)

Where pi is the probability of randomly selected element being in expression level i and

N ¼
PNe

i¼1
ni is the total number of groups. The second equation holds since p2i ¼ niðni �

1Þ=NðN � 1Þ for sampling without replacement.

Since niðni � 1Þ=NðN � 1Þ ¼ ðniðni � 1Þ=2Þ=ðNðN � 1Þ=2Þ, this term is the fraction of pairs in

level i. So the sum of these are the total fraction of indistinguishable pairs and one minus this

sum equals the fraction of distinguishable pairs, which is DEF. Thus, DEF is equivalent to the

Gini-Simpson index calculated using distinguishable levels of expression.

To calculate mutual information between expression levels and cell populations, we

discretize expression levels into Ne levels. Let Ns be the number of samples. Let nij be counts in

the contingency table where i ¼ 1; :::;Ne and j ¼ 1; :::;Ns. Then the joint probability distribution

and the marginal probability distribution can be written as:

pði; jÞ ¼
nij

Ns

(3)

pðiÞ ¼

P
j nij

Ns

¼
ni

Ns

(4)

pðjÞ ¼

P
i nij

Ns

¼
nj

Ns

(5)

Where ni ¼
P

j nij and nj ¼
P

i nij is the number of samples in level i and nj is the number of

replicates in cell type j. The mutual information between expression level (E) and samples (S)

is:
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IðE;SÞ ¼
X

i;j

pði; jÞ log
pði; jÞ

pðiÞpðjÞ
(6)

¼
X

i;j

pði; jÞ log
pði; jÞ

pðjÞ
�
X

i;j

pði; jÞ logpðiÞ (7)

¼
X

i;j

pðjÞpðijjÞ logpðijjÞ�
X

i;j

pði; jÞ logpðiÞ (8)

¼
X

j

pðjÞ
X

i

pðijjÞ logpðijjÞ�
X

i

logpðiÞ
X

j

pði; jÞ (9)

¼�
X

j

pðjÞHðEjS¼ jÞ�
X

i

pðiÞ logpðiÞ (10)

¼�HðEjSÞþHðEÞ (11)

HðEjS ¼ jÞ is the entropy of expression levels in cell population j, which represents the

expression noise in cell population j, and HðEjSÞ is the average of these across all cell

populations. When there are no replicates, HðEjSÞ is zero. When there are replicates, HðEjS ¼

jÞ represents how noisy the expression is. This may depend on expression level, and HðEjSÞ,

the average of HðEjS ¼ jÞ may depend on expression prevalence (i.e., how widely the gene is

expressed), but in any case, the first term �HðEjSÞ represents reduction of the mutual

information by noise.

The second term HðEÞ is the entropy of the marginal distribution pðiÞ and represents the

main information content about cell groups encoded in expression levels. This can be

rewritten using counts in the contingency table as:

HðEÞ ¼�
X

i

pðiÞ logpðiÞ (12)

¼�
X

i

ni

Ns

log
ni

Ns

(13)

¼�
X

i

ni

Ns

logniþ
X

i

ni

Ns

logNs (14)

¼�
1

Ns

X

i

ni logni þ logNs (15)

Thus, it is maximized when all ni’s are 0 or 1, which corresponds to the case in which one

expression level corresponds to one cell population, making all cell populations

distinguishable by the expression levels. This is true when the number of discretization levels

exceeds the number of samples. When the number of discretization levels (Ne) is less than the

number of samples (Ns), HðEÞ takes the maximum value of logNe when all the samples are

distributed equally across each bin.

To explore the relationship between HðEÞ and DEF, the log ni in the first term is replaced

(approximated) by ðni � 1Þ (first two terms in the Taylor expansion of log ni around ni ¼ 1.):

HðEÞ~ �
1

Ns

X

i

niðni� 1Þþ logNs (16)

¼�
2

Ns

X

i

niðni � 1Þ=2þ logNs (17)

¼
2

Ns

NsðNs� 1Þ=2�
X

i

niðni� 1Þ=2

( )
�ðNs� 1Þþ logNs (18)

¼ ðNs� 1ÞDEF�ðNs� 1Þþ logNs (19)

Since ni is the number of samples in one expression level, niðni � 1Þ=2 is the number of

indistinguishable pairs in that expression level when there are no replicates. The term within

the curly bracket is then the number of distinguishable pairs, leading to Equation (19).

More formally, since both hðpÞ ¼
P

ni log ni and dðpÞ ¼
P

niðni � 1Þ ¼
P

n2i � Ns are Schur-

convex functions* on partitions of Ns, p ¼ ðn1; n2; :::; nkÞ, when partition p1 majorizes p2 then,

hðp1Þ � hðp2Þ and dðp1Þ � dðp2Þ. When the partition length is 2, that is, when expression levels
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are discretized into only two levels, corresponding to ON and OFF, then, all of the partitions

can be ordered with respect to majorization, therefore, hðpÞ and dðpÞ are order-preserved

transformations of each other (Figure 3—figure supplement 1C left). When the partition

length is greater than 2, this relationship is not satisfied. However, they are still highly

correlated to each other (Figure 3—figure supplement 1C right).

When DEF is calculated from global discretization (as in the above case), the maximum

number of pairs distinguishable occurs when all samples are equally distributed across bins

and the number of distinguishable pairs is Ns

Ne

� �2

NeðNe � 1Þ=2. Therefore,

maxðDEFÞ ¼
Ns

Ne

� �2
NeðNe� 1Þ=2

NsðNs� 1Þ=2
(20)

¼ 1�
1

Ne

� �
= 1�

1

Ns

� �
(21)

~1�
1

Ne

ðwhen Ns � 1Þ (22)

As stated above, this is also when the entropy HðEÞ takes the maximum value of log2 Ne in

the unit of bits. (Figure 3—figure supplement 1C)

* A Schur-convex function is a function f : Rk ! R which satisfies f ðxÞ � f ðyÞ for all x; y where

x majorizes y. For x ¼ ðx1; x2; :::; xkÞ 2 R
k where ðx1 � x2 � ::: � xkÞ and

y ¼ ðy1; y2; :::; ykÞ 2 R
k where ðy1 � y2 � ::: � ykÞ, x majorizes y when

Pk
i¼1

xi ¼
Pk

i¼1
yi andPj

i¼1
xi �

Pj
i¼1

yi for all j ¼ 1; :::; k. When x majorizes y, it follows xi � yi for all i, so it is easy to

see hðxÞ � hðyÞ and dðxÞ � dðyÞ.
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