
 International Journal of 

Molecular Sciences

Article

miR-25-3p, Positively Regulated by Transcription
Factor AP-2α, Regulates the Metabolism of C2C12
Cells by Targeting Akt1

Feng Zhang 1,2, Kun Chen 2, Hu Tao 1, Tingting Kang 2, Qi Xiong 1, Qianhui Zeng 2, Yang Liu 1,
Siwen Jiang 2,* and Mingxin Chen 1,*

1 Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal
Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
zhangfeng0130@163.com (F.Z.); taohu00@gmail.com (H.T.); phenixxq@163.com (Q.X.);
liuyang430209@163.com (Y.L.)

2 Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of
Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education,
College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
kunchen1989@163.com (K.C.); 13163228175@126.com (T.K.);
zengqianhui.hzau.cn@webmail.hzau.edu.cn (Q.Z.)

* Correspondence: jiangsiwen@mail.hzau.edu.cn (S.J.); chenmingxin18@163.com (M.C.);
Tel.: +86+027-8728-1378 (S.J.); +86+027-8768-0959 (M.C.)

Received: 15 January 2018; Accepted: 6 March 2018; Published: 8 March 2018

Abstract: miR-25, a member of the miR-106b-25 cluster, has been reported as playing an important
role in many biological processes by numerous studies, while the role of miR-25 in metabolism
and its transcriptional regulation mechanism remain unclear. In this study, gain-of-function
and loss-of-function assays demonstrated that miR-25-3p positively regulated the metabolism of
C2C12 cells by attenuating phosphoinositide 3-kinase (PI3K) gene expression and triglyceride (TG)
content, and enhancing the content of adenosine triphosphate (ATP) and reactive oxygen species
(ROS). Furthermore, the results from bioinformatics analysis, dual luciferase assay, site-directed
mutagenesis, qRT-PCR, and Western blotting demonstrated that miR-25-3p directly targeted the AKT
serine/threonine kinase 1 (Akt1) 3′ untranslated region (3′UTR). The core promoter of miR-25-3p
was identified, and the transcription factor activator protein-2α (AP-2α) significantly increased the
expression of mature miR-25-3p by binding to its core promoter in vivo, as indicated by the chromatin
immunoprecipitation (ChIP) assay, and AP-2α binding also downregulated the expression of Akt1.
Taken together, our findings suggest that miR-25-3p, positively regulated by the transcription factor
AP-2α, enhances C2C12 cell metabolism by targeting the Akt1 gene.
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1. Introduction

MicroRNAs (miRNAs) are endogenous, small (~22 nucleotides), and single-stranded noncoding
RNAs. The role of different miRNAs in biological systems is well established. They are generally
regarded as negative regulators of gene expression, as they bind to the 3′ untranslated region
(3′UTR) of messengerRNAs (mRNAs), leading to mRNA degradation and/or suppression of mRNA
translation [1–3]. Currently, thousands of miRNAs have been identified as participating in a number
of biological processes, such as cellular growth, proliferation, development, and metabolism [4].

Based on Solexa sequencing, the expression of microRNA-25 (miR-25) was higher in the
longissimus dorsi muscle of Large White pigs (a lean type) than in those of Tongcheng pigs (a Chinese
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indigenous fatty pig). Because skeletal muscle plays a vital role in whole-body metabolism [5],
we speculated that miR-25 could play a regulatory role in metabolism.

Previous studies have reported that miR-25 plays an important role in many biological processes.
The expression of miR-25-3p was significantly increased in the plasma of thyroid papillary carcinoma,
as compared with patients with benign tumors or healthy individuals [6]. miR-25 expression was
higher in ovarian epithelial tissue, gastric cancer, lung adenocarcinoma, and many other tumors, and
miR-25 expression levels were also closely related to tumor stage and lymph node metastasis [7–10].
Inhibition of miR-25 markedly improved cardiac contractility in the failing heart [11]. miR-25 could
protect cardiomyocytes against oxidative damage by downregulating the mitochondrial calcium
uniporter (MCU) [12]. Variations in miR-25 expression influenced the severity of diabetic kidney
disease [13]. However, to our knowledge, the role of miR-25 in metabolism has not been reported,
and its transcriptional regulatory mechanism is not clear.

Thus, in this study, we first investigated whether miR-25 was involved in metabolism by
gain-of-function and loss-of-function assays. Then, the target gene of miR-25, AKT serine/threonine
kinase 1 (Akt1), which is related to metabolism, was predicted and verified using bioinformatics
software and experiments. Finally, the core promoter of miR-25 was identified, and the binding of
the transcription factor activator protein-2α (AP-2α) to the core promoter was shown to promote the
transcriptional activity of miR-25 and downregulate Akt1 expression.

2. Results

2.1. miR-25 Is Highly Conserved in Mammals

Clustal Omega (Available online: https://www.ebi.ac.uk/Tools/msa/clustalo/) [14] was used
to build the phylogenetic tree of pre-miRNA of miR-25. The results show that compared with other
species selected in this study, the genetic relationship between mice and humans, cattle and goats,
and gorillas and rhesus monkeys is closer (Figure 1A). The mature sequences of miR-25 are highly
conserved in mammals, including pigs, mice, humans, goats, rats, hamsters, gorillas, chimpanzees,
cattle, and rhesus monkeys. The “seed” sequences of miR-25 are identical, although there is a base
deletion at the end of the chimpanzee sequence (ptr) (Figure 1B).
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Figure 1. miR-25 is highly conserved in mammals. (A) The phylogenetic tree of pre-miRNA of miR-25.
pre-miRNA sequences were obtained from NCBI. (B) The mature sequences of miR-25 in selected
species. These mature sequences were obtained from miRBase. Seed regions are highlighted in red.
ssc, sus scrofa; mmu, mus musculus; hsa, homo sapiens; chi, capra hircus; rno, rattus norvegicus;
cgr, cricetulus griseus; ggo, gorilla gorilla; ptr, pan troglodytes; bta, bos taurus; mml, macaca mulatta;
cfa, canis lupus familiaris.
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2.2. Effects of miR-25 on the Metabolism of C2C12 Cells

To investigate the role of miR-25-3p in metabolism, miR-25-3p mimics/negative control (NC)
or inhibitors/NC were respectively transfected into growing C2C12 cells (mouse muscle myoblasts).
The abundance of miR-25-3p was detected, which was ~3300-fold (p < 0.01) higher as compared with
another microRNA (Figure S1). The mRNA and protein expression levels of the metabolism-related
gene PI3K were repressed by miR-25-3p overexpression, while the levels of PI3K were upregulated in
the inhibitor group, as compared with the negative controls (Figure 2A,B).

In addition, the overexpression of miR-25-3p decreased levels of triglyceride (TG), whereas
the knockdown of miR-25-3p increased them (Figure 2C). Conversely, the overexpression of
miR-25-3p increased ATP and ROS levels, and the knockdown of miR-25-3p decreased their levels
(Figure 2D,E).These data indicate that miR-25-3p plays a role in metabolism.
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Figure 2. The effect of miR-25 on the metabolism of C2C12 cells. miR-25-3p mimics/NC or
inhibitors/NC were respectively transfected into growing C2C12 cells. After 48 h, PI3K expression
was detected by qRT-PCR (A) and Western blotting (B). After 24–48 h transfection, the levels of
triglyceride (TG) (C), ATP (D), and reactive oxygen species (ROS) (E) were measured with commercial
kits. The fluorescence of DCF represents the content of ROS. NC = negative control (miR-239b-5p of
caenorhabditis elegans). β-actin served as the loading control. Data were presented as means ± SD
(n ≥ 3); * p < 0.05; ** p < 0.01.

2.3. miR-25-3p Directly Targets Akt1

To explore the molecular mechanism of miR-25-3p effects on metabolism, the possible targets for
miR-25-3p were predicted using TargetScan, and a putative binding site for miR-25-3p was predicted in
the 3′UTR of Akt1 mRNA. miR-25-3p targeting elements in the Akt1-3′UTR were relatively conserved
in many mammals, including mice, humans, chimpanzees, rhesus monkeys, and rats (Figure 3A).

To validate whether miR-25-3p directly targets Akt1, a luciferase reporter containing a 250 bp
fragment from the Akt1 3′UTR was tested in vitro. Additionally, we generated a mutated version of
the above mentioned reporter, in which five nucleotides of the predicted binding site were changed in
order to abolish the putative interaction between miR-25-3p and Akt1 mRNA (Figure 3B). The Akt1
3′UTR and mutant luciferase plasmid were cotransfected with mimics or NC into growing C2C12
cells. Twenty-four hours after transfection, analyses of luciferase activity revealed that miR-25-3p
mimics significantly decreased the luciferase activity of the wild reporter plasmid as compared with
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NC, while there was no significant effect on the mutant plasmids (Figure 3C). These results revealed
that miR-25-3p directly targets the 3′UTR of Akt1 in vitro.

To directly test the validity of the putative target, we transfected miR-25-3p mimics and miR-25-3p
inhibitors into growing C2C12 cells. We found that the overexpression of miR-25-3p repressed Akt1
expression, as measured by qRT-PCR (p < 0.01) and Western blotting, whereas the knockdown of
miR-25-3p derepressed it (Figure 3D,E). These results demonstrate that Akt1 was a target of miR-25-3p.
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Figure 3. miR-25-3p directly targets the 3′UTR of Akt1. (A) The sequences of miR-25-3p target elements
in the Akt1 3′UTR were relatively conserved in many mammals. These sequences were obtained from
TargetScan. (B) Site-directed mutagenesis of the miR-25-3p target site in the Akt1 3′UTR; mutated bases
shown in red. (C) Dual luciferase reporter assay. The Akt1 3′UTR/mutant plasmid was cotransfected
with miR-25-3p mimics/NC, respectively, into growing C2C12 cells; dual luciferase activities were
measured from cell lysates (24 h after transfection). miR-25-3p mimics/NC or inhibitors/NC were
respectively transfected into growing C2C12 cells. After 48 h, Akt1 expression was detected by
qRT-PCR (D) and Western blotting (E). NC = negative control (miR-239b-5p of caenorhabditis elegans).
β-actin served as the loading control. Data were presented as means ± SD (n ≥ 3). ** p < 0.01;
NS, not significant.
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2.4. Identification and Characterization of the Mouse miR-25-3p Promoter

To further identify the promoter region and regulatory elements of mouse miR-25-3p, we used
luciferase assays to analyze a series of deletions in the potential promoter region, as predicted by
neural network promoter prediction (NNPP) online software (Figure 4A).The plasmids containing the
various lengths of the miR-25-3p promoter were transiently transfected into growing BHK and C2C12
cells. Analyses of luciferase activity revealed that miR-25-3p-P9 (−119/+144) showed the greatest
transcriptional activity, and the longer fragment showed lower transcriptional activity (Figure 4B),
indicating that the region from−1870 to−119 contains one or more cis-acting elements that can repress
miR-25-3p expression. The result demonstrates that this 263 bp-long sequence was the core promoter
of mouse miR-25-3p.

2.5. The Transcription Factor AP-2α Binds to the Core Promoter of Mouse miR-25-3p

To further search the transcription factors that bind to the core promoter of mouse miR-25-3p,
AliBaba 2.1 and Genomatix software programs were utilized to analyze the putative transcription
factors. As shown in Figure S2, AP-2α was found to be able to bind to the core promoter of mouse
miR-25-3p. To examine whether AP-2α influences the activity of the mouse miR-25-3p promoter,
an AP-2α overexpression plasmid (pc-AP-2α) was generated and cotransfected with the miR-25-3p-P9
plasmid into growing C2C12 cells. Twenty-four hours after transfection, analyses of luciferase activity
showed that pc-AP-2α significantly increased miR-25-3p promoter transcriptional activity (Figure 4C).

To determine the functional importance of the AP-2α binding site, we mutated the AP-2α binding
site at −109 to −102, by using the wild-type miR-25-3p-P9 plasmid as the template. The mutant was
constructed and transfected into growing C2C12 cells. As shown in Figure 4D, the luciferase activity
of the mutant was significantly decreased as compared with the wild-type miR-25-3p-P9 construct.
These results indicated that transcription factor AP-2αmay induce transcriptional activity by directly
binding to the core promoter of mouse miR-25-3p.

To further verify whether transcription factor AP-2α binds to the core promoter of mouse
miR-25-3p, ChIP was performed in growing C2C12 cells. Chromatin was immunoprecipitated using
the AP-2α antibody, and PCR amplification was performed, using the DNA fragment of the expected
size as a template. The ChIP-Q-PCR assay showed that AP-2α interacted with the miR-25-3p promoter
within the binding site (Figure 4E). These results confirmed that the transcription factor AP-2αis
capable of binding to the AP-2α binding site in the mouse miR-25-3p promoter region, and induces
miR-25-3p transcription.

2.6. AP-2α Regulates miR-25-3p and Akt1 Expression

Because Akt1 was identified as a direct target of miR-25-3p, and the transcription factor AP-2α
could upregulate miR-25-3p transcription, the effect of AP-2α on Akt1 expression was further appraised
by the overexpression or knockdown of AP-2α in growing C2C12 cells. As AP-2αmRNA expression
was significantly decreased by doublestranded short interfering AP-2α RNA ( si-AP-2α-1) and
si-AP-2α-2, and the inhibitory effect of si-AP-2α-2 was greater than that of si-AP-2α-1 (Figure S3),
si-AP-2α-2 was chosen for subsequent experiments. pc-AP-2α or si-AP-2α was transfected into
growing C2C12 cells, respectively. Fourty-eight hours after transfection, RNA and protein were isolated.
The overexpression of AP-2α significantly increased miR-25-3p expression, while the knockdown
of AP-2α resulted in the significant suppression of miR-25-3p expression (Figure 5A). Conversely,
the mRNA and protein expression of Akt1 were significantly suppressed by AP-2α overexpression,
and were increased by si-AP-2α (Figure 5B–D). These results indicate that AP-2α activated mature
miR-25 expression, and downregulated the expression of Akt1.
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Figure 4. Transcription factor AP-2α binds to the miR-25-3p promoter region. (A) Schematic diagram of
the AP-2α binding site (arrow, red dot) in the miR-25-3p promoter. The first nucleotide of pre-miR-25-3p
was assigned as +1, and the other nucleotides were numbered relative to it. (B) A series of progressive
deletion mutants were transfected into growing BHK and C2C12 cells, and the promoter activities were
analyzed by dual luciferase activity assay. (C) miR-25-3p-P9 reporter constructs were cotransfected
with pc-AP-2α into growing C2C12 cells. Dual luciferase activity was measured 24 h after transfection.
Overexpression of AP-2α upregulated miR-25-3p promoter luciferase activity. pcDNA-3.1(+) was
used as a control. (D) Site-directed mutagenesis of the AP-2α binding site (CAGG into TGTA) in
the miR-25-3p promoter region resulted in the miR-25-3p-P9 luciferase activity being reduced. Data
were expressed as the ratio of relative activity, normalized to pRL-TK, and presented as means ± SD
(n ≥ 3). (E) Binding of AP-2α to the miR-25-3p promoter region was analyzed by chromatin
immunoprecipitation (ChIP). DNA isolated from immunoprecipitated materials was amplified using
qRT-PCR. Normal mouse IgG was used as the negative control. Data were normalized by total
chromatin (input) and presented as means ± SD (n = 3); ** p < 0.01.
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Figure 5. The effects of AP-2α on the expression of miR-25-3p and Akt1. The eukaryotic expression
plasmid pc-AP-2α or si-AP-2α was transfected into growing C2C12 cells. After 48 h, the expression of
miR-25-3p and Akt1 was detected by qRT-PCR and Western blotting. (A) The expression of miR-25-3p
was detected by qRT-PCR. (B) The mRNA expression of Akt1 was detected by qRT-PCR. Data were
presented as means ± SD (n = 3); * p < 0.05; ** p< 0.01. (C) The protein expression of Akt1 was detected
by Western blotting after pc-AP-2α transfection. (D) The protein expression of Akt1 was detected by
Western blotting after si-AP-2α transfection. β-actin served as the loading control.

3. Discussion

Increasing evidence shows that miR-25, a member of the miR-106b-25 cluster, is involved in many
biological processes. For instance, miR-25 inhibits human gastric adenocarcinoma cell apoptosis [15],
promotes glioblastoma cell proliferation and invasion [16], and regulates human ovarian cancer
apoptosis [17]. The miR-106b-25 cluster regulates adult neural stem/progenitor cell proliferation,
migration, and differentiation [18,19]. miR-25 plays an important role in heart disease [11,12] and
diabetic kidney disease [13]. In addition, numerous studies have demonstrated that miRNAs are
implicated in metabolism [20–23]. However, miR-25 has not been functionally related to metabolism
until now.

In this study, miR-25 was identified as a novel regulator of metabolism. The gain-of-function
and loss-of-function assays showed that miR-25-3p inhibited the expression of PI3K and reduced
levels of triglyceride (TG), while levels of ATP and ROS were increased. PI3K has been implicated in
insulin-regulated glucose metabolism [24], and PI3K signaling has a role in many cellular processes,
such as metabolic control, immunity, and cardiovascular homeostasis [25–27]. It is well-known that
triglycerides (TG) are a component of lipids, and participate in lipid metabolism. ATP is the most
direct source of energy in an organism, and takes part in many metabolic processes. ROS, a class of
single electron radicals of oxygen, comprise superoxide anions (O2

−), hydrogen peroxide (H2O2),
and hydroxyl radicals (·OH) [28], and are closely related to adipogenesis and myogenesis [28–31].
These data indicate that miR-25-3p indeed participates in metabolism in mice.
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To further understand the molecular mechanism by which miR-25-3p regulates metabolism,
we searched for potential target genes of miR-25-3p via TargetScan. Fortunately, the 3′UTR of Akt1
contained a 7 nucleotides perfect match site complementary to the miR-25-3p seed region (Figure 3B).
The serine-threonine kinase ATK, also known as protein kinase B (PKB), is an important effector
for PI3K signaling as initiated by numerous growth factors and hormones [32]. Akt can control
glucose uptake by regulating GLUT4 in cells, thereby reducing blood sugar and promoting glycogen
synthesis [32–34]. Akt usually promotes glycogen synthase kinase-3 alpha (GSK3α) phosphorylation
and inhibits its activity [35], and then activates glycogen synthesis [36]. A previous study has
demonstrated that overexpression of miR-25-3p downregulates Akt expression and inactivates
Akt phosphorylation in the tongue squamous cell carcinoma cell line Tca8113 [37]. Consequently,
we deduced that the role of miR-25-3p in metabolism may arise from its inhibition of Akt1. First,
the dual luciferase reporter assay demonstrated that Akt1 was a direct target of miR-25-3p, shown
by the steady decrease luciferase activity of the pmirGLO-Akt1-wt vector; but not the mutant form
(Figure 3C). Meanwhile, qRT-PCR and Western blotting results showed that the expression of Akt1 was
inhibited by the miR-25-3p mimics, and that this inhibition was reversed by the miR-25-3p inhibitors
(Figure 3D,E). These results suggested that the effect of miR-25-3p in metabolism was due, at least in
part, to the suppression of Akt1.

An increasing number of studies have shown that transcription factors are capable of binding to
miRNA promoter elements and modulating miRNA transcription [38–40]. Therefore, we analyzed
the transcriptional mechanism of miR-25-3p in this study. Nine fragments of 5′-flanking sequences
of mouse miR-25-3p were isolated. Subsequently, a series of experiments, including dual luciferase,
site-directed mutagenesis, and ChIP assays, confirmed that AP-2α bound to the miR-25-3p promoter
region and promoted its transcription activity (Figure 4). Moreover, qRT-PCR and Western blotting
results showed that overexpression of AP-2α resulted in the upregulation of miR-25-3p and
downregulation of Akt1, and that the knockdown of AP-2α reversed these results (Figure 5).

The AP-2 family of transcription factors consists of five members, in humans and mice: AP-2α,
AP-2β, AP-2γ, AP-2δ, and AP-2ε; which play important roles in several cellular processes, such as
apoptosis, migration, and differentiation [41,42]. AP-2α was first identified by its ability to bind to the
enhancer regions of SV40 and human metallothionein IIA [43]. Subsequently, numerous studies have
demonstrated that AP-2α can regulate gene expression. For instance, AP-2α binding to the C/EBPα

promoter results in decreased C/EBPα expression [44], and AP-2α can bind to the TACE promoter
and decrease its expression in dendritic cells [45]. Furthermore, Qiao et al. [46] reported that there
was an AP-2α binding site in the DEK core promoter, and overexpression of AP-2α upregulated
DEK expression. In this study, we identified that AP-2α binds to the miR-25-3p promoter region and
promotes its transcription activity.

In conclusion, our results demonstrate that miR-25-3p acts as a positive regulator of the
metabolism of growing C2C12 cells, by affecting Akt1 gene expression through directly binding
to its 3′UTR. Moreover, the transcription factor AP-2α is able to bind to the core promoter of mouse
miR-25-3p, activating mature miR-25 expression and downregulating the expression of Akt1 (Figure 6).
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4. Materials and Methods

4.1. miRNA, Small RNA Oligonucleotide Synthesis, and Plasmid Construction

The miR-25-3p oligonucleotides (miR-25-3p mimics, NC, miR-25-3p inhibitors, and inhibitor-NC)
and double-stranded short interfering RNAs (siRNAs) targeting AP-2αwere designed and synthesized
by RiboBio (Guangzhou, China).The oligonucleotides are listed in Table S1.

To construct the AP-2α overexpression vector pc-AP-2α, the AP-2α coding sequence (1314 bp)
was amplified from mouse C2C12 cells cDNA using the following primers: forward: 5′-CCC
AAGCTTGCCACCATGCTTTGGAAACTGACGGA-3′; reverse: 5′-CCGCTCGAGTCACTTTCTGTG
TTTCTCTT-3′. The PCR product was subcloned into the HindIII/XhoI sites of the pcDNA3.1(+) vector
(Invitrogen, Carlsbad, CA, USA).

The potential target site of miR-25-3p, localized in the 3′UTR of Akt1 mRNA, was predicted by
TargetScan (Available online: http://www.targetscan.org/) [47]. The Akt1 3′UTR was amplified from
C2C12 cell cDNA and inserted into the PmeI/XhoI sites of the pmirGLO vector (Promega, Madison,
WI, USA). Point mutations in the seed region of the predicted miR-25-3p sites within the 3′UTR of Akt1
were generated using overlap-extension PCR [48]. The corresponding primers are listed in Table S2.

The potential promoter regions of miR-25-3p was predicted by using the neural network promoter
prediction (NNPP) software (Available online: http://www.fruitfly.org/seq_tools/promoter.html) [49].
Nine miR-25-3p promoter deletion fragments were amplified from the mouse genome via PCR with the
primers listed in Table S3.The nine purified PCR products were ligated into the KpnI/HindIII sites of the
pGL3-Basic vector (Promega). AliBaba2.1 (Available online: http://www.gene-regulation.com/) [50]
and MatInspector (Available online: http://www.genomatix.de/online_help/help_matinspector/
matinspector_help.html) [49] were used to predict the potential transcription factor binding sites.
The AP-2α transcription factor binding sites of the miR-25-3p promoter region were also mutated by
overlap-extension PCR. The primers are provided in Table S3.

4.2. Cell Culture and Luciferase Reporter Assays

C2C12 (mouse muscle myoblast) and BHK (baby hamster kidney) cells were cultured in DMEM
(Gibco, Gaithersburg, MD, USA) containing 10% fetal bovine serum (FBS) (Gibco) at 5% CO2 and
37 ◦C.
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For luciferase reporter assays, growing C2C12 or BHK cells were seeded in 48-well plates.
After 12–16 h, the plated cells were transfected with a recombinant plasmid using Lipofectamine
2000 (Invitrogen). To verify the miR-25-3p targeting Akt1 3′UTR, 1 µL miR-25-3p mimics/NC was
cotransfected with 0.1 µg Akt1 3′UTR/mutant plasmid into C2C12 cells. For the miR-25-3p promoter
luciferase reporter assay, 0.4 µg pGL3-Basic or recombinant plasmids and 20 ng pRL-TK vector were
transfected. For cotransfection luciferase assays, each well contained 0.2 µg pGL3-(Basic, miR-25-3p-P9
and AP-2α-mut), 20 ng pRL-TK, and 0.2 µg pc-AP-2α. Empty pcDNA-3.1(+) cotransfected with
pGL3-(Basic, miR-25-3p-P9 and AP-2α-mut) was used as the control. After 24 h of incubation, luciferase
activity was measured using a PerkinElmer 2030 Multilabel Reader (PerkinElmer, Norwalk, CT, USA).

4.3. Triglyceride Content, ATP, and Reactive Oxygen Species (ROS) Assays

For detecting the concentrations of triglyceride (TG), ATP, and ROS, growing C2C12 cells were
seeded in 24-well plates the day before transfection. miR-25-3p mimic, NC, miR-25-3p inhibitor,
and inhibitor-NC were transfected into confluent (~80%) cells, respectively, at a concentration of 12 nM
with Lipofectamine 2000 (Invitrogen). After 24–48 h, the concentrations of TG and ATP in the lysates
of cells were measured with commercial kits (Applygen (Beijing, China) and Beyotime (Shanghai,
China), respectively) following the manufacturer’s instructions, and normalized to the protein content
(µmol/mg protein) using the BCA assay kit (Thermo Scientific, Waltham, MA, USA). ROS were
measured using the reactive oxygen species assay kit (Beyotime) following the manufacturer’s protocol.

4.4. Chromatin Immunoprecipitation (ChIP)

ChIP assays were performed to assess the binding of endogenous AP-2α to the miR-25-3p
promoter in C2C12 cells using the EZ-ChIP™ Kit (Millipore, Boston, MA, USA), following a previously
described method [49]. Precleared chromatin was incubated with the AP-2α antibody (Santa Cruz
Biotechnology, Dallas, TX, USA) or normal mouse IgG (Millipore) antibodies (control) overnight at 4 ◦C.
Purified DNA from the samples and the input controls were analyzed for the presence of miR-25-3p
promoter sequences containing putative AP-2α response elements using qPCR. The primers used here
are listed in Table S4.

4.5. RNA Isolation and qRT-PCR

For quantifying the mRNA expression of genes, growing C2C12 cells were seeded in 6-well plates.
miR-25-3p mimic, NC, miR-25-3p inhibitor, inhibitor-NC, si-AP-2α, and NC were transfected into
confluent (~80%) cells, respectively, at a concentration of 50 nM with Lipofectamine 2000 (Invitrogen).
After 48 h, total RNA was isolated using a HP Total RNA Kit (Omega, Norcross, GA, USA) according
to the manufacturer’s protocol. The cDNA was synthesized using a PrimeScript™RT reagent Kit with
gDNA Eraser (Takara, Osaka, Japan) according to the manufacturer’s protocol. The qRT-PCR was
performed in triplicate with iQSYBR green Supermix (Bio-Rad, Hercules, CA, USA) in a LightCycler
480 Realtime PCR machine (Roche, Basel, Switzerland). The mRNA levels of target genes were reported
relative to those of the house keeping gene β-actin by using the 2−∆∆Ct method. The qRT-PCR primers
are listed in Table S5.

4.6. Protein Isolation and Western Blotting

For detecting the protein expression of PI3K and Akt1, growing C2C12 cells were seeded in6-well
plates. miR-25-3p mimic, NC, miR-25-3p inhibitor, inhibitor-NC, si-AP-2α, and NC were transfected
into confluent (~80%) cells, respectively, at a concentration of 50 nM with Lipofectamine 2000
(Invitrogen). After 48 h, total protein was isolated using RIPA Lysis Buffer (Beyotime). The cells
were washed briefly with cold phosphate-buffered saline (PBS), 150 µL RIPA Lysis Buffer (containing
1 mM PMSF) was added, incubated for 1 min at room temperature, and then centrifuged at 12,000× g
for 5 min. The supernatant extract was used for Western blot analysis.
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Western blot analysis was performed to analyze the expression levels of Akt1 (Affinity Biosciences,
Cincinnati, OH, USA) andPI3K (Abclonal, Wuhan, China) according to the methods of Huang et al. [47].
β-actin (Santa Cruz Biotechnology) served as the loading control.

4.7. Statistical Analysis

All the results are presented as the means ± SD. Student’s t-test was used for statistical
comparisons. A p value of < 0.05 was considered to be statistically significant. ** p < 0.01; * p < 0.05;
NS, not significant.

Supplementary Materials: The following are available online at www.mdpi.com/1422-0067/19/3/773/s1.
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