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Simple Summary: The survival rate of oral squamous cell carcinoma (OSCC) patients has not been
improved in the past few decades, likely as a result of a lack of therapeutic targets. Through next
generation sequencing for tumor tissues of OSCC patients, the gene expression level of guanylate
binding protein 5(GBP5) was significantly elevated in tumor tissues compared with adjacent normal
tissues and associated with poor prognosis in OSCC patients. Moreover, we found that GBP5
modulated cell cycle, invasion/migration, and cancer stemness in OSCC cells. Our study indicated
that GBP5 might be a potential biomarker and therapeutic target for OSCC patients.

Abstract: Guanylate binding protein 5 (GBP5) is the interferon (IFN)-inducible subfamily of guano-
sine triphosphatases (GTPases) and is involved in pathogen defense. However, the role played by
GBP5 in cancer development, especially in oral squamous cell carcinoma (OSCC), is still unknown.
Herein, next-generation sequencing analysis showed that the gene expression levels of GBP5 were
significantly higher in OSCC tissues compared with those found in corresponding tumor adjacent
normal tissues (CTAN) from two pairs of OSCC patients. Higher gene expression levels of GBP5
were also found in tumor tissues of 23 buccal mucosal squamous cell carcinoma (BMSCC)/14 tongue
squamous cell carcinoma (TSCC) patients and 30 oral cancer patients from The Cancer Genome Atlas
(TCGA) database compared with those in CTAN tissues. Immunohistochemical results showed that
protein expression levels of GBP5 were also higher in the tumor tissues of 353 OSCC patients includ-
ing 117 BMSCC, 187 TSCC, and 49 lip squamous cell carcinoma patients. Moreover, TCGA database
analysis indicated that high gene expression levels of GBP5 were associated with poor overall survival
in oral cancer patients with moderate/poor cell differentiation, and associated with poor disease-free
survival in oral cancer patients with moderate/poor cell differentiation and lymph node metastasis.
Furthermore, GBP5-knockdowned cells exhibited decreased cell growth, arrest at G1 phase, and
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decreased invasion/migration. The gene expression of markers for epithelial−mesenchymal transi-
tion and cancer stemness was also reduced in GBP5-silenced oral cancer cells. Taken together, GBP5
might be a potential biomarker and therapeutic target for OSCC patients, especially for those with
poor cell differentiation and lymph node metastasis.

Keywords: oral squamous cell carcinoma; guanylate binding protein 5; malignancy; prognosis

1. Introduction

Oral squamous cell carcinoma (OSCC) accounts for 90% of all head and neck squamous
cell carcinoma (HNSCC) [1] and covers three major histological regions, including buccal
mucosal squamous cell carcinoma (BMSCC), tongue squamous cell carcinoma (TSCC), and
lip squamous cell carcinoma (LSCC). Although a variety of targeted therapeutic drugs
have been tested in OSCC patients [2], the survival rate is still around 50% [3], and nearly
up to 40% of OSCC patients subsequently develop recurrences or distant metastases [4].
Thus, identification of more effective and available biomarkers and therapeutic targets for
OSCC patients is an unmet need.

The guanylate binding proteins (GBPs) are a family of large interferon-induced GT-
Pases [5] that hydrolyze guanosine triphosphate (GTP). There are seven highly homologous
members of GBP in humans, termed HuGBP-1 to HuGBP-7 [6]. GBPs have many cell bi-
ologic functions such as antiviral activity [7] and antibacterial infection [8]. Aside from
the role GBPs play in pathogen defense, an increasing number of studies have focused
on investigating the role of GBPs in cancer development and progression. For example,
increased levels of GBP5 expression were found in tumor tissues compared with those in
normal tissues, as a higher GBP5 mRNA level is not associated with overall survival and
relapse free survival in HNSCC [6]. Nevertheless, the role of GBP5 in OSCC is still unclear.

High-throughput profiling techniques such as RNA-sequencing (RNA-seq) using
next-generation sequencing (NGS) [9] and RNAi high-throughput screening (HTS) [10]
have been used to identify gene expression associated with many diseases such as cancer,
and could provide a very powerful tool for discovering cancer biomarkers and therapeutic
targets, especially for OSCC. For example, we have identified GBP6 as a favorable cancer
biomarker in TSCC by NGS [11].

In the present study, we found GBP5 to be highly expressed in tumor tissues by
comparing the transcriptome profiles of the primary tumor and adjacent normal tissues
from two paired OSCC tissues with NGS. Gene expression levels of GBP5 were higher in
tumor tissues in our OSCC patients and in oral cancer patients from The Cancer Genome
Atlas (TCGA) database. Moreover, high gene expression levels of GBP5 were associated
with poor prognosis in oral cancer patients having poor cell differentiation and lymph node
metastasis. Furthermore, GBP5-knockdown OSCC cells showed decreased cell growth,
G1/S arrest, decreased invasion/migration, and cancer stemness. Our findings present the
first indication of the clinical significance and biological roles of GBP5 in OSCC.

2. Materials and Methods
2.1. Patients and Tissue Specimens

All tissue specimens of OSCC patients were obtained from the Department of Pathol-
ogy at Kaohsiung Veterans General Hospital (VGHKS) between 1993 and 2006, and the
study was approved by the VGHKS Institutional Review Board (VGHKS11-CT12-13). A
total of 499 margin-free (margin-size ≥ 0.2 cm) paraffin-embedded materials from TSCC
(n = 245), BMSCC (n = 182) patients, and lip SCC (n = 72) were established. Patient survival
times were recorded from the time of operation to October 2012. The 2002 American Joint
Committee on Cancer (AJCC) system was used for pathologic TNM classification.
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2.2. Laser Capture Microdissection (LCM) and Next Generation Sequencing (NGS) of
LCM-Captured Cells

The fresh-frozen tissue samples from two pairs of OSCC patients were used for
LCM with the MMI CellCut Plus system. The LCM-captured cells for microdissection
were transferred to an miRNeasy Micro Kit (Qiagen GmbH, Hilden, Nordrhein-Westfalen,
Germany) for RNA extraction. The extracted RNA samples were then subjected to NGS
analysis. More detailed descriptions about LCM and NGS analysis are available in our
previous study [11].

2.3. Tissue Microarray (TMA) Construction and Immunohistochemistry (IHC)

A TMA block consists of cores constructed from the tumor tissues and corresponding
tumor adjacent normal tissues (CTAN), as well as normal uvula epithelium of OSCC
patients. All TMA blocks were cut into 4 µm paraffin sections after excluding the cores
with incorrect contents. IHC was performed using Novo-Link Max Polymer Detection
System (Novocastra Laboratories Ltd., Newcastle Upon Tyne, UK) with a diluted anti-GBP5
monoclonal antibody (dilution 1:250; ProteinTech Group, Inc., Rosemont, IL, USA). Scores
for cytoplasmic GBP5 staining were determined by calculating intensity (−, negative;
+, weak; ++, moderate; and +++, strong in Figure S1) and percentage (0% to 100%) of
positive stained cells. More detailed descriptions of TMA construction, IHC and IHC
scoring are available in our previous studies [12,13].

2.4. Cell Culture

Three OSCC cell lines from human squamous cell carcinoma of tongue (SAS) and
buccal mucosa (TW1.5 and TW2.6) were cultured in DMEM/F12 medium (containing
10% FBS, 100 µg/mL streptomycin, 100 U/mL penicillin, and 1% L-glutamine) (Gibco,
Invitrogen Corporation, Carlsbad, CA, USA) and maintained in an incubator with 5% CO2
at 37 ◦C.

2.5. Transient and Stable Transfection

For GBP5 transient transfection, OSCC cells were transfected with 10 nM scrambled
siRNA or siRNA against GBP5 (Invitrogen Life Technologies, Carlsbad, CA, USA) using
RNAiMax (Invitrogen Life Technologies, Carlsbad, CA, USA) for 72 h. For GBP5 stable
transfection, HEK293T cells were initially transfected with scramble short hairpin RNA
(shRNA) or shRNA against GBP5 using Lipofectamine 2000 (Invitrogen Life Technologies,
Carlsbad, CA, USA) for 48 h for amplification of lentivirus particles. After harvesting
supernatant containing lentivirus from HEK293T cells, TW1.5 cells were infected with
the lentivirus and stable GBP5-silenced TW1.5 cells were selected by antibiotics. More
detailed descriptions of GBP5 stable transfection procedures were provided in our previous
study [14].

2.6. Real-Time PCR (RT-PCR)

The TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) was used to
extract the total RNA of cells. A total of 1 ug total RNA was converted to cDNA using
SuperScript II RNase H-Reverse Transcriptase (Invitrogen Life Technologies, Carlsbad, CA,
USA). The amount of mRNA was analyzed in StepOnePlus Real Time PCR System (Applied
Biosystems, Foster City, CA, USA) with SYBR Green Master Mix (Applied Biosystems,
Foster City, CA, USA), using β-actin mRNA as an internal control [15].

2.7. Western Blotting

SDS-PAGE electrophoresis was used to separate proteins from cell lysates, then the
gel was transferred onto a nitrocellulose membrane. The membrane was blocked with
5% skim milk and incubated with primary antibodies overnight at 4 ◦C. After washing,
the membrane was incubated with the HRP-labeled secondary antibody. The proteins
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were detected with an ECL reagent using the ChemiDoc XRS Imaging System (Bio-Rad
Laboratories, Irvine, CA, USA) [16].

2.8. Clonogenic Assay

The cells (0.5–1 × 103 cells) were cultured in 6-well plates in complete media for
2 weeks with one medium refreshed every 3 days. The cell colonies were fixed and stained
with 2% paraformaldehyde and 0.25% crystal violet, respectively, for 30 min. The cells
were then rinsed with PBS and water until the background was clean. The colonies were
counted and quantified from at least three independent experiments [17].

2.9. Tumor Sphere Formation

The cells (5 × 103 cells/mL) were seeded into a 96-well, clear, round-bottom, ultra-low
attachment Microplate (Corning Costar, Cambridge, MA, USA) for 7 days to form spheroid
cells [15], and sphere viability was measured by the 3D CellTiter Glo assay (Promega,
Madison, WI, USA) [18].

2.10. Cell Cycle Analysis

The 75% ethanol fixed cells were stained with 50 µg/mL propidium iodide (Sigma-
Aldrich, St. Louis, MO, USA) and 25 µg/mL RNase A (Sigma-Aldrich, St. Louis, MO, USA)
on ice for 30 min. The FACScan analyzer (Becton, Dickinson and Company, Franklin Lakes,
NJ, USA) and FlowJo analysis software (Tree Star, Ashland, OR, USA) were used to estimate
and analyze proportions of stained cells in different cell cycle phases, respectively. A more
detailed description of the cell cycle analysis was provided in our previous study [19].

2.11. Cell Invasion and Migration

For cell invasion, the cells (1.5 × 105 cells/300 µL) were suspended with DMEM
containing 1% FBS and seeded in 8 µm pores transwell inserts (Greiner Bio-One, Stroud, UK)
coated with 0.5% Matrigel. Afterwards, the invasive cells attached to the bottom of the
inserts were fixed and stained with 0.1% crystal violet for qualification. For cell migration,
the cells (2 × 105 cells) were cultured into the IBIDI Culture-Inserts (IBIDI, Inc., Planegg,
Germany) for 24 h within the culture dishes. Subsequently, the plastic inserts were removed,
wound healing was observed, and the migration distance was quantified [20].

2.12. Statistical Analysis

RNA-sequencing transcriptome data for 303 oral cancer patients were downloaded
from the TCGA database (https://cancergenome.nih.gov, accessed on 13 October 2017)
and analyzed. SPSS software (version 20.0, IBM-SPSS Inc., Chicago, IL, USA) was used
for statistical analysis. Kruskal−Wallis one-way ANOVA test was used to compare the
expression level of GBP5 between CTAN/normal and tumor tissues. In TCGA cohorts,
the expression of GBP5 or cancer stemness-related markers was dichotomized to low
expression and high expression by the operator characteristic curve (ROC) analysis. A
Cox proportional hazards model was used to determine statistically significant prognostic
factors. A value of p < 0.05 was considered significant.

3. Results
3.1. Expression Levels of GBP5 between Normal Tissues and Tumor Tissues in Oral
Cancer Patients

RNA profiling of CTAN and tumor tissues from two paired OSCC patients at different
stages (stages I vs. IV) was performed using NGS. After filtering genes by RPKM and
fold change, we found that gene expression levels of GBP5 were increased by 9.10-fold
and 6.59-fold in stages I (T1) and stages IV (T2) tumor tissues, respectively, compared
with those in CTAN tissues (N1 and N2) (Figure 1A). Subsequently, gene expression levels
of GBP5 were validated in normal and tumor tissues for 23 paired BMSCC patients and
14 paired TSCC patients by RT-PCR. Compared with CTAN tissues, the gene expression

https://cancergenome.nih.gov
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levels of GBP5 were significantly increased in the tumor tissues of OSCC patients, including
BMSCC (p < 0.001, Figure 1B) and TSCC (p = 0.008, Figure 1B) patients. TCGA data analysis
indicated that the gene expression levels of GBP5 in 303 tumor tissues of oral cancer patients
were higher than those in 29 normal tissues (p < 0.001, Figure 1C). Moreover, the gene
expression levels of GBP5 in tumor tissues were higher compared with CTAN tissues in
30 oral cancer patients from the TCGA database (p < 0.001, Table S1).
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Figure 1. Comparison of GBP5 expression between tumor and adjacent normal tissues in oral cancer patients. (A) Relative
fold-changes of GBP5 RPKM in CTAN tissues and tumor tissues in two paired OSCC patients by NGS. (B) Comparison of
GBP5 gene expression between tumor tissues and CTAN tissues from 23 paired BMSCC and 14 paired TSCC patients by
RT–PCR. (C) RPKM values of GBP5 between 29 normal tissues and 303 tumor tissues in oral cancer patients from TCGA
based RNA seq. (D) GBP5 IHC scores in CTAN tissues and tumor tissues: 182 BMSCC, 245 TSCC, and 72 LSCC. Data on
the whole cohort of 499 patients are also shown (N: CTAN tissues; T: tumor tissues). A value of p < 0.05 was considered
significant (*** p < 0.001).

To further investigate the protein expression level of GBP5 in OSCC, IHC distribution
of GBP5 was compared between normal, CTAN, and OSCC tissues (including BMSCC,
TSCC, and LSCC). The representative photomicrographs of IHC for GBP5 in tumor tissues
are presented as negative (-), weak (+), moderate (++), and strong (+++) in Figure S1A. The
protein expression levels of GBP5 in the tumor tissues exceeded that in CTAN from a total
of 499 OSCC patients including 182 BMSCC, 245 TSCC, and 72 LSCC patients (Figure 1D,
Table 1, Figure S1B). Moreover, GBP5 gradually increased from normal tissues, to CTAN
tissues, to tumor tissues in BMSCC and TSCC patients (Table 1). These results indicate that
the protein levels of GBP5 were higher in tumor tissues than those in normal tissues of oral
cancer patients.
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Table 1. The comparison of GBP5 expression in the three different tissues of BMSCC, TSCC, LSCC, and OSCC patients.

Variables
Normal Tissue Tumor Adjacent Normal Tumor

χ2 p-Value *
Mean ± SD Median Mean ± SD Median Mean ± SD Median

BMSCC (n = 30) (n = 117) (n = 182)
2.33 ± 2.09 2.00 2.50 ± 1.95 3.00 3.73 ± 1.97 4.00 28.233 <0.001

TSCC (n = 31) (n = 187) (n = 245)
1.00 ± 1.41 0.00 1.07 ± 1.51 0.00 3.21 ± 1.90 3.00 138.654 <0.001

LSCC (n = 15) (n = 49) (n = 72)
2.33 ± 1.54 2.00 1.53 ± 1.85 0.00 3.68 ± 1.91 4.00 32.544 <0.001

OSCC (n = 76) (n = 353) (n = 499)
1.79 ± 1.84 2.00 1.61 ± 1.83 2.00 3.47 ± 1.94 3.00 177.689 <0.001

Abbreviations: BMSCC, buccal mucosal squamous cell carcinoma; TSCC, tongue squamous cell carcinoma; LSCC, lip squamous cell
carcinoma; OSCC, oral squamous cell carcinoma; SD, standard deviation. * p-values were estimated by Kruskal−Wallis one-way ANOVA
test. Bold values denote statistical significance.

3.2. The Association of GBP5 Expression with Prognosis in Oral Cancer Patients

Next, we investigated the prognostic role of GBP5 in oral cancer patients from the
TCGA database. We found that high gene expression levels of GBP5 were associated with
shorter overall survival (OS) in oral cancer patients with poor cell differentiation (adjusted
hazard ratio (AHR) = 1.49, 95% confidence interval (CI) = 1.01–2.21, p = 0.047, Table 2)
and associated with poor disease-free survival (DFS) in oral cancer patients with poor cell
differentiation (AHR = 1.81, CI = 1.03–3.19, p = 0.040, Table 3) and lymph node metastasis
(AHR = 2.21, CI = 1.09–4.50, p = 0.028, Table 3). These results indicate that high gene
expression levels of GBP5 were associated with poor prognosis in oral cancer patients.

Table 2. The GBP5 gene expression in overall survival of oral cancer patients from TCGA database.

Variable No. (%) CHR (95% CI) p-Value * AHR (95% CI) p-Value †

Sex

Female Low 39 (47.6) 1.00 1.00
High 43 (52.4) 1.00 (0.51–1.94) 0.994 1.25 (0.63–2.48) 0.520 a

Male Low 110 (60.4) 1.00 1.00
High 72 (39.6) 1.39 (0.89–2.16) 0.147 1.49 (0.95–2.33) 0.080 a

Age, years

≤60 Low 73 (65.8) 1.00 1.00
High 38 (34.2) 1.46 (0.81–2.63) 0.206 1.60 (0.89–2.90) 0.119 a

>60 Low 76 (49.7) 1.00 1.00
High 77 (50.3) 1.06(0.66–1.71) 0.809 1.19 (0.73–1.93) 0.480 a

Cell differentiation

Well Low 19 (50.0) 1.00 1.00
High 19 (50.0) 1.00 (0.32–3.13) 1.000 0.74 (0.22–2.51) 0.624 b

Moderate, poor Low 130 (57.5) 1.00 1.00
High 96 (42.5) 1.29 (0.87–1.90) 0.201 1.49 (1.01–2.21) 0.047 b

AJCC pathological stage

I, II Low 26 (45.6) 1.00 1.00
High 31 (54.4) 2.82 (0.72–11.01) 0.136 2.80 (0.71–11.05) 0.141 c

III, IV Low 123 (59.4) 1.00 1.00
High 84 (40.6) 1.23 (0.84–1.82) 0.293 1.31 (0.88–1.94) 0.179 c

T classification

T1, T2 Low 57 (54.8) 1.00 1.00
High 47 (45.2) 1.43 (0.65–3.14) 0.372 1.67 (0.75–3.74) 0.212 d

T3, T4 Low 92 (57.5) 1.00 1.00
High 68 (42.5) 1.27 (0.83–1.94) 0.266 1.31 (0.86–2.01) 0.209 d



Cancers 2021, 13, 4043 7 of 16

Table 2. Cont.

Variable No. (%) CHR (95% CI) p-Value * AHR (95% CI) p-Value †

N classification

N0 Low 63 (53.4) 1.00 1.00
High 55 (46.6) 1.29 (0.68–2.43) 0.442 1.39 (0.73–2.65) 0.314 e

N1, N2, N3 Low 86 (58.9) 1.00 1.00
High 60 (41.1) 1.31 (0.83–2.06) 0.241 1.33 (0.84–2.10) 0.225 e

Postoperative RT

No Low 54 (54.5) 1.00 1.00
High 45 (45.5) 1.24 (0.70–2.22) 0.464 1.61 (0.89–2.92) 0.118 a

Yes Low 78 (56.1) 1.00 1.00
High 61 (43.9) 1.25 (0.72–2.19) 0.430 1.35 (0.77–2.37) 0.293 a

Abbreviations: CHR, crude hazard ratio; CI, confidence interval; AHR, adjusted hazard ratio; AJCC, American Joint Committee on Cancer;
RT, radiotherapy. * p-values were estimated by Cox’s regression. † p-values were estimated by multivariate Cox’s regression. a Adjusted for
cell differentiation (moderate + poor vs. well) and AJCC pathological stage (stage III+ IV vs. stage I + II). b Adjusted for AJCC pathological
stage (stage III + IV vs. stage I + II). c Adjusted for cell differentiation (moderate + poor vs. well). d Adjusted for cell differentiation
(moderate + poor vs. well) and N classification (N1, N2, N3 vs. N0). e Adjusted for cell differentiation (moderate + poor vs. well) and
T classification (T3, T4 vs. T1 + T2).

Table 3. The GBP5 gene expression in disease-free survival of oral cancer patients from TCGA database.

Variable No. (%) CHR (95% CI) p-Value * AHR (95% CI) p-Value †

Sex

Female Low 31 (42.5) 1.00 1.00
High 42 (57.5) 1.62 (0.54–4.85) 0.390 1.75 (0.57–5.36) 0.328 a

Male Low 88 (57.5) 1.00 1.00
High 65 (42.5) 1.73 (0.94–3.20) 0.081 1.83 (0.99–3.40) 0.056 a

Age, years

≤60 Low 57 (60.6) 1.00 1.00
High 37 (39.4) 1.65 (0.69–3.98) 0.261 1.83 (0.76–4.41) 0.177 a

>60 Low 62 (47.0) 1.00 1.00
High 70 (53.0) 1.54(0.78–3.04) 0.214 1.64 (0.82–3.26) 0.159 a

Cell differentiation

Well Low 17 (48.6) 1.00 1.00
High 18 (51.4) 1.69 (0.28–10.13) 0.567 1.08 (0.18–6.57) 0.931 b

Moderate, poor Low 102 (53.4) 1.00 1.00
High 89 (46.6) 1.67 (0.95–2.93) 0.073 1.81 (1.03–3.19) 0.040 b

AJCC pathological stage

I, II Low 23 (44.2) 1.00 1.00
High 29 (55.8) 59.84 (0.20–17,884.73) 0.159 48.43 (0.19–12,494.06) 0.171 c

III, IV Low 96 (55.2) 1.00 1.00
High 78 (44.8) 1.35 (0.76–2.40) 0.307 1.40 (0.78–2.50) 0.256 c

T classification

T1, T2 Low 49 (51.0) 1.00 1.00
High 47 (49.0) 2.28 (0.85–6.07) 0.101 2.50 (0.92–6.78) 0.072 d

T3, T4 Low 70 (53.8) 1.00 1.00
High 60 (46.2) 1.48 (0.77–2.85) 0.240 1.50 (0.77–2.89) 0.231 d

N classification

N0 Low 55 (51.4) 1.00 1.00
High 52 (48.6) 1.26 (0.55–2.86) 0.585 1.36 (0.60–3.12) 0.462 e

N1, N2, N3 Low 64 (53.8) 1.00 1.00
High 55 (46.2) 2.00 (0.99–4.06) 0.054 2.21 (1.09–4.50) 0.028 e

Postoperative RT

No Low 47 (53.4) 1.00 1.00
High 41 (46.6) 2.04 (0.74–5.62) 0.167 2.54 (0.90–7.15) 0.078 a

Yes Low 67 (52.3) 1.00 1.00
High 61 (47.7) 1.52 (0.79–2.92) 0.216 1.57 (0.81–3.04) 0.180 a

Abbreviations: CHR, crude hazard ratio; CI, confidence interval; AHR, adjusted hazard ratio; AJCC, American Joint Committee on Cancer;
RT, radiotherapy. * p-values were estimated by Cox’s regression. † p-values were estimated by multivariate Cox’s regression. a Adjusted for
cell differentiation (moderate + poor vs. well) and AJCC pathological stage (stage III + IV vs. stage I + II). b Adjusted for AJCC pathological
stage (stage III + IV vs. stage I + II). c Adjusted for cell differentiation (moderate + poor vs. well). d Adjusted for cell differentiation
(moderate + poor vs. well) and N classification (N1, N2, N3 vs N0). e Adjusted for cell differentiation (moderate + poor vs. well) and
T classification (T3, T4 vs T1 + T2).



Cancers 2021, 13, 4043 8 of 16

3.3. Role of GBP5 in Cell Growth of OSCC Cells

To study the role of GBP5 in cancer malignancy in OSCC, the effect of GBP5 in cell
growth was investigated in GBP5-knockdown OSCC cells. First, the knockdown efficiency
of GBP5 was confirmed by RT-PCR (Figure 2A) and immunoblotting (Figure 2B, Figure S6).
As shown, the number of colonies (Figure 2C), the size of tumorspheres, and tumorsphere
viability were decreased in GBP5-knockdown OSCC cells (Figure 2D; Figure S2). These
results indicate that GBP5 might regulate the growth of OSCC cells.
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evaluated the effect of silencing GBP5 in cell cycle control. We found that stable GBP5-
knockdown OSCC cells showed an increased percentage of G1 phase cells (Figure 3A), 
implying that GBP5 might be required for cell cycle regulation, particularly in the transi-
tion from G1 to S phase of OSCC cells. Moreover, the gene expression levels of two cyclin 
dependent kinase inhibitors (p21 and p27) were found to be significantly increased in the 
GBP5-knockdown cells (Figure 3B), supporting the notion that GBP5 induces cell growth 
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Figure 2. Effects of GBP5 in cell growth of OSCC cells. (A) Gene expression levels of GBP5 in transient GBP5–silenced SAS
and TW2.6 cells by RT-PCR. All cells were transfected with 10 nM scramble siRNA (siCtrl) or GBP5 siRNA (siGBP5) for
72 h. (B) Protein expression levels of GBP5 in transient GBP5–silenced SAS and TW2.6 cells by Western blotting. Beta-actin
was used as loading control (ACTB). All cells were transfected with 10 nM scramble siRNA (-) or GBP5 siRNA (+) for 72 h.
(C) Colony formation of transient GBP5–silenced SAS and TW2.6 cells. After two weeks, these cells were fixed and stained
with crystal violet to count the number of colonies. All cells were transfected with 10 nM scramble siRNA (siCtrl) or GBP5
siRNA (siGBP5) for 72 h. (D) Formation of tumorspheres and tumorsphere viability of transient GBP5–silenced SAS and
TW2.6 cells. Tumorsphere viability was measured by the 3D CellTiter Glo assay. All cells were transfected with 10 nM
scramble siRNA (siCtrl) or GBP5 siRNA (siGBP5) for 72 h. All quantitative results are calculated as the mean ± SEM from
three independent experiments. A value of p < 0.05 was considered significant (** p < 0.01, * p < 0.05).

3.4. The Role of GBP5 on Cell Cycle Control in OSCC Cells

We found decreased cell growth in GBP5-knockdown OSCC cells (Figure 2). To
further investigate whether GBP5 regulates cell growth by controlling the cell cycle, we
also evaluated the effect of silencing GBP5 in cell cycle control. We found that stable GBP5-
knockdown OSCC cells showed an increased percentage of G1 phase cells (Figure 3A),
implying that GBP5 might be required for cell cycle regulation, particularly in the transition
from G1 to S phase of OSCC cells. Moreover, the gene expression levels of two cyclin
dependent kinase inhibitors (p21 and p27) were found to be significantly increased in the
GBP5-knockdown cells (Figure 3B), supporting the notion that GBP5 induces cell growth
by promoting G1/S progression.
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and GBP5 siRNA (siGBP5) for 72 h. All quantitative results are calculated as the mean ± SEM from three independent 
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Figure 3. Effects of GBP5 in cell cycle progression of OSCC cells. (A) The stable GBP5-silenced TW1.5 cells harboring
scrambled shRNA (shCtrl) or shRNA against GBP5 (shGBP5) were seeded for 24 h and harvested for cell cycle distributions
by flow cytometry. All fixed cells were stained with propidium iodide to examine the proportions of different cell cycle
phases using flow cytometry. FlowJo software was used to analyze the flow cytometry data. (B) Gene expression levels of
p21 and p27 in GBP5-silenced SAS and TW2.6 cells. All cells were transfected with 10 nM scramble siRNA (siCtrl) and GBP5
siRNA (siGBP5) for 72 h. All quantitative results are calculated as the mean ± SEM from three independent experiments. A
value of p < 0.05 was considered significant (*** p < 0.001, ** p < 0.01, * p < 0.05).

3.5. The Role of GBP5 in the Migration and Invasion of OSCC Cells

Our clinical data indicated that high gene expression levels of GBP5 are associated with
shorter DFS in oral cancer patients with lymph node metastasis (Table 3). To investigate the
role of GBP5 in the invasion/migration of OSCC cells, the invasion and migration abilities of
both transient and stable GBP5-knockdown cells were then evaluated. Our results show that
the invasion (Figure 4A) and migration (Figure 4B) abilities in both GBP5-knockdown cells
were significantly suppressed compared with those in control cells. Moreover, gene expression
levels of epithelial−mesenchymal transition (EMT) markers, such as Twist/N-cadherin and
Snail, were decreased in GBP5-knockdown SAS and TW1.5 cells, respectively (Figure 4C).
Moreover, the gene expression level of E-cadherin was increased in GBP5-knockdown TW1.5
cells. Protein levels of N-cadherin/Sanil and E-cadherin were also decreased and increased in
GBP5-knockdown cells, respectively (Figure S3) These results indicate that GBP5 might be
involved in OSCC metastasis via EMT regulation.
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Figure 4. Effects of GBP5 in cell invasion and migration of OSCC cells. (A) Invasion of GBP5–silenced SAS and TW1.5 cells.
(B) Migration of GBP5-silenced SAS and TW1.5 cells. (C) Gene expression levels of EMT-related markers in GBP5-silenced
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SAS and TW1.5 cells by RT-PCR. Transient GBP5–silenced cells were cells transiently transfected with 10 nM scramble siRNA
(siCtrl) or GBP5 siRNA (siGBP5) for 72 h. Stable GBP5-silenced cells were cells transfected with scrambled shRNA (shCtrl)
or shRNA against GBP5 (shGBP5). All quantitative results are calculated as the mean ± SEM from three independent
experiments. A value of p < 0.05 was considered significant (*** p < 0.001, ** p < 0.01, * p < 0.05).

3.6. The Role of GBP5 in the Cancer Stemness of OSCC Cells

Our clinical data showed that high expression levels of GBP5 are associated with DFS
(death due to recurrence and any cause) (Table 3). Tumor recurrence might result from
those tumors becoming resistant to chemotherapy or radiation therapy [21]. Moreover,
cancer stemness contributes to chemotherapy resistance and cancer relapse [22,23]. To
investigate the role of GBP5 in OSCC cancer stemness, gene expression levels of several can-
cer stemness markers such as aldehyde dehydrogenase 1 Family Member A1 (ALDH1A1),
ALDH1A2, CD44, CD166, and ABCG2 were analyzed in GBP5-knockdown OSCC cells.
Our results indicated that both ALDH1A1 and ALDH1A2 are significantly decreased in
GBP5-knockdown SAS (Figure 5A) and TW1.5 cells (Figure 5B). The gene expression levels
of CD44, CD166 and ABCG2 were also decreased in GBP5-knockdown SAS and TW1.5
(Figure S4). Additionally, we found that silencing GBP5 may decrease cancer stemness
and enhance chemotherapy-induced apoptosis of SAS cells (Figure S5). Moreover, the
high co-expressions of GBP5/ALDH1A1 (AHR = 2.63, CI = 1.11–6.19, p = 0.027, Table 4),
GBP5/ALDH1A2 (AHR = 2.40, CI = 1.09–5.32, p = 0.03, Table 4), GBP5/CD166 (AHR = 2.30,
CI = 1.07–4.92, p = 0.032, Table 4), and GBP5/ ABCG2 (AHR = 2.12, CI = 1.21–3.70, p = 0.008,
Table 4) genes are found to be associated with OS in oral cancer patients from TCGA
database. Furthermore, co-expressions of GBP5/CD166 (AHR = 2.48, CI = 1.08–5.74,
p = 0.033, Table 5) and GBP5/ ABCG2 (AHR = 2.65, CI = 1.25–5.61, p = 0.011, Table 5) genes
are associated with DFS in oral cancer patients from TCGA database. These results indicate
that GBP5 might be involved in OSCC cancer stemness.
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GBP5 (H), ALDH1A2(H)  90 (34.1) 1.48 (1.02–2.15) 0.040 a 2.40 (1.09–5.32) 0.030 c 

GBP5 (L), CD166 (L)  120 (45.5) 1.00  1.00  
GBP5 (H), CD166 (L)  102 (38.6) 1.09 (0.75–1.59) 0.643 a 1.42 (0.93–2.17) 0.108 c 
GBP5 (L), CD166 (H)  29 (11.0) 1.80 (1.11–2.92) 0.018 a 2.23 (1.30–3.82) 0.004 c 
GBP5 (H), CD166 (H)  13 (4.9) 1.76 (0.86–3.62) 0.125 a 2.30 (1.07–4.92) 0.032 c 

Figure 5. Effects of GBP5 in cancer stemness of OSCC cells. Gene expression levels of cancer stemness-related markers in
GBP5-silenced (A) SAS and (B) TW1.5 cells by RT-PCR. All cells were transiently transfected with 10 nM scramble siRNA
(siCtrl) or GBP5 siRNA (siGBP5) for 72 h. All quantitative results are calculated as the mean ± SEM from three independent
experiments. A value of p < 0.05 was considered significant (*** p < 0.001, ** p < 0.01, * p < 0.05).
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Table 4. The co-expression of GBP5 and cancer stemness markers in overall survival of oral cancer patients from
TCGA database.

Variable No. (%) CHR (95% CI) p-Value AHR (95% CI) p-Value

GBP5
Low 149 (56.4) 1.00 1.00
High 115 (43.6) 1.23 (0.85–1.77) 0.280 a 1.39 (0.96–2.02) 0.084 b

ALDH1A1
Low 227 (86.0) 1.00 1.00
High 37 (14.0) 1.61 (1.03–2.53) 0.038 a 1.33 (0.84–2.10) 0.225 b

ALDH1A2
Low 55 (20.8) 1.00 1.00
High 209 (79.2) 2.06 (1.15–3.66) 0.015 a 2.04 (1.14–3.64) 0.016 b

CD166
Low 222 (84.1) 1.00 1.00
High 42 (15.9) 1.89 (1.23–2.90) 0.004 a 1.89 (1.23–2.90) 0.004 b

ABCG2
Low 187 (70.8) 1.00 1.00
High 77 (29.2) 1.60 (1.09–2.35) 0.016 a 1.38 (0.93–2.04) 0.106 b

GBP5 (L), ALDH1A1 (L) 120 (45.5) 1.00 1.00

GBP5 (H), ALDH1A1 (L) 107 (40.5) 1.10 (0.76–1.59) 0.624 a 1.32 (0.87–2.00) 0.190 c

GBP5 (L), ALDH1A1 (H) 29 (11.0) 1.42 (0.85–2.34) 0.178 a 1.69 (0.97–2.93) 0.065 c

GBP5 (H), ALDH1A1(H) 8 (3.0) 2.17 (0.95–4.95) 0.066 a 2.63 (1.11–6.19) 0.027 c

GBP5 (L), ALDH1A2 (L) 30 (11.4) 1.00 1.00

GBP5 (H), ALDH1A2 (L) 25 (9.5) 0.53 (0.24–1.22) 0.139 a 1.06 (0.35–3.15) 0.922 c

GBP5 (L), ALDH1A2 (H) 119 (45.1) 1.02 (0.70–1.47) 0.934 a 1.90 (0.86–4.17) 0.112 c

GBP5 (H), ALDH1A2(H) 90 (34.1) 1.48 (1.02–2.15) 0.040 a 2.40 (1.09–5.32) 0.030 c

GBP5 (L), CD166 (L) 120 (45.5) 1.00 1.00

GBP5 (H), CD166 (L) 102 (38.6) 1.09 (0.75–1.59) 0.643 a 1.42 (0.93–2.17) 0.108 c

GBP5 (L), CD166 (H) 29 (11.0) 1.80 (1.11–2.92) 0.018 a 2.23 (1.30–3.82) 0.004 c

GBP5 (H), CD166 (H) 13 (4.9) 1.76 (0.86–3.62) 0.125 a 2.30 (1.07–4.92) 0.032 c

GBP5 (L), ABCG2 (L) 104 (39.4) 1.00 1.00

GBP5 (H), ABCG2 (L) 83 (31.4) 0.93 (0.62–1.38) 0.700 a 1.19 (0.75–1.90) 0.456 c

GBP5 (L), ABCG2 (H) 45 (17.0) 1.25 (0.79–1.98) 0.335 a 1.52 (0.90–2.56) 0.117 c

GBP5 (H), ABCG2(H) 32 (12.1) 1.82 (1.11–2.98) 0.019 a 2.12 (1.21–3.70) 0.008 c

Abbreviations: CHR, crude hazard ratio; CI, confidence interval; AHR, adjusted hazard ratio; L, low expression; H, high expression.
a p-values were estimated by Cox’s regression. b p-values were adjusted for cell differentiation (moderate + poor vs. well) and AJCC
pathological stage (stage III + IV vs. stage I + II) by multivariate Cox’s regression. c p-values were estimated by multivariate Cox’s regression.

Table 5. The co-expression of GBP5 and cancer stemness markers in disease-free survival of oral cancer patients from
TCGA database.

Variable No. (%) CHR (95% CI) p-Value AHR (95% CI) p-Value

GBP5
Low 119 (52.7) 1.00 1.00
High 107 (47.3) 1.63 (0.95–2.78) 0.074 a 1.78 (1.04–3.05) 0.037 b

ALDH1A1
Low 212 (93.8) 1.00 1.00
High 14 (6.2) 1.95 (0.83–4.56) 0.123 a 1.74 (0.74–4.07) 0.205 b

ALDH1A2
Low 198 (87.6) 1.00 1.00
High 28 (12.4) 1.16 (0.55–2.46) 0.702 a 1.01 (0.47–2.15) 0.989 b
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Table 5. Cont.

Variable No. (%) CHR (95% CI) p-Value AHR (95% CI) p-Value

ABCG2
Low 105 (46.5) 1.00 1.00
High 121 (53.5) 1.79 (1.03–3.13) 0.040 a 1.73 (0.99–3.02) 0.054 b

GBP5 (L), ALDH1A1 (L) 108 (47.8) 1.00 1.00

GBP5 (H), ALDH1A1 (L) 104 (46.0) 1.58 (0.93–2.69) 0.092 a 1.87 (1.05–3.33) 0.034 c

GBP5 (L), ALDH1A1 (H) 11 (4.9) 1.97 (0.79–4.96) 0.148 a 2.79 (1.04–7.51) 0.042 c

GBP5 (H), ALDH1A1(H) 3 (1.3) 1.69 (0.23–12.25) 0.604 a 2.48 (0.33–18.62) 0.376 c

GBP5 (L), ALDH1A2 (L) 106 (46.9) 1.00 1.00

GBP5 (H), ALDH1A2 (L) 92 (40.7) 1.36 (0.80–2.32) 0.256 a 1.47 (0.83–2.62) 0.185 c

GBP5 (L), ALDH1A2 (H) 13 (5.8) 0.54 (0.13–2.22) 0.390 a 0.68 (0.16–2.90) 0.598 c

GBP5 (H), ALDH1A2(H) 15 (6.6) 1.82 (0.78–4.26) 0.166 a 2.14 (0.87–5.28) 0.100 c

GBP5 (L), CD166 (L) 76 (33.6) 1.00 1.00

GBP5 (H), CD166 (L) 72 (31.9) 1.32 (0.76–2.29) 0.320 a 2.11 (1.01–4.40) 0.047 c

GBP5 (L), CD166 (H) 43 (19.0) 1.19 (0.64–2.21) 0.594 a 1.99 (0.89–4.45) 0.093 c

GBP5 (H), CD166(H) 35 (15.5) 1.52 (0.79–2.96) 0.212 a 2.48 (1.08–5.74) 0.033 c

GBP5 (L), ABCG2 (L) 55 (24.3) 1.00 1.00

GBP5 (H), ABCG2 (L) 50 (22.1) 0.68 (0.33–1.39) 0.293 a 1.07 (0.43–2.63) 0.889 c

GBP5 (L), ABCG2 (H) 64 (28.3) 0.82 (0.45–1.51) 0.522 a 1.26 (0.56–2.83) 0.582 c

GBP5 (H), ABCG2(H) 57 (25.2) 2.37 (1.38–4.08) 0.002 a 2.65 (1.25–5.61) 0.011 c

Abbreviations: CHR, crude hazard ratio; CI, confidence interval; AHR, adjusted hazard ratio; L, low expression; H, high expression.
a p-values were estimated by Cox’s regression. b p-values were adjusted for cell differentiation (moderate + poor vs. well) and AJCC
pathological stage (stage III + IV vs. stage I + II) by multivariate Cox’s regression. c p-values were estimated by multivariate Cox’s regression.

4. Discussion

GBP5, belonging to the family of interferon-γ-inducible large GTPases, is one member
of seven highly homologous GBPs, and is well known for its role in host defense against
pathogens [24]. Nevertheless, the role of GBP5 in cancers, especially in OSCC, is still
unknown. In the present study, we first indicated the role of GBP5 in progression and
malignancy of OSCC as follows: (1) the expression level of GBP5 is higher in tumor tissues
compared with that in normal tissues of oral cancer patients; (2) the high gene expression
level of GBP5 is associated with poor prognosis in oral cancer patients with poor cell
differentiation and lymph node metastasis; and (3) GBP5 plays a role in cell growth, the
cell cycle, the invasion/migration, and cancer stemness of OSCC cells.

GBPs are known for their function in the defense against bacteria, and numerous
studies have documented their oncogenic or tumor suppressive roles for various types of
cancer. GBP1 overexpression has been reported to play the oncogenic role and predicts a
poor prognosis in glioblastoma, breast cancer, HNSCC [6], esophageal SCC (ESCC) [25],
OSCC [26], ovarian cancer [27,28], and prostate cancer [29]. GBP2 expression is significantly
higher in ESCC [30]. Higher expressions of GBP2 and GBP3 are significantly associated
with shorter relapse-free survival of HNSCC patients [6].

In contrast, some GBPs showed anti-tumor effects. For example, GBP1 expression was
downregulated and acts as a tumor suppressor in colon cancer [31]. The expression level
of GBP2 was higher in breast cancer, but high GBP2 expression is associated with better
prognosis in breast cancer patients [32]. Moreover, higher expressions of GBP2, GBP4, and
GBP7 are significantly associated with longer OS in HNSCC patients [6]. Moreover, higher
GBP1-6 expression is associated with better OS in skin cutaneous melanoma patients [33].
Furthermore, the gene expression level of GBP6 is significantly lower in OSCC patients
with poor differentiation/lymph node metastasis, and low expression of GBP6 is associated
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with poor prognosis in TSCC patients [11]. Regarding current studies of GBP5 in cancers, a
truncated splice variant of GBP5 was found in lymphoma [34]. GBP5 is expressed highly
in gastric adenocarcinomas as an immune modulator [35]. Moreover, the expression levels
of GBP5 are higher in HNSCC tissues [6]. This study found that the high expression levels
of GBP5 are associated with cancer malignancy and poor prognosis in oral cancer patients
with poor cell differentiation and lymph node metastasis, indicating that GBP5 might play
an oncogenic role in OSCC.

Our results indicated that GBP5 is involved in the cell growth and invasion/migration
of OSCC. Epidermal growth factor receptor (EGFR) signaling is known to be an important
intracellular signal for cell proliferation [36] and invasion [37]. The knockdown of GBP1
inhibits xenograft growth and the protein expression level of EGFR is decreased in GBP1-
knockout xenograft tumors in prostate cancer [29]. Moreover, GBP1 is induced by EGFR
signaling and promotes invasion because it is required for the EGF-induction of MMP1 in
glioblastoma [37]. GBP1 promotes lymph node metastasis and is positively correlated with
EGFR expression in ESCC [27]. The increased expression level of GBP1 was associated
with EGFR amplification in glioblastoma multiforme patients with poor prognosis [38],
implying that EGFR signaling might also be required for GBP5 induction in OSCC. On the
other hand, it is shown that the IFNγ-induced GBP1 is involved in actin remodeling for mi-
gration/invasion, which is regulated through the IFNγ/IFN6R/STAT1/IRF2 pathway [39],
implying that STAT1 might also be involved in IFNγ-induced GBP5 in OSCC.

Our results indicated that oral cancer patients with high expression levels of GBP5
have poor DFS, which is usually caused by chemotherapy resistance-associated cancer
stemness [24]. Here, we found that GBP5 knockdown decreased several chemotherapy
resistance-associated cancer stemness markers such as ALDH1A1 [40], ALDH1A2 [41],
CD44 [42], CD166 [9], and ABCG2 [43]. In the study, we found that the tumorsphere
formation, chemoresistance, and expressions of stemness-related surface markers were all
decreased in GBP5-silenced cells, implying that GBP5 expression may directly or indirectly
influence the expression levels of genes involved in stem cell physiology. The role of GBP5
on cancer stem cells requires more study to be elucidated.

GBP1 promotes chemoresistance via PGK1-activated EMT signaling in non-small cell
lung cancer [44,45]. Moreover, hGBP-1 expression contributes to paclitaxel resistance and
causes shorter progression-free survival in ovarian cancers [46]. GBP1 binds to proto-
oncogene serine/threonine-protein kinase pim-1 (PIM1) and causes paclitaxel resistance
in ovarian cancer [47], implying that PIM1 might interact with GBP5 for drug resistance
in OSCC. Further study for the molecular mechanism of GBP5-associated EGFR, STAT1,
chemotherapy resistance-associated cancer stemness markers, and PIM1 is warranted
in OSCC.

5. Conclusions

In conclusion, the high expression levels of GBP5 are associated with poor prognosis
in OSCC patients and caner malignancy including cell growth, invasion/migration, and
cancer stemness of OSCC, indicating that GBP5 may be a potential diagnostic biomarker
and therapeutic target for OSCC patients in the future.
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