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Abstract: Virus-like particle (VLP)-based anti-infective prophylactic vaccination has been established
in clinical use. Although validated in proof-of-concept clinical trials in humans, no VLP-based
therapeutic vaccination against self-proteins to modulate chronic disease has yet been licensed.
The present review summarises recent scientific advances, identifying interleukin-13 as an excellent
candidate to validate the concept of anti-cytokine vaccination. Based on numerous clinical studies,
long-term elimination of IL-13 is not expected to trigger target-related serious adverse effects and
is likely to be safer than combined targeting of IL-4/IL-13. Furthermore, recently published results
from large-scale trials confirm that elimination of IL-13 is highly effective in atopic dermatitis,
an exceedingly common condition, as well as eosinophilic esophagitis. The distinctly different mode
of action of a polyclonal vaccine response is discussed in detail, suggesting that anti-IL-13 vaccination
has the potential of outperforming monoclonal antibody-based approaches. Finally, recent data have
identified a subset of follicular T helper cells dependent on IL-13 which selectively trigger massive
IgE accumulation in response to anaphylactoid allergens. Thus, prophylactic IL-13 vaccination may
have broad application in a number of allergic conditions.
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1. Introduction: Why Develop an Anti-IL-13 Vaccine?

In an age dominated by an avalanche of monoclonal antibodies (MAb) hitting the market for
a dizzying variety of conditions, one may ask why replacing this obvious successful model with
a vaccine strategy is sensible at all. The answer to this question is four-fold. Two of these are generic
and would apply to many vaccines replacing a MAb treatment. First, it will be much more accessible
to patients (economics). Second, it will have much broader applications thanks to the qualitatively
different nature of a polyclonal vs. a monoclonal immune response (see below for details). The third
reason is more limited to IL-13: it has an excellent safety profile as a target compared to almost all
other cytokines, with the exception of IL-17. Fourth, and finally, very recent data suggest that targeting
IL-13 with a VLP vaccine may have very broad anti-allergic potential, possibly leading to amelioration
of allergies and being able to achieve synergistic effects with other anti-allergic treatments. The present
review will discuss these four themes in turn, not aiming to be exhaustive, but rather with the intent to
stimulate further efforts to tackle many open questions. By implication, therefore, this review does not
intend to deliver a broader review of the signalling, structure, or immunobiology of IL-13 which have
been reviewed excellently recently elsewhere [1–3].
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2. Virus-Like Particles as a Construct for IL-13 Therapeutic Vaccine

Virus-like particle (VLP) vaccines are nanostructures generated by self-assembly of structural
proteins resembling the native version in their morphology and composition but lack the genomic
material of infectious capacity [4,5]. VLPs can be acquired from a variety of expression systems and
platforms including bacteriophages (MS2, PP7 and AP205 [6–8]), yeast (Hansenula polymorpha and
Saccharomyces cerevisiae [9,10]), bacteria (Escherichia coli [8]), mammalian cell lines (Vero, 293T and
BHK cell lines [11–13]), plant cell culture (cowpea mosaic virus, cucumber mosaic virus, tobacco
mosaic virus, and bean yellow dwarf virus [14–16]) and insect cell lines (Baculovirus and Sf9 cell
line [12,17]) [18]. Vaccine development faces a clear challenge: production of sufficient amounts
of quality antibodies to target the desired antigen. VLPs provide an excellent vaccine delivery
platform due to their composition: their small size (usually 20–200 nm), geometry and flexibility
during development [4]. Their size allows easy passage and drainage through the lymph to reach
all areas such as secondary lymphoid organs resulting in profound effects in targeting follicular B
cells [4,19–21]. Furthermore, CD8+ and plasmacytoid subsets of dendritic cells (DCs) can cross-present
small-sized antigens such as VLPs and active B cells and T cells in the lymph nodes to induce cytotoxic
effects [20,22,23]. Repetitive multivalent surface arrangement allows cross-linking of B cell receptors,
perfect for inducing great amounts and long-lasting antibodies [20,24]. VLPs also act as a template
for further engineering, where additional epitopes, proteins and nucleic acids are easily incorporated
alongside vaccine targets that can significantly increase immunity such as Toll-like receptor (Tlr)
ligands [20,25]. These characteristics can thus provide solutions for vaccine delivery challenges and
are readily modified for a vast variety of constructs to boost immune responses in many individuals.

3. The Health Economics of IL-13-Targetable Diseases

In terms of economics, it is obvious that health care systems globally are under huge strain;
personal bankruptcies due to health care expenditure in the US alone tell the story: a 2019 study in
the American Journal of Public Health found that two-thirds of personal bankruptcies are filed due
to medical bills, equating to more than half a million of affected people despite the Affordable Care
Act [26]. While health care cost in other economies may not be quite as exorbitant, that fact is offset by
the simple unavailability of many high-quality medicines to patients who cannot afford private health
care. Given current demographic trends toward increased old age-related morbidity, including the
dementia ‘epidemic’, as well as globally increased longevity, the search for truly affordable health care
solutions represents a distinct priority.

The clinical indications amenable to anti-IL-13 vaccination based on documented action of
anti-IL-13 MAbs to date include atopic dermatitis, subgroups of asthma, and eosinophilic esophagitis.
However, the list of other potential indications is much longer and has been discussed in detail [27].
Crucially, in the context of competitive resource allocation vis-à-vis conditions such as dementia,
cancer, and emerging infectious diseases, it is clear that per-case expenditure available by health care
providers will not be able to satisfy the profit margins required to offset large-scale manufacture
of monoclonal antibodies. Hence, vaccine approaches, which also avoid the need for laboratory
monitoring infrastructure, will become eminently competitive in the near future.

4. Monoclonal Antibodies vs. Polyclonal Vaccine Responses

The rate of recent marketing approvals of MAbs and sometimes decoy receptors suggests that
they are highly effective in ameliorating disease. However, a closer look prompts the question: do
they reach full therapeutic potential? Specifically, it is becoming increasingly evident that the serum
concentrations required for monoclonal antibodies to be effective are rather extreme. A striking
example for this is the group of monoclonals targeting the p19 subunit of IL-23, currently licensed
for psoriasis: guselkumab, risankizumab, and tildrakizumab. While the molecular mode of action
is identical between all three antibodies, even the comparatively high affinity of tildrakizumab to its
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cytokine target (300 pM) is evidently suboptimal based on its inferior clinical activity compared to
the competitor MAb, which feature Kd values in the vicinity of a staggering 2 pM (Table 1). Notably,
the relatively low efficacy of tildrakizumab exists despite a much higher relative affinity of this MAb
for the cytokine compared to the receptor (Table 1).

Table 1. Association of IL-23-targeting monoclonal antibody (MAb) affinity with clinical efficacy.

Target MAb
Affinity Clinical Efficacy 1 Fold-Increase Vs.

Receptor Binding 2 Ref

Guselkumab 2 pM 91% 3000-fold [28,29]
Risankizumab 2 pM 91% 3000-fold [30,31]
Tildrakizumab 300 pM 61% 20-fold [32]
1 Response of psoriasis severity, measured as the so-called PASI75 index, indicating 75% improvement from baseline,
measured at twelve weeks after treatment start, in each study cited. 2 Compared to the 6 nM reported affinity of
IL-23 to receptor [33].

For MAbs targeting the IL-4/13 system, this overall scenario appears similar. MAbs and their
respective molecular targets are graphically summarised in Figure 1. Structural and signalling details
have been summarised in detail recently elsewhere [2]. As detailed in Table 2, the picture emerging
from an integrated review of clinical success (or failure) of related MAbs is that affinities of Kd values of
approximately 60 pM or higher appear to correlate with clinical activity, justifying clinical development
all the way through phase III trials. The failure of pascolinumab is mechanistically of interest, as this
MAb harbours high affinity. By implication, its lack of satisfactory activity in clinical trials would
clearly suggest that isolated IL-4 inhibition, with intact IL-13 signalling, is insufficient to achieve useful
suppression of pro-inflammatory signalling.

Table 2. Ligand affinities and affinities relative to ligand–receptor binding of various cytokine-binding
clinically used MAbs.

Mab/Blocker Net Target 1 Affinity
(pM) Tested in 2 Effective in Fold Affinity

Vs. Receptor 3 Ref

Group 1: IL-13-only blockers

Lebrikizumab IL-13Ra1 <10 Asthma, AD AD, Asthma
4 3.5 [35,36]

Anrukinzumab IL-13Ra1 385 UC, Asthma — 0.1 [37]
RPC4046 IL-13Ra1/Ra2 50 EoE EoE 0.7 [38,39]

Tralokinumab IL-13Ra1/Ra2 58 Asthma, AD AD 0.8 [40]

Group 2: IL-4-selective and IL4/IL-13 combined blockers

Pascolizumab IL-4Ra 60 Asthma — 1.4 [41]

Dupilumab IL-4Ra,
IL-13Ra1 9 Asthma, AD Asthma, AD 10 [42]

Pitrankinra IL-4Ra,
IL-13Ra1 100 5 Asthma — 1 [43]

Altrakincept IL-4Ra,
IL-13Ra1 1000 Asthma — 0.1 [44,45]

AMG317 IL-4Ra,
IL-13Ra1 180 Asthma — 0.8 [46]

1 Signal-transducing receptor pathway inactivated by monoclonal antibody. The actual targets of each IL-13- and
IL-4-inhibiting MAb are shown in Figure 1. 2 Disease abbreviations: UC—ulcerative colitis, EoE—eosinophilic
esophagitis, and Pso—psoriasis. 3 Target–receptor affinities are complex, involving sequential ternary complex
formation of more than one receptor subunit. The data shown depict the ratio between MAb/cytokine affinity and
cytokine/receptor affinity, respectively, for IL-13 -> IL-13Ra1/IL-4Ra (30–40 pM, for group 1), and for IL-4 -> IL-4Ra
(100 pM, group two), as detailed in [47]. The highest affinity target/receptor binding reported was chosen as most
relevant to gauge the competitive strength of drug circulating in serum. 4 In the high-biomarker patient subgroup.
5 Assuming retained affinity for the dual mutation differentiating pitankinra from native IL-4.
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Figure 1. Molecular targets of monoclonal antibodies clinically evaluated to inhibit IL4/IL-13 signalling
to date. For a list of antibodies and references, see Table 1. Colour codes used are blue for signalling
transduced through IL-4, but not IL-13, beige for either IL-4 or IL-13 (through the IL-4Ra/IL-13Ra1
receptor dimer), and red for IL-13, but not IL-4. IL-13Ra2, also depicted in red, acts primarily as
a cellular disposal facility for IL-13 [34]. For details on structure and signalling, see 2.

The apparent requirement for ultra-high cytokine affinity of MAbs is all the more noteworthy, as
trough serum concentrations are usually above 5 g/mL. By contrast, serum concentrations reported
for IL-13 range from below 1 pg/mL, regardless of whether in healthy probands or symptomatic
asthma patients [48], to between 0.16 and 0.24 ng/mL in diverse populations and patient groups [49].
Even if concentrations in target tissues (lung or skin) may be significantly higher than in serum,
it is remarkable that molar excess of several orders of magnitude of MAb to cytokine still can prove
clinically insufficient.

By contrast, polyclonal responses act by combining various affinities of different antibody species.
The quantity of B cell clones, as well as resulting affinities, can vary widely. Thus, a bivalent VLP-based
vaccine against norovirus consisting of Gll.1 and Gll.4 sequence strains was found to produce
an oligoclonal response, with < 3 antibodies accounting for 58–86% of epitope-specific clones [14].
This study utilised the VEE replicon vector to transfect ORF2 genes of norovirus for production of
viral protein 1, a capsid protein that can self-assembly into a VLP when introduced into BHK-21 cells.
By contrast, a recent in-depth analysis showed that influenza virus vaccination in humans triggered
36 ± 12 (mean ± SD, range 16–49) B cell lineages expanding >50-fold and, collectively, accounting
for 22 ± 12% of each subject’s antibody repertoire during peak response [50]. In another influenza
vaccine study, vaccination elicited between 40 and 147 clonotypes where the top 6% most abundant
clonotypes accounted for > 60% of the entire repertoire [51]. In terms of affinity, Kd values between
2.5 pM and 160 nM were found [51]. A large-scale analysis of influenza vaccination in healthy controls
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and SLE patients elicited antibody affinities between 1 and 100 nM [52]. A single-protein vaccination
of HIV-Env produced final affinity-matured Ig affinities to the antigen between approximately 3 and
10 nM in Rhesus monkeys [53]. Collectively, these data strongly suggest that vaccine-triggered natural
effector antibodies show significantly less single-clone affinity compared to the engineered MAbs
detailed in Table 1 but bear the potential of significant cooperative action. Although no detailed studies
are available on therapeutic VLP vaccines, these likely trigger responses comparable to anti-virus
vaccines. Accordingly, the VLP-based vaccines targeting interleukin-1 and angiotensin both met their
pharmacodynamic endpoints in clinical trials [54,55]. Likewise, a number of VLP-based vaccines have
been shown to be effective in other mammalian species, including treating insect bite hypersensitivity
in horses [56]. Here, IL-5 was chemically conjugated to a VLP from cucumber mosaic virus engineered
with the tetanus toxoid (TT) epitope, a property to enhance immunological responses of T helper cells
and memory B cells [56]. This characteristic was also employed in vaccine constructs against psoriasis,
cat allergy and Alzheimer’s disease [57]. Designing a VLP vaccine that contains the TT epitope
alongside the target antigen can be a useful tool in ensuring enhanced immune protection across
majority of immunised individuals, especially those that are aging [57]. Similarly, for influenza vaccines,
polyclonal approaches may outperform monoclonal targeting based on broader antigen coverage [58].

Apart from the affinity and polyclonality of a vaccine response, a third fundamental
difference between MAbs and polyclonal responses is that MAbs are of a singular—mostly
IgG1—isotype, which is efficient in engaging effector functions such as antibody-dependent cytotoxity
(ADCC), antibody-dependent cellular phagocytosis (ADCP), or pro-inflammatory cytokine activation,
mediated by Fc binding of a variety of Fc gamma receptors (FcγRs). It is noteworthy that dupilumab is
of the IgG4 isotype, which is less efficient in engaging FcγRs [59]. By contrast, polyclonal responses
produce a mix of isotypes, which will vary between vaccine recipients in addition to cooperative action
between various species targeting the cytokine at different epitopes.

5. The Inhibition of Anaphylactic TfH Cells: A Novel Role for IL-13 Neutralisation

Very recently, the paradigm in IL-4/IL-13 immune function in the germinal centre reaction was
that IL-4 is central to germinal centre-based affinity maturation, as well as isotype switching toward
IgE of B-cells, but not IL-13, through follicular T-helper (TfH) 2 cells characterised by IL-4 secretion
(reviewed in [60]). However, a very recent landmark study identified a new Tfh subset characterised
by IL-13 secretion which is responsible for the generation of IgEhigh B cells in response to stimulation
with allergens [61] (Figure 2). Crucially, TfH13 cells were not only identified in the newly created
hyper-IgE-harbouring mouse model, but also detectable and increased in humans with peanut allergy.
Importantly, TfH13 cells did not drive IgEhigh B cell and peripheral IgE production in response to
parasitic (helminth) infection but only in response to anaphylactoid allergen challenge (also reviewed
in [62]). Moreover, T cell-specific ablation of IL-13 was found to profoundly suppress IgE synthesis.
These data suggest that elimination of IL-13 function may lead to suppression of anaphylactic reaction
to a wide range of allergens.

As detailed above, the response to such therapeutic intervention may profoundly differ between
anti-IL-13 MAb administration and anti-IL-13 vaccination, in particular since the latter is expected
to induce IL-13-targeted memory clones (both B and T cells), which could modulate the germinal
centre reaction by cytokine secretion and which would not feature in MAb-mediated IL-13 suppression.
In addition, it is intriguing that TfH1 cells, which would mediate class switching in response to
a VLP-type vaccine, would be instrumentalised in this way to suppress the activity of TfH13 cells.
In fact, this concept appears to already have been validated for TfH2 cells, since blocking of IL-4
caused a profound block in Th2-class switch and improved antibody responses to oxycodone and
diptheria-pertussis-tetanus vaccination [64]. Clinically, it is very possible that the routinely observed
major drop in serum IgE levels in patients treated with dupilumab is in part mediated by suppression
of TfH2 cells. It would therefore be of interest to compare the performance of monoclonal- vs.
vaccine-mediated IL-13 inhibition in the novel DOCK8-/- mouse model established in the above cited



Viruses 2020, 12, 438 6 of 10

study. Moreover, given the different mode of action of a polyclonal response, combined with the novel
anti-TfH13 mode of action, it is entirely possible that VLP vaccine-based IL-13 targeting will perform
different to MAb-based treatment in allergic asthma.Viruses 2020, 12, x FOR PEER REVIEW 6 of 11 
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Figure 2. Function of IL-13-dependent TfH cells in IgE production in response to allergens. Simplified
schematic showing the light zone of a peripheral lymphoid germinal centre (GC) where a naïve
IgM-positive B cell survives apoptosis after antigen (Ag) encounter presented by a follicular dendritic
cell (FDC). Prior and additional interaction with Th cells are not shown. Depending on the type of
antigen, the B cell may then receive stimulation by TfH1 cells, resulting in class switching to Ig-isoforms,
as indicated. Further, sequential stimulation by TfH2 cells may cause secondary class switching to IgG4
or IgElow phenotypes. Finally, the newly identified IL-13-dependent TfH13 cells, may cause tertiary
switching to IgEhigh in the context of allergen stimulation. The schematic is based on figures in [61,63].

6. Safety of Anti-IL-13 Vaccination

In light of the above-detailed roles of IL-13 and IL-4, it is both highly significant and reassuring
that a large double-blind controlled study on almost 180 patients did not find any effect of tetanus
vaccine-induced specific IgG formation after twelve weeks of dupilumab treatment [65]. Furthermore,
emerging post-marketing surveillance data of patients on dupilumab confirms an approximately
10% incidence of conjunctivitis. In one recent real-world review of 54 patients, 2 patients had to
discontinue due to, or for reasons related to, conjunctivitis symptoms [66]. Since this drug-specific
side effect had already been recognised during pre-marketing phase II–III studies and continues to be
non-reported in any anti-IL-13 treated cohort, it is highly likely that conjunctivitis will not be associated
with long-term IL-13 elimination. Furthermore, a growing array of meta-analyses, and systematic
reviews of anti-IL-13 MAb-treated patients fail to uncover target-related limiting adverse events in
large patient groups [27,67–69].

7. Conclusions

Utilising VLPs as vaccine constructs provides flexibility and many prospects in design that can
significantly enhance protection and immunogenicity. IL-13 represents an excellent proof-of-concept
target to validate anti-cytokine vaccination as a therapeutic strategy in humans based on validated
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vaccine targets, an excellent target safety profile, and broad vaccine applicability. Treating IL-13-related
immunological disorders with a therapeutic vaccine will offer a new avenue in medical intervention.
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