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Abstract: The vast majority (approximately 90%) of Lepidoptera species belong to moths whose
phylogeny has been widely discussed and highly controversial. For the further understanding of phy-
logenetic relationships of moths, nineteen nearly complete mitochondrial genomes (mitogenomes) of
moths involved in six major lineages were sequenced and characterized. These mitogenomes ranged
from 15,177 bp (Cyclidia fractifasciata) to 15,749 bp (Ophthalmitis albosignaria) in length, comprising of
the core 37 mitochondrial genes (13 protein-coding genes (PCGs) + 22 tRNAs + two rRNAs) and an
incomplete control region. The order and orientation of genes showed the same pattern and the gene
order of trnM-trnI-trnQ showed a typical rearrangement of Lepidoptera compared with the ancestral
order of trnI-trnQ-trnM. Among these 13 PCGs, ATP8 exhibited the fastest evolutionary rate, and
Drepanidae showed the highest average evolutionary rate among six families involved in 66 species.
The phylogenetic analyses based on the dataset of 13 PCGs suggested the relationship of (Notodon-
tidae + (Noctuidae + Erebidae)) + (Geometridae + (Sphingidae + Drepanidae)), which suggested a
slightly different pattern from previous studies. Most groups were well defined in the subfamily level
except Erebidae, which was not fully consistent across bayesian and maximum likelihood methods.
Several formerly unassigned tribes of Geometridae were suggested based on mitogenome sequences
despite a not very strong support in partial nodes. The study of mitogenomes of these moths can
provide fundamental information of mitogenome architecture, and the phylogenetic position of
moths, and contributes to further phylogeographical studies and the biological control of pests.

Keywords: moths; mitochondrial genome; evolutionary rate; overlap; intergenic spacer; phylogeny

1. Introduction

Lepidoptera (butterflies and moths) is the largest single radiation of plant-feeding
insects, the diversification of which is presumed to be in synchrony with angiosperms
insects [1,2]. Lepidoptera insects cover 133 families, 43 superfamilies and 157,424 extant
species in the world, and moths are estimated to make up nearly 90% of the diversity of
species [3]. Moths have a profound impact on human society whether acting as major
pests in agriculture and forestry [4]; or working as pollinators and economic insects [5,6];
or undertaking as model systems for the studies of genetics, physiology, development,
ecology, and evolutionary biology [7,8].

Researches on phylogenetic relationships of moths have been carried out extensively,
especially on some large families like Erebidae [9,10], Noctuidae [11–16] and Geometri-
dae [17–20], among which some remarkable and fundamental works were achieved by
Kristensen et al. [21,22] and Minet et al. [23,24] initially with the studies of morphological
and anatomical characteristics. As molecular markers widely applied to phylogenetic
studies, new evidence has been consistently presented based on mitochondrial genes,
nuclear ribosomal DNA, nuclear protein-coding genes or a combined method [25–29].
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For Noctuoidea, the largest superfamily of moths, its monophyly was morphologically
supported by the unique apomorphic character with a metathoracic tympanal organ, and
also strongly confirmed by various molecular datasets [25,27,29]. On the other hand,
the phylogenic conflicts within Noctuoidea between morphological and molecular re-
sults were often reported. Contrasting with the traditional ten-family or the later revised
five-family classification system [13,30], recently, a new six-family classification system
of Noctuoidea has been well accepted using one mitochondrial gene (COI) and seven
nuclear genes (EF-1α, wingless, RpS5, IDH, MDH, GAPDH and CAD): Oenosandridae,
Notodontidae, Erebidae, Euteliidae, Nolidae and Noctuida [29]. The Doidae showed a
close relationship with groups of Drepanoidea based on molecular support [25,27] instead
of an affiliation with Noctuoidea traditionally [22,31]. Noctuidae in the broad former sense
was paraphyletic including Lymantriidae and Arctiidae [22], but recently these two have
been subsumed into Erebidae as subfamily concepts [10,29]. Similarly, some members
of Drepanidea were related with Geometroidea for mostly shared features of abdominal
tympanal organs [24,32–34]. However, inferred from EF-1a and COI sequences, Drepanidea
consisted of the sole family Drepanoidae (including four subfamilies: Drepaninae, Oretinae,
Thyatirinae and Cyclidiinae) and the former Epicopeiidae was suggested to be excluded
as a separate superfamily [34]. Although the majority of divergences within moths seem
credibly established, there remains broadly weak support or unstable nodes among partial
subordinate taxa because of deficient genetic information or sparse sampling, thus resulting
in conflicting results [3]. Short internal branches resulting from rapid radiation also increase
the difficulty of the phylogeny resolution [35].

The mitochondrial genome has been considered as an ideal tool in studies of com-
parative and evolutionary genomics, molecular evolution, phylogenetics and population
genetics [36–38] regarding its simple structure, maternal inheritance and that it rarely
undergoes recombination [39–41]. The insect mitogenomes are a compact circular molecule
with a length of 15–18 kb consisting of 37 conserved genes (13 protein-coding genes
(PCGs) + 22 tRNA + 2 rRNA), which have been extensively studied, involved in all or-
ders [39]. Recently, multiple studies have used them to address phylogenetic questions
about moths where multi-gene analyses have been either unresolved or poorly supported.
Some novel findings are consistently proposed with mitogenome data such as the poly-
phyletic macrolepidopteran superfamilies [42–44], which have never been reported in
morphological analyses [24,45] or in combined datasets of nucleotide sequences and mor-
phological characteristics [46]. Given the rapid developing sequencing technique, fast
accumulated mitogenome resources of moths would accelerate our understanding of the
phylogeny, genetics and evolution of moths [47,48]. Though RNA-Seq [35] and whole-
genome sequences [49] are also being used in phylogenetic studies of insects, they are
limited to few taxa samplings and expensive bills.

In this study, we sequenced nearly complete mitochondrial genomes of nineteen moths
across six major families of Lepidoptera (including two of Drepanidae, three of Erebidae,
six of Geometridae, one of Noctuidae, four of Notodontidae and three of Sphingidae) based
on next-generation sequencing. Comparative analyses on characteristics of mitochondrial
genomes and phylogenetic investigations on these species were performed with extensive
taxon sampling involved in 66 species in total, with an attempt to provide insight into the
evolution of those major lineages of moths. Due to the small taxa sampling, we did not
expect a robust phylogenetic tree, but focused more on the impact of newly sequenced
species on the phylogenetic classifications compared with previous studies.

2. Materials and Methods
2.1. Taxon Sampling

All these 19 specimens were collected from Mount Qingcheng, Sichuan Province,
China. The samples were initially placed in 100% ethyl alcohol under −20 ◦C in the lab
until DNA extraction (College of Life Sciences, Sichuan University). We initially identified
all the samples through traditional morphological keys [50,51]. For further verifying the
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morphological identification, we performed blast searches of the nucleotide collection
(nr/nt) database of the NCBI based on cytochrome c oxidase I (COI) mitochondrial gene.
Total genomic DNA was extracted by DNeasy Blood & Tissue kit following manufacturer
instructions, and the quality of total DNA was checked with 1% agarose gels. The partial
sequences of COI gene (~630 bp) for each species served as DNA barcode were ampli-
fied with the primers LC01490: 5′-GGTCAACAAATCATAAAGATATTGG-3′ and C02198:
5′-TAAACTTCAGGGTGACCAAAAAATCA-3′ [52], and were sequenced with Sanger
sequencing method by Tsingke Biotech (Tsingke Biotechnology Co., Ltd., Chengdu, China).
We acquired the best-fit and targeted mitochondrial scaffolds by BLAST searches above at
least 98%.

2.2. Mitochondrial Genome Sequencing, Assembly, Annotation

The mitogenome sequences were obtained on the Illumina Hiseq 2500 platform with
150 bp paired-end reads at Novogene company, Chengdu, China. All the libraries were
prepared with an average insert size of 350 bp. Each sample was generated about 10 Gb of
raw data which was performed read quality control with FastQC [53] and filtered out low
quality reads, adapter contamination and ambiguous bases with Trimmomatic [54]. The
obtained clean data was used to assemble and annotate the mitochondrial genome through
MitoZ [55]. Gene boundaries were further confirmed and aligned against the published
mitogenome sequences of moths using MEGA X [56].

2.3. Comparative Analysis of Mitogenome

The overlapping regions and intergenic spacers between genes were counted manually.
The base composition and the relative synonymous codon usage were obtained using
PhyloSuite [57]. The nucleotide compositional differences between genes were calculated
using the formula: AT-skew = (A − T)/(A + T) and GC-skew = (G − C)/(G + C) [58].

2.4. Phylogenetic Analysis

Mitochondrial genomes of 66 moths representing six families of Lepidoptera were se-
lected for phylogeny reconstruction, including the nineteen newly sequenced mitogenomes
(Table S1). Xanthochlorus tibetensis and Drosophila melanogaster of Diptera order were se-
lected as outgroups. Thirteen protein-coding genes (PCGs) of these mitogenomes were
used as the dataset to construct BI and ML phylogenetic trees by a set of softwares in-
tegrated in the PhyloSuite program [57]. Each gene was extracted in batches and then
aligned individually by codon-based multiple alignments using the MAFFT algorithm [59]
with the L-INS-i strategy and default setting. The conserved regions were identified and
unreliably aligned sequences within the datasets were eliminated using Gblock [60]. Then
the resulting alignments were concatenated into a single data matrix by PhyloSuite.

Potential substitution saturation was assessed by Xia’s test and index of substitution
saturation (Iss) with a GTR model as implemented in DAMBE [61]. Evolutionary rate of
PCGs aligned in advance and the ratio of Ka (nonsynonymous substitution rate) and Ks
(synonymous substitution rate) were calculated by DnaSP [62].

Subsequently, PartitionFinder [63] was used to infer the optimal partitions and the
Bayesian information criterion (BIC) was employed to select the best models under the
‘greedy’ search with linked branch lengths. Phylogenetic trees inferred were constructed
using maximum likelihood (ML) with IQ-TREE [64] and Bayesian inference (BI) with
MrBayes [65]. For ML analyses, the ultrafast 1000 replicate bootstrapping was conducted
in IQ-TREE, and substitutional models were selected with the “Auto” option. BI analyses
were executed with 10 million generations with 4 chains, sampling every 1000 generations
with a burn in of 25% of sampled values.
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3. Results and Discussion
3.1. Mitogenome Structure and Organization

The newly sequenced moths were involved in six families of Lepidoptera. All of them
were assembled as a nearly complete mitogenome. These mitogenome sequences ranged
from 15,177 bp (Cyc. fractifasciata) to 15,749 bp (Op. albosignaria) in length, and each of them
included all core 37 mitochondrial genes (13 PCGs, 22 tRNAs genes and two rRNA genes)
and the partial control region. Same as most insects, a total of 14 genes including four
PCGs, eight tRNAs and two rRNAs were located on the light strand, and the other 23 genes
including nine PCGs and 14 tRNAs were located on the height strand (Figure 1) [36,66,67].
The detailed gene information about the nineteen moths was listed in Table S2.

The overall nucleotide composition of all the nineteen months was biased toward
A and T, as a common characteristic existing in Lepidoptera insects [48,68]. The total
A + T content showed a highest level of 81.9% in Barsine fuscozonata, and Op. albosignaria
while showed a lowest level of 78.1% in Kamalia tattakana based on the whole mitogenome
sequence (Table 1). However, these values were probably underestimated because of partial
AT rich region assembled.

Table 1. Nucleotide composition of the 19 mitochondrial genomes of moths.

Family Species Mitogenome Length (bp) A% T (U)% C% G% AT (%) GC (%)

Drepanidae Auzata chinensis 15,243 41.1 39.2 11.60 8.20 80.30 19.80
Cyc. fractifasciata 15,177 39.8 40.8 11.90 7.50 80.60 19.40

Erebidae B. fuscozonata 15,391 40.2 41.7 10.70 7.40 81.90 18.10
Ericeia subcinerea 15,586 39.9 40.3 12.40 7.50 80.20 19.90
Vamuna remelana 15,424 40.2 40.2 12.10 7.50 80.40 19.60

Geometridae Medasina albidaria 15,504 41.4 39.8 10.90 7.90 81.20 18.80
Mesastrape fulguraria 15,561 41.7 39.4 11.40 7.40 81.10 18.80

Metabraxas rubrotincta 15,577 41.9 39.5 11.20 7.50 81.40 18.70
Obeidia gigantearia 15,429 41.2 39.9 11.20 7.70 81.10 18.90

Op. albosignaria 15,749 42.1 39.8 10.70 7.40 81.90 18.10
Ourapteryx ebuleata 15,667 41 39.5 11.70 7.80 80.50 19.50

Noctuidae Cymatophoropsis trimaculata 15,369 40.1 40.3 11.80 7.70 80.40 19.50
Notodontidae Epodonta lineata 15,358 40.7 39.3 12.20 7.70 80.00 19.90

K. tattakana 15,381 40.7 37.4 13.80 8.10 78.10 21.90
Spatalia doerriesi 15,475 39.2 39.7 13.50 7.70 78.90 21.20

Zaranga tukuringra 15,249 41.1 37.5 13.60 7.90 78.60 21.50
Sphingidae Acosmeryx castanea 15,201 41 39.6 11.80 7.60 80.60 19.40

Marumba cristata 15,744 40.5 41.1 11.10 7.30 81.60 18.40
Rhagastis castor 15,265 41.1 39.2 12.30 7.50 80.30 19.80

Considering the PCGs forming the most mitogenome sequences, we analyzed the
strand bias of nucleotide composition of 13 PCGs that are routinely measured by AT skews
and GC skews [58]. For all codon sites of the PCGs sequences, it appeared that these
moths were almost characterized by significant negative values for AT skews, indicating
a strand compositional bias characterized by an excess of A relative to T nucleotides
(Table 2). The origin of the strand bias can be related to asymmetric mutational constraints
involving deaminations of A and C nucleotides during the replication and/or transcription
processes that would result in pairings with C and A, respectively [69]. However, the
most taxa exhibited weakly positive GC skew values (<0.1) though the third position of
codons showed high negative values. This result was not consistent with the previous
view on three Lepidoptera insects [70]. Therefore, we performed a further analysis for
each PCG individually to trace the source of an asymmetric base composition. As Figure 2
showed, the positive values of GC skew were mainly from ND1, ND4, ND4L and ND5,
which was thought to be related to the direction of replication. The variation of GC
skew pattern between various taxa still remains unknown. The newly sequenced moth
mitogenomes would provide further insight for the evolution of the mitogenome and
ecological adaption [71].
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Figure 1. Organizational maps of the nineteen newly sequenced mitogenomes in this study. The
genes and intergenic spacers are scaled to their length in the mitogenome. Abbreviations: COX1,
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COX2, COX3, cytochrome oxidase subunits I, II, III; CYTB, cytochrome b apoenzyme; ND 1–6, 4L,
NADH dehydrogenase subunits 1–6, 4L; ATP6, ATP8, ATP synthase subunits 6, 8; l-rRNA, large
ribosomal subunit; s-rRNA, small ribosomal subunit; CR, the putative control region; all transfer
RNA genes and the corresponding codon are listed.

Table 2. AT and GC skew at different position of codon for 13 PCG genes in 19 moth mitogenomes.

Species
AT Skew GC Skew

1st 2nd 3rd 123 1st 2nd 3rd 123

Au. chinensis −0.0052 −0.3718 −0.0616 −0.1373 0.2430 −0.0965 −0.1821 0.0303
Cyc. fractifasciata 0.0023 −0.3761 −0.0902 −0.1461 0.1934 −0.0988 −0.2555 0.0007

B. fuscozonata −0.0046 −0.3766 −0.0856 −0.1466 0.2484 −0.1102 −0.2340 0.0376
Er. subcinerea −0.0054 −0.3707 −0.0822 −0.1448 0.2408 −0.1057 −0.2493 0.0165
V. remelana −0.0095 −0.3698 −0.0949 −0.1496 0.2451 −0.1096 −0.2853 0.0205

Med. albidaria −0.0126 −0.3665 −0.0660 −0.1388 0.2639 −0.0947 −0.1465 0.0533
Met. rubrotincta 0.0002 −0.3622 −0.0647 −0.1331 0.2907 −0.1043 −0.2281 0.0447

Ma. cristata −0.0065 −0.3652 −0.0423 −0.1268 0.2560 −0.0925 −0.2909 0.0351
Op. albosignaria −0.0053 −0.3598 −0.0636 −0.1334 0.2933 −0.0963 −0.1317 0.0634
Ob. gigantearia −0.0224 −0.3607 −0.0606 −0.1371 0.2772 −0.0984 −0.2333 0.0369

Ou. ebuleata −0.0078 −0.3642 −0.0642 −0.1366 0.2732 −0.0921 −0.2059 0.0359
Cym. trimaculata −0.0155 −0.3735 −0.0901 −0.1512 0.2457 −0.0980 −0.2776 0.0203

Ep. lineata −0.0125 −0.3743 −0.0825 −0.1482 0.2350 −0.1044 −0.2757 0.0117
K. tattakana 0.0122 −0.3690 −0.0577 −0.1305 0.1908 −0.1142 −0.2283 −0.0228
S. doerriesi −0.0014 −0.3740 −0.0994 −0.1522 0.1919 −0.0971 −0.2088 −0.0049

Mes. fulguraria −0.0078 −0.3613 −0.0792 −0.1400 0.2594 −0.1028 −0.2616 0.0204
Z. tukuringra 0.0062 −0.3739 −0.0776 −0.1410 0.1906 −0.1063 −0.2044 −0.0056
Ac. castanea −0.0215 −0.3668 −0.0582 −0.1381 0.2508 −0.1036 −0.1589 0.0383
Ma. cristata −0.0065 −0.3652 −0.0423 −0.1268 0.2560 −0.0925 −0.2909 0.0351

R. castor 0.0174 −0.3668 −0.0550 −0.1255 0.2039 −0.1048 −0.2125 0.0037
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3.2. Overlapping Sequences and Intergenic Spacers

Gene arrangements in mitogenomes are important evolutionary events and provide
valuable phylogenetic signals [72]. As shown in Figure 1, the same gene order of trnM-
trnI-trnQ was observed among the nineteen mitogenomes of moths, which differed from
those of ancestral insects trnI-trnQ-trnM [39]. The rearrangement of trnQ is considered
as a Lepidoptera-specific pattern [70,73,74], which could be resulted from the tandem
duplication-random loss (TDRL) [75]. This rearrangement is highly conversed in many
taxonomic groups of Lepidoptera such as Erebidae [41,73,76], Notodontidae [74], Lima-
codidae [36] and so on. While two non-ditrysian species of Hepialoidea in Lepidoptera
that had diverged at Early Cretaceous Epoch of the Mesozoic Era displayed an ancestral
gene arrangement, evidencing that this gene arrangement likely occurred after that Hepi-
aloidea diverged from other Lepidopteran lineages [77]. As more mitogenomes resources
revealed, more gene arrangement-related variations were found in Lepidoptera [78] and
other various insect orders [39], which would promote further understandings on the insect
evolution, phylogeny and genetics.

The presence of the overlapping region represents a way to economize the design of the
mitogenome [79]. For each mitogenome of these 19 moths there were 7 to 13 overlapping
regions, and the total length of overlapping sequences ranged from 27 bp (Ou. ebuleata)
to 72 bp (Ep. lineata). The longest overlap (25 bp) was located between trnL and rrnL,
which was consistent with previous studies [80]. The overlaps between ATP6 and ATP8,
and between trnC and trnW were detected in all the 19 moths, and they were reported
conserved in Lepidoptera [36,41,67,73,76].

Various intergenic spacers occurred in moths such as regions between trnQ and NAD2,
between CYTB and NAD6, and between trnS2 and NAD1, [36,41,67,73,76]. Minimizing
intergenic spacers is another way to shorten the mitogenome [79]. The large intergenic
spacer is little known in moths. To date, the longest intergenic regions (222 bp between
trnE and trnF) have been found in the mitogenome of Adoxophyes honmai of Tortricidae [81].
Here, we found a region of 100 bp intergenic spacer between trnS and trnE in M. cristata.

3.3. Codon Usage and Contrasting Rates of Evolution

Apart from NAD1 and COX1, almost all genes of 19 mitogenomes were initiated
with typical ATN codons. In three of six Geometridae species NAD1 started with TTG,
which was reported to be conserved in beetles [82]. TTG was proposed as start codon
for economic evolution by minimizing the intergenic space and avoiding overlap with
the abutting tRNA [82]. COX1 possessed diverse starting codons including additional
CGA, AAG and AAA and these codons scattered among families, which indicated no
relation with lineages. For the stop codons, six PCGs (ATP6, ATP8, COX3, NAD2, NAD6
and CYTB) terminated with complete codon of TAA in all 19 mitogenomes, and three
PCGs (NAD1, NAD3, NAD4L) also terminated with “TAG” in several species. Additionally,
truncated termination codon “T” or “TA” is common in insects, which could be recognized
by endonucleases during polycistronic pre-mRNA transcription [41].

The relative synonymous codon usage (RSCU) of 13 PCGs in the nineteen mitogenomes
was calculated (Figure S1). The RSCU values of six species representing six families in-
dividually were presented in Figure 3. In general, RSCU showed a similar distribution
among families/species. Most amino acids showed a bias on the usage of synonymous
codons with a higher frequency of AT than GC, a conserved feature in an insect. The
UUA presented significantly high RSCU values (about five) than other codon families
(approximately two-fold higher than the second), which was consistent in the six lineages.
Whereas, the Notodontidae species showed slightly lower RSCU values. All the 62 codons
found were only present in K. tattakana. The number of lacked codons ranged from 1 to 6,
and the codon AGG, CUG and ACG were absent in multiple species. Five codon families
with most usage frequencies (>200) were observed in all nineteen mitogenomes including
Leu 2 (UUA), Ile (AUU), Phe (UUU), Met (AUA), Asn (AAU). The distribution pattern of
codon families was mostly in keep with previous reports of moths [36,73].
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Figure 3. Relative synonymous codon usage (RSCU) in protein-coding genes (PCGs) in the mi-
togenomes of the nineteen species. Codon families are indicated in boxes below the x-axis; the colors
correspond to the stacked columns, and values on the top of the bars denote amino acid usage.
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Amino acid sequences are less effected by random similarity and alignment ambiguity
compared with nucleotide data [47]. An evolutionary pattern was analyzed among the
aligned amino acids sequence of 13 PCGs in six families respectively (including extensively
published 57 species) (Figure 4). Ks showed diversity among genes but exhibited similarity
among families, with an exception of the Notodontidae family that showed higher Ks than
other taxa across all 13 PCGs. Synonymous substitutions are often assumed to be free of
selection at the protein level. Notodontidae exhibited relatively higher values than others,
indicating an approximation of the neutral mutation rate. Meanwhile, the ratio of Ka/Ks,
a typical indicator of evolutionary rate [83,84], did not show similarly elevated values as Ks
between Notodontidae and other families. Notodontidae and other moths displayed low
evolutionary rates (Ka/Ks < 1) in the 13 PCGs, suggesting that these genes experienced
purifying selection. Among them, ATP8 showed the highest ratio of Ka/Ks, suggesting its
least selection pressure and fastest evolution, and COX1 showed the lowest, suggesting
the opposite pattern [66,83,84]. Drepanidae showed higher Ka/Ks values between ATP8
and NAD6 than other families, possibly indicating their important role in the evolution
of mitogenome.
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The saturation plots showed that there was no significant saturation in all codon
positions including third codon positions with relatively ‘freely’ evolution, implying that
the nucleotides for the phylogenetic reconstruction were qualified (Figure 5).
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3.4. Phylogenetic Analysis

The phylogenetic analyses were performed based on concatenated 13 PCGs from
66 complete or near complete mitogenomes, representing six families of moths including
Drepanidae, Erebidae, Geometridae, Noctuidae, Notodontidae and Sphingidae. Two mi-
togenomes from Dolichopodidae and Drosophilidae of Diptera, respectively, were used
as outgroups. The phylogenetic results generated from Bayesian and ML inferences had
mostly identical topologies in the subfamily level, with exceptions of unstable Erebinae
and Lymantriinae (Figures 6 and 7).

All species were divided into two major groups.
The first group was composed of noctuids, and the relationship of Notodontidae

+ (Erebidae + Noctuidae) was well defined with strong supports (PP:1.00; BS:99). They
are members of well-accepted six families of Noctuoidea (a superfamily of noctuids) that
includes the other three families (Oenosandridae, Euteliidae, Nolidae) unlisted in this
study [29]. Noctuoidea shows highly apomorphic morphology and rapid radiation, result-
ing in a difficulty in addressing the phylogenetic relationship [10,16,29,85]. The phyloge-
netic results can be impacted bymolecular datasets, taxa samplings and analytical strategies.
Zahiri et al. conducted a series of phylogenetic analyses within Noctuoidea using seven
nuclear genes and one mitochondrial gene from different sampling sets, and observed
different patterns among families [10,16,29,85]. Regier et al. [86] reconstructed a phyloge-
netic tree with 5–19 genes (6.7–18.6 kb) in 74 noctuoids, and proposed a novel relationship
pattern: (Notodontidae + (Erebidae + (Noctuidae + (Euteliidae + Nolidae))). Yang et al. and
Zhu et al. reached an agreement based on mitogenome datasets: Notodontidae + (Erebidae
+ Nolidae + (Euteliidae + Noctuidae)) [74,87]. Despite various patterns within Noctuoidea,
our results had shared characteristics with those of studies that Notodontidae originated
earlier than Noctuidae and Erebidae; Noctuidae remained diverged with Erebidae.

Within Notodontidae, the Notodontinae that was represented by the newly sequenced
genus Kamalia clustered with Thaumetopoeinae. This clustering was similar to that of
Regier et al., where the representatives of Notodontinae were Furcula and Cerura [86]. In our
study, the sister Ptilodontinae and Dudusiane with representatives of Epodonta and Zaranga,
respectively, were not recovered compared with that of Regier et al. [86], which possibly
resulted from different target species. The two genera Clostera and Spatalia of Pygaerinae
formed the basal group while they were separated by three nodes with high bootstrap
supports. This finding indicated polyphyletic evolution of Pygaerinae in accordance with
that of Schintlmeister [88] and of Regier et al. [86], and we have more reasonable grounds
to suspect that Spatalia belongs to Pygaerinae. A polygenetic relationship increases the
difficulty to understand actual phylogeny among these groups. To resolve this problem
requires more sampling involved and wider coverage of taxa. Species of Cyclidia were firstly
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sequenced with mitogenome here. Cyclidia belonging to Cyclidiinae of Drepanidae was
supported by morphological characters and several gene markers [34,89,90], which was
unexpectedly placed in Notodontidae with a strong nodal support based on mitogenome
data in our study. We treated it as Notodontid sp. herein, while more mitogenome
information of relevant groups was required to resolve the uncertainty.
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Within Noctuidae, the relationship of (Amphipyrinae + (Heliothinae + Noctuinae))
+ (Plusiinae + Acronictinae) was strongly supported in our study. Previously, Plusi-
inae as one of the early diverging groups, was separated with these four subfamilies
belonging to “higher noctuids”. Heliothinae, Noctuinae and related smaller subfami-
lies/tribes/unassociated genera formed the “pest clade” [13–16,27,86]. However, Acronicti-
nae were grouped with Amphipyrinae, rather than Plusiinae in this study. The representa-
tive of Amphipyrinae here, Spodoptera (Pogue 2002), is unstable in the taxonomic position-
that is initially included in Acronictinae or sometimes in Noctuinae [1,13,91]. Spodoptera
and allies diverged earlier than Heliothinae, a result identical with that of Regier et al. [86].
However, recent studies suggested the opposite conclusion using more related species
within these two subfamilies based on mitogenome datasets [11,73,76,83]. Cymatophoropsis
(Hampson, 1894), was considered to be one member of Acronictinae in Noctuidae [14]
while is was assigned to Erebidae at some taxonomic websites such as NCBI and BOLD,
and our result also strongly supportedthe former.

The Erebidae clade consisted of Arctiinae, Lymantriinae and partial concepts of
quadrifine noctuoids (those with a strong vein MA2 in the hindwing) that included Hermini-
inae, Hypeninae and Erebinae [29]. The phylogenetic relationships of Erebidae and its con-
cepts have undergone significant changes, such as these subfamilies in our study formerly
as separated families of Noctuidea or as subfamilies of Noctuidae [13,30]. Here, the mono-
phyly of Erebidae was recovered with strong support (PP:100; BS:1.00). The relationships of
Hypeninae + ((Erebinae + Lymantriinae) + (Herminiinae + Arctiinae)) were supported by
BI tree, by contrast, (Lymantriinae + Hypeninae) + (Arctiinae + (Erebinae + Herminiinae))
was supported by ML tree. Both the molecular and morphological evidences confirmed
that Hypeninae was close to the basal lineage to branch off first compared with the other
four subfamilies [29,30,41,86]. Previous studies [10,41,86] and our BI tree both supported
(PP:1.00) the grouping of Herminiinae and Arctiinae. In trees of Regier et al. [86] and
Zahiri et al. [10], these two subfamilies plus Aganainae and Pangraptina were termed as
“Arctiine lineage”. The “Arctiine lineage” remained divergent with “Erebine lineage”
including Erebinae and additional families such as Scolecocampinae, Boletobinae and
Hypenodinae. Lymantriinae, for its unstable position, was included in neither “Arctiine
lineage” or “Erebine lineage”. Thus, the topology based on the Bayesian analysis might
be closer to the real phylogeny of the Erebinae family. Despite the differences shown in
the two trees, the relationships within Arctiinae subfamily appeared to get resolved well.
The divergence between Vamuna and the other clade (consisting of Amata, Callimorpha,
Hydrillodes and Arctia) was stable, which was confirmed by Galarza et al. based on eleven
mitochondrial genes (excluding ATP8 and ND6) [9].

The second group of Geometridae + (Sphingidae + Drepanidae) was recovered,
which suggested that Geometroidea was close to the sister group of Bombycoidea and
Drepanoidea, with Noctuoidea as the basal branch. Although increasing studies aimed
to resolve the phylogeny of Lepidoptera among superfamilies, accumulated contradic-
tories were observed. For example, a phylogenetic pattern of Lepidoptera was sup-
ported by Regier et al. (2013) [27] using 483 taxon for 19 protein-coding nuclear genes:
((Noctuoidea + Bombycoidea) + Geometroidea) + Drepanoidea; a different pattern was
observed according to the partial results of Kawahara et al.’s study [1] using 186 species for
2098 orthologous protein-coding genes: ((Geometroidea + Bombycoidea) + Noctuoidea)
+ Drepanoidea; Heikkilä et al. [92] proposed another pattern combining morphological
and molecular data covering 473 taxa and 6702 characters (530 morphological characters;
6172 bp): ((Noctuoidea + Bombycoidea) + Drepanoidea) + Geometroidea. However, our
study showed a distinctive pattern with all mentioned above.

The clade of Auzata and Drepana as representatives of Drepanidae was sister to Sph-
ingidae. Within Sphingidae, there were three subfamilies: Sphinginae, Smerinthinae and
Macroglossinae. Each of these was recovered as monophyletic with very high support
values (PP = 1.00, BS = 100), while monophyletic Sphinginae required further testing as
it comprised only a single genus and species herein. As our topology showed, Sphingi-
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nae was sister to Smerinthinae and Macroglossinae was firstly branched off as the basal
group, which accorded with the results of Kawahara et al. by five nuclear genes [1] and
of Wang et al. by two datasets of PCG123R (including all codon positions) and PCG12R
(removing the third codon positions) [93]. The intergroups of Smerinthinae were also well-
defined with strong support, and three major groups were recovered herein corresponding
to the tribe Leucophlebiini (Leucophlebia, Clanis), tribe Ambulycini (Orecta, Protambulyx,
Adhemarius) and tribe Sichiini (Marumba), a result identical with that of Wang et al. [93].

Within Geometridae, two major clades were recovered by BI and ML trees (PP:1.00;
BS:100). The first one included Sterrhinae and Larentiinae; the second one included En-
nominae and Geometrinae. The sister relationship of Sterrhinae and Larentiinae has been
confirmed by morphological evidences [94] and molecular analyses [95,96], but there ex-
isted some exceptions that some Larentiinae species were included in [97] or just next to
Sterrhinae instead as sister group to Sterrhinae [17]. Ennominae is the largest subfamily of
the Geometridae, highly diverse in the morphology [17]. Within Ennominae, many tribes
and genera on phylogenetic status have been in dispute or have not been assigned. Ennomi-
nae formed the monophyletic group with strong support (PP:0.93; BS:94). To date, almost all
molecular studies have reached agreement on the monophyly of Ennominae [17,96,98,99]
except Young et al.’s study [100]. Despite weak support at some internal nodes, there were
clearly observed two major subclades within Ennominae, corresponding to the two typical
divisions of “ennomine” and “boarmiine” moths based on the structure of the cremaster in
the pupal stage [101,102]. Two unassigned genera, Obeidia and Xanthabraxas, showed a close
relationship with members of “ennomine” Phthonandria (tribe gnophini) and Ourapteryx
(tribe ourapterygini). In the “boarmiine” subcalde, the sister Semiothisa and Abraxas, as
representatives of tribe macariini and abraxini respectively, together were sisters to the rest
of the taxa with strong supports. The rest of the taxa mostly belonged to Boarmiini tribe,
with an exception of Metabraxas belonging to cystidiini tribe, which was not coincident
with monophyletic Boarmiini [17,18]. Cystidiini is a Palaearctic tribe, first introduced
by Stekolnikov and Kuznetzov [103] but not included in the Forum Herbulot list of the
Geometridae tribes (2014) being little known [104] either morphologically or molecularly.
It is the first time that species of cystidiini have been involvedin a molecular analysis based
on a whole mitogenome sequence, although Metabraxas coryneta was previously reported
for species identification with a COI gene sequence [52]. Metabraxas as the sister group of
Ophthalmitis was supported by the BI tree (PP:0.88) in contrast with being the sister group
of Mesastrape which was supported by ML tree (BS:65). Poorly nodal supports in resolving
the relationships within Boarmiini may get improved when given good taxon sampling.

4. Conclusions

Our study determined nineteen nearly complete mitochondrial genomes across six
families of Lepidoptera by next generation sequencing technologies including Drepanidae,
Erebidae, Geometridae, Noctuidae, Notodontidae and Sphingidae. The comparative mi-
togenome analyses suggested conserved characteristics among these species such as
being highly A + T-biased, having a rapidly evolved ATP8 gene, being a typical re-
arrangement of trnM-trnI-trnQ and having a weak strand bias based on GC skew of
PCGs. Phylogenetic results supported the relationships at the superfamily level as follows:
(Noctuoidea + (Geometroidea + (Bombycoidea + Drepanoidea))); a different pattern from
previous reports. The relationships of most families among subordinated taxa were well
defined with strong supports such as Drepanidae and Sphingidae, but partial clades within
species-rich groups such as Ennominae were inadequate in support. Therefore, robust
phylogeny needs further investigation with increased taxa sampling. With expanded
comparative analyses on moths, our studies will throw greater light on the evolution and
phylogeny of moths and the biological control of pests.
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