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Many problems in fluid mechanics and acoustics can
be modelled by Helmholtz scattering off poro-elastic
plates. We develop a boundary spectral method,
based on collocation of local Mathieu function
expansions, for Helmholtz scattering off multiple
variable poro-elastic plates in two dimensions. Such
boundary conditions, namely the varying physical
parameters and coupled thin-plate equation, present
a considerable challenge to current methods. The new
method is fast, accurate and flexible, with the ability
to compute expansions in thousands (and even tens
of thousands) of Mathieu functions, thus making it
a favourable method for the considered geometries.
Comparisons are made with elastic boundary element
methods, where the new method is found to be
faster and more accurate. Our solution representation
directly provides a sine series approximation of the
far-field directivity and can be evaluated near or on
the scatterers, meaning that the near field can be
computed stably and efficiently. The new method
also allows us to examine the effects of varying
stiffness along a plate, which is poorly studied
due to limitations of other available techniques. We
show that a power-law decrease to zero in stiffness
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parameters gives rise to unexpected scattering and aeroacoustic effects similar to an acoustic
black hole metamaterial.

1. Introduction
Motivated by many applications, there is substantial interest in solving Helmholtz scattering
problems on unbounded domains with complicated boundary conditions. In this article, we
consider the situation of Helmholtz scattering off (multiple) finite plates in two dimensions.
When embedded in three dimensions, this corresponds to plates of infinite span but finite chord.
When the geometry and boundary conditions are sufficiently simple, a successful approach for
this problem is the Wiener–Hopf method [1–3]. For example, the Wiener–Hopf method allows
one to capture the interaction of a semi-infinite edge with a quadrupole source and compute
the far field. However, typically in such situations, one would want to model the interaction
between the leading and trailing edges of a finite plate, which is important as both backscattering
of the trailing-edge field by the leading edge [4] and structural resonances can be significant.
There are some extensions of the Wiener–Hopf method which can deal with finite plates, but
such extensions are non-generic and difficult due to the need to solve a matrix, rather than a
scalar, Wiener–Hopf equation. Another common case encountered in applications, which cannot
be tackled by the Wiener–Hopf method, is when physical parameters vary along the boundary
of the domain. Such variations are expected to be crucial in biological applications [5] and to
avoid discontinuous boundary conditions where additional scattering occurs [6]. Variation in
physical parameters is also important in the study of metamaterials, such as acoustic black
holes (see §5), which rely on a smooth variation of stiffness that, in the right circumstances,
leads to almost 100% absorption of the incident wave energy [7,8]. Interactions of acoustic or
hydrodynamic fluctuations with thin elastic structures arise in numerous other situations such
as aerodynamic noise reduction [6,9–11] and the modelling of ice sheets and marine platforms in
oceanography [12–15]. In all such cases, accurate and fast numerical methods are key to predicting
the effect of external forces and variable parameters such as elasticity on an elastic plate, or the
effect of elasticity on the radiated field, and thus crucial for providing insight into a wide range
of fluid dynamical problems.

By starting with separation of variables in elliptic coordinates, we develop a boundary spectral
method for scattering by multiple variable poro-elastic plates. This allows both accurate and rapid
computation of the scattered field, as well as great flexibility in the boundary conditions specified
on the plates. Separation of variables leads to angular Mathieu equations and radial Mathieu
equations, and the solutions to these equations are the well-known Mathieu functions [16,17].
Historically, the problem of plane wave scattering of a rigid screen was first rigorously studied by
Schwarzschild [18] based on the Sommerfeld half-plane problem and shortly after by Sieger [19]
by employing Mathieu functions. Some numerical work based on this solution was presented in
[20,21], and more recently in [22]. Extensions with different boundary conditions on elliptic shells
were considered in [22,23]. Mathieu functions were also shown to be an effective tool for low-
frequency scattering of a rigid (non-porous) plate in [24], where comparisons were made with
semi-analytical boundary integral methods.

This article demonstrates that Mathieu functions offer a direct and rapid approach to tackle
many interesting boundary value problems. To the authors’ best knowledge, the problem of
acoustic scattering from multiple elastic plates with varying elasticity (or even a single plate
with varying elasticity) using Mathieu functions has not been treated before. Our solution
representation directly provides a sine series approximation of the far-field directivity and, unlike
standard boundary methods, is easy to evaluate near the scatterers. This means that the near
field can be computed efficiently and in a stable manner. These advantages mean that it is
particularly good for a simple model of turbulence using Lighthill’s analogy. For example, the
numerical method allows rapid and easy calculation of structural or acoustic resonances, which
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Figure 1. Example of scattering (real part of total field shown)with four elastic plates. The plates are emphasized for readability
and we use the zero-thickness approximation in this article. The parameters correspond to (6.4), with k0 = 20 and B= 50.
(Online version in colour.)

are generally challenging to compute when the physical parameters vary along the plate [25–27]
or when sophisticated plate theories are involved [28]. To demonstrate the flexibility of the local
Mathieu function expansions for arbitrarily positioned plates in two dimensions, figure 1 shows
the total field for a quadrupole source scattering off four elastic plates. We also note that boundary
conditions additional to those considered in §2 can easily be incorporated. It is important to point
out, however, that the approach of this article cannot deal with curved boundaries which do
not have a local coordinate system in which to perform separation of variables. Code for the
numerical method is provided at https://github.com/MColbrook/MathieuFunctionCollocation.

Problems similar to a poro-elastic finite plate include the case of semi-infinite plates that
are uniformly porous [1], or uniformly poro-elastic [11], which can be treated using scalar
Wiener–Hopf techniques. These examples can be extended to more complicated porous boundary
conditions [6,29], but in such cases, the analysis leads to a matrix Wiener–Hopf equation which is
more difficult to solve. Elastic properties have also complexified previous numerical simulations.
For example, recent work [30] (extended to three dimensions in [31]) for the scattering of a near-
field source by a finite perforated elastic flat plate requires two problems to be solved; one for the
structural modes of the plate which is done via a spectral method; the second for the scattering
of the acoustic source which is achieved via a boundary element method (BEM). We compare our
results (in the restricted case of constant porosity and constant elasticity dealt with in [30]) to those
of [30] in §3c, demonstrating that separation of variables yields a faster, more robust and more
accurate method for the case of a single plate. See also [32,33] for an expansion scheme of the plate
deformation connected to Chebyshev polynomials that tackles the problem of a single elastic plate
in a rigid baffle (our numerical scheme can handle this problem with an appropriate modification
of the boundary conditions when we separate variables in §3). Another approach for these types
of problems is the unified transform [34] (see also [35–38] for recent developments), a Fourier
space boundary spectral collocation method which in certain cases generalizes the Wiener–Hopf
method [9,39].1 However, using the unified transform in unbounded domains requires the setting
up of several global relations by hand, which becomes complicated in complex geometries. More
broadly, there has been recent interest in spectral methods to solve scattering problems that can
be recast as a Riemann–Hilbert problem [43,44], though, as far as the authors are aware, such
methods have not yet been applied to elastic or porous scatterers.

1A comparison of the new extensions of the unified transform [39], iterative Wiener–Hopf method [40,41] and Mathieu
functions solution for a porous plate has recently been performed in [42].

https://github.com/MColbrook/MathieuFunctionCollocation
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The structure of this article is as follows. In §2, we describe the mathematical model for a
single plate. The numerical method is presented in §3, where we also compare with the boundary
element method of [30]. Examples of diffraction by elastic plates of varying stiffness are presented
in §4, including the peculiar effects of an acoustic black hole in §5; we are not aware of any
previous studies of this effect in such plates [8]. In §6, we describe how to extend the method
to multiple plates. Concluding remarks are given in §7.

2. Mathematical model for single plate
Suppose that an incident sound wave travels towards a plate situated at −d ≤ x ≤ d (where d > 0)
and y = 0. The incident field will be denoted φI and the scattered field by φ. The incident pressure
field is given by pI = ρf c2

0φI, where ρf is the mean fluid density and c0 the speed of sound, so
that throughout we deal with dimensionless fields φI and φ. We assume that φ has the usual time
dependence e−iωt (omitted throughout) and therefore satisfies the Helmholtz equation(

∂

∂x2 + ∂

∂y2 + k2
0

)
φ = 0,

where k0 = ω/c0 is the acoustic wavenumber for angular frequency ω. For instance, the pressure
due to a plane wave of unit amplitude incident at angle θ , measured from the positive x-axis
anticlockwise in the usual manner, corresponds to the choice

φI(x, y) = e−ik0(x cos θ+y sin θ).

Another choice we use is a quadrupole sound source corresponding to

φI(x, y) = ik2
0

4r2
0

(x − x0)(y − y0)H(1)
2 (k0r0),

where (x0, y0) is the source location, r0(x, y) =
√

(x − x0)2 + (y − y0)2 is the distance to the source,

and H(1)
n are Hankel functions of the first kind.

We consider poro-elastic boundary conditions. Other types of boundary conditions can also
be tackled by the methods of this article (see, for example, the list of boundary conditions and
physical interpretations in [45]), including non-local boundary conditions, but we stick to the
following case for brevity. For completeness, we have also provided an electronic supplementary
material detailing the implementation for rigid porous plates.

We consider a poro-elastic plate with evenly-spaced circular apertures of radius R, Rayleigh
conductivity of KR = 2R, and fractional open area αH = NπR2 (where N is the number of apertures
per unit area) [46]. The plate deformation is given by η(x)e−iωt (the time dependence is again
assumed and omitted) and η(x) satisfies the thin-plate equation

B0(x)η(x) +
4∑

l=1

Bl(x)
∂ lη

∂xl
(x) = −ρf c2

0

(
1 + 4αH

π

)
[φ](x). (2.1)

We use the notation φ(x, 0+) and φ(x, 0−) to denote the values of the field just above and just
below the plate, respectively. For notational convenience, the jump φ(x, 0+) − φ(x, 0−) in φ across
the plate is denoted by [φ](x). We have written (2.1) in general form since the collocation method
can deal with such general boundary conditions. In later sections, we consider specific models
of flexural waves along a thin plate of varying thickness. For details of this model derivation see
[11]. There is also a kinematic condition on the plate

∂φ

∂y

∣∣∣∣
y=0

+ ∂φI

∂y

∣∣∣∣
y=0

= k2
0

[
(1 − αH)η + αHηa

]
, (2.2)

where ηa = KR[φ]/(πk2
0R2) is the average fluid displacement in the apertures. Finally, there are

two more boundary conditions at each end of the plate. For each end, say at x = x0, of the elastic
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plate, the edge is either

free: η′′(x0) = η′′′(x0) = 0, or clamped: η(x0) = η′(x0) = 0.

Note that when |x| > d, φ(x, 0) = 0. The solution φ is also required to satisfy the Sommerfeld
radiation condition for outgoing waves at infinity given by

lim
r→∞ r−1/2

(
∂φ

∂r
− ik0φ

)
= 0, where r =

√
x2 + y2.

3. Single plate solution

(a) Expansion of solution in Mathieu functions
The solution φ is an odd function in the variable y and hence we can consider solving the
PDE system in the upper-half plane {(x, y) : y > 0}. First, we introduce elliptic coordinates via
x = d cosh(ν) cos(τ ), y = d sinh(ν) sin(τ ), where, with an abuse of notation, we write functions of
(x, y) also as functions of (ν, τ ). Elliptic coordinates for d = 1 are displayed in figure 2. The
appropriate domain then becomes ν ≥ 0 and τ ∈ [0, π ]. To simplify the formulae, we let Q = d2k2

0/4.
Separation of variables leads to the expansion

φ(ν, τ ) =
∞∑

m=1

amsem(τ )Hsem(ν), (3.1)

where sem(τ ) = sem(Q; τ ) denote sine-elliptic functions and Hsem(Q; ν) = Hsem(ν) denote
Mathieu–Hankel functions. A full derivation is provided in the electronic supplementary
material.

The functions sem are expanded in a sine series as

sem(τ ) =
∞∑

l=1

B(m)
l sin(lτ ). (3.2)

This Fourier series converges absolutely and uniformly on all compact sets of the complex plane
[17] and we find the coefficients B(m)

l via a simple Galerkin method. The convergence to the
eigenvalues and eigenfunctions depends on the parameter Q, in general being slower for larger
Q. However, the convergence is exponential, yielding machine precision for small truncation
parameter n, even for very large Q [42].

The functions Hsem(ν) can be expanded using Bessel functions [16,17]:

Hsem(ν) =
∞∑

l=1

(−1)l+mB(m)
l

Cm

×
[
Jl−1(e−ν

√
Q)H(1)

l+pm
(eν
√

Q) − Jl+pm (e−ν
√

Q)H(1)
l−1(eν

√
Q)
]

, (3.3)

where pm = 1 if m is even and pm = 0 if m is odd. Here Jn denotes the Bessel function of the
first kind of order n and we remind the reader that H(1)

n denotes the Hankel function of the first
kind of order n. The series in (3.3) converges absolutely and uniformly on all compact sets of the
complex plane [17]. We choose the normalization constants Cm such that Hse′

m(0) = 1. The terms
in the series (3.3) can easily be evaluated for small l. However, for large l, the terms in the series
suffer from underflow and overflow associated with cancellations between the Bessel and Hankel
functions. For large l and fixed x ∈ R>0, we use the asymptotics

Jl(x) =
q∑

j=0

(−1)j

j!(j + l)!

(x
2

)2j+l
+ O

(
1

(q + l + 1)!

)
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Figure 2. Elliptic and Cartesian coordinates for d = 1. (Online version in colour.)

and

H(1)
l (x) = −i

π

(
2
x

)l q∑
j=0

(l − j − 1)!
j!

(x
2

)2j
+ O (

(l − (q + 2))!
)

,

valid as l → ∞. For fixed a, b ∈ Z, this gives the asymptotic form

Jl+a(e−ν
√

Q)H(1)
l+b(eν

√
Q)

= −i
π

(√
Q

2

)a−b

e−ν(2l+a+b)

⎡⎣ q∑
j=0

(−1)j(l + a)!
j!(j + l + a)!

(
e−ν

√
Q

2

)2j
⎤⎦

×
⎡⎣ q∑

j=0

(l + b − j − 1)!
j!(l + a)!

(
eν
√

Q
2

)2j
⎤⎦+ O

(
l−(q+2)

)
We found this to be an excellent approximation for large l. It can also be accurately evaluated
for moderate q since the terms (l + a)!/(j + l + a)! and (l + b − j − 1)!/(l + a)! can be evaluated
as products of j and |j + 1 + a − b| terms, respectively. In what follows, we typically used this
asymptotic form when l > 100 and took up to q = 5 terms. When plotting errors of our method,
we were careful to compare against converged computations for which the series (3.3) was
evaluated directly using extended precision (such checks were the only place where we made use
of extended precision). Figure 3 shows the first 10 eigenfunctions and Mathieu–Hankel functions
for k0 = 20 computed to machine precision.

We use the boundary conditions to solve for the unknown coefficients am, after which the
solution can be evaluated anywhere in the (x, y) plane. Of particular interest is the far-field
directivity, D(θ ), which is defined via

φ(r, θ ) ∼ D(θ )
eiwr
√

r
, as r → ∞, (3.4)

where (r, θ ) are the usual polar coordinates. Given the Bessel function expansion of Hsem(ν) in
(3.3), we can directly compute D(θ ) from (3.1) using asymptotics of Bessel functions (for large
arguments, not large order as was used previously above). In the appropriate limit, τ becomes
the polar angle θ , whereas ν becomes cosh−1(r/d) (in the far field the confocal ellipses can be
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Figure 3. First 10 Mathieu functions used for separation of variables for k0 = 20. (Online version in colour.)

approximated by concentric circles, see figure 2). We therefore have

Hsem(ν) ∼ (−1)m+1

Cm

√
πr
√

Q/d2
exp

([
2r
√

Q/d2 − (pm + 1)π
2

− π

4

]
i
)

B(m)
1 , as r → ∞, (3.5)

and hence

D(θ ) =
√

2
πk0

∞∑
m=1

amB(m)
1

Cm
exp

(
(2pm − 3)π

4
i
)

sem(θ ). (3.6)

An advantage of our approach is that, for the case of a single plate, we implicitly compute a sine
series for the far-field directivity D(θ ) through the sine-elliptic functions sem(θ ) given by (3.2).

(b) Employing the boundary conditions
We adopt a spectral collocation method for finding the unknown coefficients in the expansion
(3.1). Throughout, we denote the approximate coefficients by ãm. When numerically solving the
resulting linear system, we found it helpful to precondition by rescaling to ensure that each row
of the resulting matrix has a constant l1 vector norm.

We truncate the expansion (3.1) to M terms and supplement the expansion of φ with an
expansion of the plate deformation η in terms of Chebyshev polynomials of the first kind

η(x) =
∞∑

j=0

bjTj

(x
d

)
.

We truncate this expansion to N terms for approximate coefficients b̃j. The relation (2.1) becomes

N−1∑
j=0

b̃j

4∑
l=0

Bl(x)
dl

T(l)
j

(x
d

)

+ 2ρf c2
0

(
1 + 4αH(x)

π

) M∑
m=1

ãmsem

(
cos−1

(x
d

))
Hsem(0) = 0. (3.7)

The kinematic relation (2.2) becomes

√
d2 − x2 · ∂φI

∂y
(x) +

M∑
m=1

ãmsem

(
cos−1

(x
d

)) [
1 − 4αH(x)Hsem(0)

πR(x)

√
d2 − x2

]

= k2
0(1 − αH(x))

√
d2 − x2

N−1∑
j=0

b̃jTj

(x
d

)
. (3.8)
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We collocate the kinematic condition (3.8) at the points{
d cos

(
2j − 1

2M
π

)
: j = 1, . . . , M

}
,

which correspond to (rescaled) Chebyshev points in Cartesian coordinates and equally spaced
points in elliptic coordinates [47,48]. However, for (3.7), we choose N − 4 Chebyshev points and
supplement this system with four relations enforcing the boundary conditions at ±d. This gives
rise to a coupled square (M + N) × (M + N) linear system for the unknown coefficients {ãm, b̃j :
m = 1, . . . , M, j = 0, . . . , N − 1}.

(c) Comparison with elastic boundary element method
In this section, we analyse the numerical performance of the proposed method with constant
physical parameters. Further examples where parameters vary will be given in later examples.
A comparison between our method and the unified transform for a rigid porous plate can be
found in [42].

We compare the proposed collocation method with the BEM of [30], which deals with constant
porosity and elasticity. The method of [30] first computes the spectral modes of the fourth-order
derivative operator (acting on the left-hand side of (2.1)), before recasting the boundary conditions
in terms of these vibration modes of the plate, and then solving the resulting boundary element
scheme. In this section, we shall be consistent with the set-up of [30] and consider a plate that
lies along {(x, 0) : x ∈ [0, 1]}, is clamped at x = 0, and free to move at x = 1. To compare with the
parameters of [30], for a plate of mass m per unit area and effective plate stiffness B̄, we define2

the coincidence frequency

ωc =
(

(1 − αH)mc4
0

B̄

)1/2

,

the vacuum bending wave Mach number

Ω =
(

ω

ωc

)1/2
= k0

kB
,

and the intrinsic fluid-loading parameter

ε = ρf k0

(1 − αH)mk2
B

.

Note that since we are considering constant parameters in this subsection, ωc, Ω and ε are
constant. After a suitable rescaling with the plate length (and, with an abuse of notation, keeping
the same notation for physical parameters), the non-dimensionalized boundary conditions
become

(1 − αH)
∂4η

∂x4 − k4
0

Ω4 η = −
(

1 + 4αH

π

)
ε

Ω6 k3
0[φ] (3.9)

and
∂φ

∂y

∣∣∣∣
y=0

+ ∂φI

∂y

∣∣∣∣
y=0

= (1 − αH)k2
0η + 2αH

πR
[φ]. (3.10)

A broad parametric study of how our collocation approach compares to BEM would be an
exhaustive task. Instead, we provide some comparisons pertinent to the general performance of
both methods. We therefore set R = 10−3, αH = 2 × 10−3 and ε = 0.0021 throughout this section
(representative of an aluminium plate in air [46]). We compare both methods for computing the

2There is an additional factor of (1 − αH) compared to [30] due to our direct use of the boundary conditions in [46]. This was
absorbed into the definition of m in [30].
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Figure 4. (a) Comparison of |D(θ )| for elastic BEM (BEM) and Mathieu function collocation (COL) for k0 = 0.5. (b) Same but
for k0 = 20. (Online version in colour.)

far-field directivity (computed by measuring the scattered field at radius 100 for BEM), using a
discrete relative L2 error defined by √∑

i |D̃(θi) − D(θi)|2∑
i |D(θi)|2

.

Here, D̃ is the computed directivity and D the true directivity which is estimated via a converged
computation with larger M and N for our method, and a larger number of boundary elements
and modes for BEM. The θi are taken to be 201 equally spaced points covering the interval [0, π ].
Consistent with [30], we consider the case of placing a quadrupole at (x, y) = (1, 0.01) and compute
the resulting far field of φ. We chose to compare the accuracy of computing the far-field directivity
as opposed to the jump in pressure across the plate since the numerical approach of [30] adopts
a small but positive plate thickness (however, we also obtain similar qualitative results for other
physical quantities of interest). Therefore, we do not expect exact agreement between the BEM
and our collocation approach (which deals with plates of zero thickness).

Figure 4 shows |D(θ )| for various Ω and k0. These show excellent agreement between both
methods (we used M = N for the Mathieu function collocation method). There is a slight deviation
for k0 = 20 and Ω = 0.05 due to the non-zero plate thickness in BEM (this is expected to make more
of a difference for larger k0 and smaller Ω). Figure 5 shows the convergence of BEM (default 100
modes) as a function of the number of degrees of freedom of the linear system. We see quite slow
algebraic convergence (typical of standard BEM). For small k0, the errors are smaller for larger Ω

as the plate becomes more rigid. This was less pronounced for larger k0. However, in this case, for
smaller Ω we needed a larger number of modes for the error not to plateau. This is expected since,
as a rough heuristic, the number of modes needed scales as the bending wavenumber kB = k0/Ω .
Figure 6 shows the convergence of our Mathieu function collocation method, where we have
also plotted the bending wavenumbers. For each set of parameters, there is a region of algebraic
convergence (roughly cubic) once the number of degrees of freedom is of the order kB. There
is also an initial region of rapid convergence (typical of spectral methods) most pronounced for
larger Ω . The Mathieu function approach achieves errors several orders of magnitude smaller
than BEM and for much fewer degrees of freedom.

Finally, figure 7 shows the average times of the methods implemented on a 5-year-old laptop,
including to evaluate the far field. The Mathieu function approach is much faster (see the different
scales on the vertical and horizontal axes), even when the size of the linear systems are the same.
A possible reason for this is the implementation of the BEM code, however, as demonstrated
in figures 5 and 6, much smaller system sizes are needed for a given accuracy when using
the collocation method. For BEM, we have shown separately the times taken to compute the
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vibrational modes and also to set up and solve the linear system. When using BEM, the vibrational
modes do not need to be recomputed for different parameters (assuming enough modes are
included to capture the oscillations). However, the precomputation of the coefficients in the
expansion (3.2) via a symmetric tridiagonal eigenvalue, which needs to be performed for each
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value of k0 in the Mathieu function approach, takes negligible time compared to solving the linear
system for large M.

Though we do not repeat the results here, a relative accuracy of approximately three digits and
runtime of a few seconds (including evaluation) was reported in [9] for similar parameters using
the unified transform. Therefore, our approach in this article is also faster and more accurate than
the unified transform implemented in [9,49].

4. Diffraction by an elastic plate of varying thickness
For the rest of this article, we consider the choices

B4(x) = (1 − αH)B̄(x), B3(x) = 2(1 − αH)
d
dx

B̄(x),

B2(x) = (1 − αH)
d2

dx2 B̄(x), B1 = 0, B0(x) = −(1 − αH)m(x)ω2, (4.1)

where the effective plate stiffness is B̄ = [1 − 2αHν/(1 − ν)]B, the plate has mass m(x) per unit area
and bending stiffness B, and ν denotes the Poisson ratio of the plate material. This models flexural
waves on a thin plate [46] and we also allow the bending stiffness, B(x), to vary across the plate.
Namely, for a plate of varying thickness h(x) such that the wavelength of the flexural motion is
much larger than h, the bending stiffness is given by [46,50]

B(x) = Eh(x)3

12(1 − ν2)
, (4.2)

where E is Young’s modulus. We take ν = 0.35 and E = 69 × 109 Pa, typical of an aluminium plate.
We also take m(x) = m0h(x) where m0 is such that the average of m over the plate is 1 (taking
typical values for aluminium in air from [30]), c0 = 343 ms−1 (speed of sound in air) and ρf =
1.23 kgm−3 (standard air density). Unless otherwise stated, R = 0.01, and αH = 0.03 for a plate
with d = 1 (lying between −1 and 1).

Here, we investigate how different variations in the plate thickness h(x) influence the scattered
field. We define a functional P, proportional to the total above-plate scattered sound power

P =
∫π

0
|D(θ )|2 dθ , (4.3)

where D(θ ) is defined in (3.4). For the experiments in §4a and §4b, we were able to compute P
with relative error bounded by 10−10 over a broad range of frequencies. We tested convergence
against larger M = N, particularly for larger k0 where more terms in the expansion are needed.
One potential application of the new numerical method is that it allows rapid and easy calculation
of resonances, which are generally challenging to compute when the physical parameters vary
along the plate [25–27] or when sophisticated plate theories are involved [28].

(a) Linear variation
Consider first a linear variation in the plate thickness for a plate clamped at both endpoints with

h(x) = 0.004(1 − cx), (4.4)

for different c. The sound power P is shown in figure 8a for an incident plane wave of angle π/3.
Looking at the constant stiffness (c = 0), the most apparent feature is the presence of resonance
peaks. These resonant contributions have decreasing power and increasing frequency width as
the frequency increases [51]. The resonance peaks of a fluid-loaded plate are known to be slightly
lower than the in vacuo plate resonance wavenumbers [30]. We have found that varying c does not
significantly change the sound power P variation for different acoustic wavenumbers. The only
observed effect is the shift in the resonance peaks, which is small for small c and larger for larger
c (as expected, smaller modifications of h lead to smaller changes in P). Hence it is found that,
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Figure 8. Results for linear and periodic variations. (a) Far-field power P for different acoustic wavenumer k0 and for an
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in (4.4). (b) Far-field power P for different acoustic wavenumer k0 and for an incoming plane wave of incidence angleπ/8. The
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similarly to the introduction of fluid-loading, linear variation in h (and monotonic changes in B)
changes the position of the resonance peaks in figure 8.

(b) Periodic variation
Next, we consider the case where the thickness varies periodically for a plate clamped at both
endpoints with

h(x) = 0.006(1.1 − sin(ax)), (4.5)

where the constant a varies. The sound power is shown in the right of figure 8 for an incident
plane wave of angle π/8. The periodic structure of the plate significantly alters the shape of P as a
function of k0. A reduction or increase in P for a specific frequency range is possible but is sensitive
to the angle of the incident wave. Hence this is not studied here. The shape of the resonance
response is observed to change consistently and to be angle independent. Experimenting with
different a and angle of incidence, we found that, for large a and for 5 < k0 < 15, the effect of
resonance is decreased and acoustic smoothing seems to occur. For frequencies between 15 <

k0 < 25 increasing a also decreases P. Hence, periodically structuring the plate thickness has the
potential to be used to control resonances and also decrease radiated power.

5. Acoustic black hole
We next consider the case of an acoustic black hole. These are new physical objects, introduced
and investigated over the last 15 years or so [7,8,52–56], that under certain circumstances can
absorb almost 100% of the incident wave energy. Acoustic black holes have been investigated
mainly for flexural waves in thin plates, where the local thickness varies according to a power law,
with the power-law exponent being greater than or equal to 2. Here, we explore their properties
in acoustic scattering. Whereas previous work considers incident waves that originate inside the
plate/wedge, we consider the interaction of such a plate with an incident field.

(a) Incident plane wave
In this example, we take αH ≡ 0 (i.e. zero porosity), and take the plate to be clamped at both
endpoints. The thickness is chosen to vary according to

h(x) = 0.001x2 + h0, (5.1)
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for a small positive cut-off h0. If h0 = 0, the thin-plate equation (2.1) becomes singular at x = 0.
For this reason, and to also avoid physically impractical cases, we consider examples of small
but positive non-zero h0. We consider an incoming incident plane wave of angle 3π/4 and
k0 = 20. Figure 9 shows the plate deformations for h0 = 10−6 and h0 = 10−3. For small h0, the plate
vibrations become very large as the thickness decreases at x = 0. The oscillations become clustered
near the thin portion of the plate (see the magnified section), and this effect is increased by making
h0 smaller. This effect is removed when h0 = 10−3. Figure 10 shows the corresponding near fields.
We see that near x = 0, the incident field is able to pass through the plate, causing little reflection
for h0 = 10−6. Again this effect is removed for the larger h0 = 10−3. In figure 11, the far field is
presented. There is a slight reduction in the scattered noise for smaller h0, with a less focused
scattering direction. Finally, figure 12a plots the convergence of the physical variables of interest
and demonstrates that we can easily gain several digits of relative accuracy, even for small h0.

(b) Quadrupole sound source
The noise generated by the turbulence at the trailing edge of an aerofoil can make a significant
contribution to the overall production of aeroacoustic noise, especially at high frequencies [57,58].
By Lighthill’s analogy, turbulent eddies are represented by a distribution of quadrupole sources
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in the same volume [59]. This motivated the study of a simplified model of the scattering by a
plate with forcing given by a quadrupole at (x, y) = (−1, 0.001). The resulting near and far fields
can be used to study aerofoil edge adaptions [30].

In this example, we take αH ≡ 0 (i.e. zero porosity), and take the plate to be clamped at x = 1
but free at x = −1. The thickness is chosen to vary according to

h(x) = 0.001(x + 1)2 + h0, (5.2)

for a small positive cut-off h0. We consider the case of k0 = 25 for h0 = 10−6 and h0 = 10−3.
Convergence of the method is shown in figure 12b. We also checked our results near the vibrating
tip by resorting to reciprocity. The value of the fields at (x, y) = (−1, 0.001) with a quadruple at
(1, 1) is the same as the value at (x, y) = (1, 1) with the quadruple at (−1, 0.001).

Figures 13–15 show the plate deformations, near field and far field, respectively. The plate
deformations behave qualitatively as before, with oscillations clustering near the thin part of the
plate for smaller h0. The imaginary part of η for h0 = 10−6 is not zero, but it is small in comparison
with the real part. This is because the real part of the incident quadrupole dominates near the
source. We see a very interesting effect for the near field. The magnitude of the field is much
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smaller for h0 = 10−6, and in fact appears to be dominated locally around the right tip (1, 0) which
is unusual. We can also see that there are evanescent pressure waves on the surface of the plate in
figure 14 (magnified). The more flexible end of the plate absorbs (rather than scatters) the pressure
fluctuations and propagates them down the plate to the less flexible endpoint. On reaching the x =
1 tip, the pressure fluctuations scatter resulting in a directivity pattern as if the main source was
located near the x = 1 endpoint. By contrast, for h0 = 10−3, expected cardioid directivity around
the point (−1, 0) is observed typical for such problems, and no evanescent pressure waves are
visible. The corresponding pattern is observed in the far-field directivity, where we see that for
h0 = 10−6, the scattered field is reflected back in the direction of the source and is much smaller
than that of h0 = 10−3. The scattered field in the direction of the incident field is an interesting
example of an acoustic black hole effect in a plate of varying elasticity. The authors are not aware
of this effect being studied in such plates. The usual setting for this is an elastic wedge, where the
cross-sectional thickness varies according to a power law [8]. One interesting observation is that
the black hole effect relies on the power function going to nearly zero [8]. It is mitigated when the
cross-sectional thickness decreases to 10−3 in figure 15b, where the majority of scattering obeys
the usual reflection.
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The above results indicate that there is potential to exploit the acoustic black hole effect in edge
adaptations. For example, acoustic black holes can be used to direct the vibrations away from the
aerofoil edges towards the middle of the aerofoil where vibration-absorbing mechanisms can be
placed. The need for small h0 gives practical limitations for its use, but the truncated profiles with
correctly placed damping layers can still be practical. There are some preliminary experimental
studies for sound absorption in air [8]. However, currently, there is very little known about the use
of acoustic black holes in aeroacoustics, and further theoretical and experimental investigations
and validation are needed.

6. Extension to multiple plates
We can also use the numerical method in §3 to compute the scattered field from multiple plates.
Suppose that we have plates P[i] for i = 1, . . . , S, whose lengths are 2d[i]. We also suppose that the
open set R

2\(∪S
i=1P[i]) is connected (in particular, we exclude the possibility that plates enclose a

region, though this can be dealt with via suitable modifications). We use sub/superscripts [i] to
denote quantities associated with the plate P[i]. Each plate P[i] induces a corresponding scattered
field given by

φ[i](x, y) =
∞∑

m=1

a[i]
m sem

(
Q[i]; τ[i]

)
Hsem

(
Q[i]; ν[i]

)
, (6.1)

where (ν[i], τ[i]) = (ν[i](x, y), τ[i](x, y)) are elliptic coordinates centred around P[i], and Q[i] = d2
[i]k

2
0/4.

The total scattered field is given by the sum of these contributions φ =∑S
i=1 φ[i] and along each

plate we apply poro-elastic boundary conditions as before. Clearly φ satisfies the Helmholtz
equation and Sommerfeld radiation condition.

Numerically, we solve this problem in the same way, where we take M[i] Mathieu functions for
the expansion along the ith plate and we supplement the expansion of φ[i] with an expansion of
η[i] in terms of N[i] Chebyshev polynomials of the first kind along the plate P[i]. The relation (2.1)
becomes

N[i]−1∑
j=0

b̃[i]
j

4∑
l=0

B[i]
l (x[i])

dl
[i]

T(l)
j

(
x[i]

d[i]

)

+ 2ρf c2
0

(
1 + 4α

[i]
H (x[i])
π

) M[i]∑
m=1

ã[i]
m sem

(
Q[i]; cos−1

(
x[i]

d[i]

))
Hsem(Q[i]; 0) = 0, (6.2)
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Figure 16. The far fields for L= 0.01 (a) and L= 0.5 (b). We have also shown the rigid case for comparison. (Online version in
colour.)

where x[i] denotes a unit speed parametrization of the plate P[i] for x[i] ∈ [−d[i], d[i]]. We collocate
this relation for (x, y) points corresponding to N[i] − 4 Chebyshev points along P[i] (so that x[i]/d[i]
correspond to standard Chebyshev points). Again, we supplement this system with four relations
enforcing the boundary conditions at x[i] = ±d[i]. The kinematic relation (2.2) becomes

Mi∑
m=1

ã[i]
m sem

(
Q[i]; cos−1

(
x[i]

d[i]

))[
1 − 4α

[i]
H (x[i])Hsem(Q[i], 0)

πR[i](x[i])

√
d2

[i] − x2
[i]

]

− k2
0(1 − α

[i]
H (x[i]))

√
d2

[i] − x2
[i]

N[i]−1∑
j=0

b̃[i]
j Tj

(
x[i]

d[i]

)

= −
√

d2
[i] − x2

[i] · ∂

∂y

⎡⎣φI +
∑
j�=i

M[j]∑
m=1

a[j]
m sem

(
Q[j]; τ[j]

)
Hsem

(
Q[j]; ν[j]

)⎤⎦ (x, y), (6.3)

and we collocate at M[i] Chebyshev points along P[i]. The above collocated relations generate a
square (

∑S
i=1 M[i] + N[i]) × (

∑S
i=1 M[i] + N[i]) linear system which we solve for the approximate

coefficients in the expansion. For large S, an iterative method of solution rather than solving
the full coupled system directly may be more numerically efficient (as was found to be the case
for a Wiener–Hopf method tackling rigid non-porous plates [41]), but we found a simple direct
approach to be effective for moderate values of S. Future work will also look at fast multipole
methods and hierarchical solvers for multiple plates and evaluation of the solutions.

As a simple example, we consider the case of two plates where P[1] is elastic and clamped with
endpoints (±1, L) and P[2] is rigid with endpoints (±1, −L). For P[1], we set

B4(x) = B, B3(x) = B2(x) = B1 = 0, B0(x) = −ω2, (6.4)

where a constant stiffness has been chosen so that we were able to validate the results with the
methods of [9]. We consider a plane wave incident field of angle π/4 and k0 = 10.

Figure 16 shows the far fields for L = 0.01 and L = 0.5. In the acoustic compact case L  k−1
0 , the

scattered field behaves as if it is incident on a single plate. This gives a symmetric scattered field,
which does not vary monotonically with B (as expected due to effects such as resonances). For
larger spacings, each edge (four in total) scatters an acoustic field which interacts in the far field
to create an oscillatory directivity pattern. If the elastic plate is suitably flexible to be excited by
the incident wave and absorb energy, its scattering will be distinctly different to a rigid plate, and
hence alter the overall far field directivity. The primary effects are noticeable in the Fresnel lobes.
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Figure 17. (a) The near fields for L= 0.1 and corresponding ductmodes. (b) The far fields for L= 0.1. (Online version in colour.)

Figure 17 shows the near field and far field for L = 0.1 =O(k−1
0 ). In this case, the plates support

a specific ‘duct’ mode between them. The scattering of these modes by the edges contributes to
the far-field noise. Altering the elasticity of the upper plate alters the fundamental structure of
the duct and what modes can exist there. This too impacts the scattering in addition to direct
scattering by each of the four edges.

7. Conclusion
This article developed a boundary spectral method, based on collocation of local Mathieu function
expansions, for Helmholtz scattering off multiple variable poro-elastic plates. Such boundary
conditions are challenging for current methods, and we compared our approach to an elastic
boundary element method in §3c, where it was found to be considerably faster and more accurate.
Moreover, previous use of Mathieu functions has been limited to constant physical parameters
and small degrees of expansions. By contrast, we were able to compute expansions in thousands
(and even tens of thousands) of Mathieu functions by making use of the Bessel function expansion
of Mathieu–Hankel functions and their asymptotics. This allows quick and robust testing of
physical parameters and variations, which may have use in other scattering problems beyond
those considered here.

We found that the method coped well with a broad range of frequencies (typically needing
more terms for larger k0, as expected) and smoothly varying porosity/elasticity (with more
collocation points and Mathieu functions needed to capture the case of more oscillatory
parameters). Our solution representation also directly provides a sine series approximation of
the far-field directivity and, unlike standard boundary methods, can easily be evaluated near or
on the scatterers. This means that the acoustic near field can be computed efficiently and in a
stable manner. These advantages assert that the present method is particularly good for a simple
model of turbulence using Lighthill’s analogy.

Examples of diffraction by elastic plates of varying stiffness were presented. We found that a
plate with varying stiffness can exhibit an acoustic black hole type behaviour. This has a drastic
effect on the near and far fields, both in the scattering and the aeroacoustics setting. Further work
is needed to understand how this might be employed as a leading or a trailing edge adaptation
to an aerofoil. There is also a potential to use this acoustic black hole effect to move the vibrations
away from the trailing edge and into the centre of an aerofoil where they can be baffled.

Finally, we demonstrated that the numerical method can be used on multiple, arbitrary
positioned plates. Future work will also look at fast multipole methods and hierarchical solvers



19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200184

...........................................................

for multiple plates and evaluation of the solutions. The method also offers considerable flexibility
in the choice of forcing term. In this article, we only considered plane waves and quadrupoles.
The new method can easily be extended to boundary conditions different to those in §2 (such as
linking different parts of the scatterer or integral constraints) and can be generalized to include
boundary conditions on ellipses. While the method is currently restricted to finite plates in two
dimensions, it may also be possible to consider similar approaches to other problems (e.g. three
dimensions) through separation of variables and different special functions accompanied by
spectral methods.
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