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Purpose: Hepatocellular carcinoma has become one of the severe diseases threatening human health. T cell exhaustion is deemed as 
a reason for immunotherapy resistance. However, little is known about the roles of CD8 Tex-related lncRNAs in HCC.
Materials and Methods: We processed single-cell RNA sequencing to identify CD8 Tex-related genes. CD8 Tex-related lncRNAs 
were identified based on their correlations with mRNAs. Unsupervised clustering approach was used to identify molecular clusters of 
CD8 Tex-related lncRNAs. Differences in prognosis and immune infiltration between the clusters were explored. Machine learning 
algorithms were used to construct a prognostic signature. Samples were classified as low- and high-risk groups based on their risk 
scores. We identified prognosis-related lncRNAs and constructed a ceRNA network. In vitro experiments were conducted to 
investigate the impacts of CD8 Tex-related lncRNAs on proliferation and apoptosis of HCC cells.
Results: We clarified cell types within two HCC single-cell datasets. We identified specific markers of CD8 Tex cells and analyzed 
their potential functions. Twenty-eight lncRNAs were identified as CD8 Tex-related. Based on CD8 Tex-related lncRNAs, samples 
were categorized into two distinct clusters, which exhibited significant differences in survival rates and immune infiltration. Ninety-six 
algorithm combinations were employed to establish a prognostic signature. RSF emerged as the one with the highest C-index. Patients 
in high- and low-risk groups exhibited marked differences in prognosis, enriched pathways, mutations and drug sensitivities. 
MCM3AP-AS1, MAPKAPK5-AS1 and PART1 were regarded as prognosis-related lncRNAs. A ceRNA network was constructed 
based on CD8 Tex-related lncRNAs and mRNAs. Experiments on cell lines and organoids indicated that downregulation of 
MCM3AP-AS1, MAPKAPK5-AS1 and PART1 suppressed cell proliferation and induced apoptosis.
Conclusion: CD8 Tex-related lncRNAs played crucial roles in HCC progression. Our findings provided new insights into the 
regulatory mechanisms of CD8 Tex-related lncRNAs in HCC.
Keywords: hepatocellular carcinoma, lncRNA, T cell exhaustion, single-cell RNA-seq, machine learning, prognostic signature

As one of the most common types of primary malignant tumors in digestive system, liver and intrahepatic bile duct cancer 
are estimated to account for approximately 41,210 new cases and 29,380 deaths in the United States in 2023.1 

Hepatocellular carcinoma (HCC), which is predominantly seen in men, comprises approximately 80% of the cases. It is 
reported that incidence of liver cancer has stabilized between 2015 and 2019.1 However, mortality of liver cancer has 
increased rapidly over the past few decades. Systemic therapy is the preferred treatment modality for patients with advanced 
stage HCC who are not suitable for local therapy.2 Immune checkpoint inhibitors (ICIs) have proven to be safe and 
effective. Anti-PD1, anti-PDL1 and anti-VEGF have been approved by the FDA for advanced HCC.3 Currently, ICI-based 

Journal of Hepatocellular Carcinoma 2024:11 1331–1355                                                 1331
© 2024 Ge et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Hepatocellular Carcinoma                                                    Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 23 February 2024
Accepted: 28 June 2024
Published: 5 July 2024

http://orcid.org/0000-0003-3658-5103
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com


therapies are being explored across all stages of HCC, from neoadjuvant and adjuvant therapies for early HCC, over 
combinations with local therapies in intermediate stage disease, to advanced HCC.4

T cell exhaustion (Tex) is defined as a broad term describing the dysfunctional response of T cells to chronic antigen 
stimulation.5 This concept was first applied in the context of chronic viral infection but now in response to tumors.6 By 
blocking the surface co-inhibitory receptors of CD8 Tex, cytolytic cell-mediated immune responses could be reinvigo
rated, potentially leading to the eradication of some persistent viruses.7 CD8 Tex is also found to be hyporesponsive and 
dysfunctional in anti-tumor immune response.8 The activated and exhausted status of CD8 T cells maintain homeostasis 
in the tumor immune microenvironment (TIME).8,9 Therefore, CD8 Tex cells are critical components of TIME, and they 
could affect the progression and prognosis of HCC.10,11 Identifying sensitive markers of CD8 Tex cells may help us gain 
more insight into TIME and discover novel disease targets.

Long non-coding RNA (lncRNA) is a type of RNA molecule exceeding 200 nucleotides in length.12,13 They are 
similar to mRNA in transcripts but without protein-coding capacity.14 LncRNAs have been proven to play crucial roles in 
nearly all stages of HCC, including cell proliferation, differentiation, invasion, metastasis and drug sensitivity.15–19 Given 
their vital functions, the expression of specific dysregulated lncRNAs has the potential to serve as diagnostic and 
therapeutic biomarkers.20,21 Therefore, lncRNA-based signature could be harnessed to influence therapeutic strategy 
of HCC.

Single-cell RNA sequencing (scRNA-seq) technology is a valuable tool for uncovering the expression profiles of 
individual cell and analyzing the TIME.22 It enables us to identify rare and previously undetected cell types within 
tissues.23 In this study, we aimed to investigate the expression of CD8 Tex-related genes in HCC using scRNA-seq. We 
established a CD8 Tex-related lncRNA signature to validate classification of HCC using machine learning techniques. 
Subsequently, we explored the potential of this CD8 Tex-related lncRNA signature to predict prognosis, immunological 
features and drug sensitivity in HCC.

Materials and Methods
Data Collection
Two scRNA-seq datasets, GSE125449 and GSE140228, were acquired from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) database. GSE125449 comprised 3834 cells from 9 patients, while GSE140228 
contained 7074 cells from 6 patients, respectively.24,25 Clinical information of the 15 patients was summarized in 
Supplementary Table 1. Gene expression RNA-seq and follow-up data were obtained from The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/), and it was regarded as training cohort. GSE14520 and GSE40144 
cohorts were used as validation cohorts. Inclusion criteria were as following. First, patients were diagnosed with 
primary HCC. Second, patients had not undergone any preoperative radiotherapy or chemotherapy. Finally, complete 
mRNA and lncRNA expression could be obtained. Somatic mutation data was downloaded from UCSC Xena 
database (https://xenabrowser.net).

Landscape of scRNA-Seq Data and Identification of CD8 Tex-Related Genes
Two scRNA-seq cohorts of HCC were independently analyzed in R (version 4.1.0). Package “Seurat” was used for 
quality control and further analysis. Genes expressed in less than 3 cells and cells expressing fewer than 200 genes were 
excluded. PercentageFeatureSet function was applied to calculate the percentage of mitochondrial genes, and cells with 
a mitochondrial proportion exceeding 20% were removed due to low quality or extensive mitochondrial contamination. 
The total transcripts per single-cell were normalized to 10,000, followed by log transformation. Using 
FindVariableFeatures function, we identified the top 2000 features for each single-cell dataset, which varied among 
cells. ScaleData function was then employed to scale the expression levels of genes. Principal component analysis (PCA) 
was performed to obtain linear dimensional reduction using RunPCA function. JackStrawPlot and ElbowPlot functions 
were utilized to determine the optimal number of principal components (PCs) for downstream analyses. Cells were 
clustered using FindClusters function. RunTSNE function was used to reduce dimension and visualize clusters. 
FindAllMarkers function was used to identify specific biomarkers of different clusters. We set the parameters “only. 
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pos = TURE” and “min.pct = 0.25” to select highly expressed markers. Clusters in the single-cell dataset were annotated 
based on known marker genes and corresponding original articles. CD8 Tex-related genes were identified using 
FindAllMarkers function. Intersection of the marker genes discovered in both cohorts was considered as CD8 Tex- 
related genes.

CD8 Tex-Related Score of Cell Types
After CD8 Tex-related genes identified, we calculated CD8 Tex-related score for each cell using five distinct algorithms, 
including AUCell, AddModuleScore, PercentageFeatureSet, single sample gene set enrichment (ssGSEA), and gene set 
variation analysis (GSVA). Subsequently, we compared CD8 Tex-related scores across different cell types to gain insights 
into their relative expression patterns.

Protein–Protein Interaction
After acquiring CD8 Tex-related genes, we delved into protein–protein interaction (PPI) analysis using the STRING 
database (https://cn.string-db.org/), which contained a comprehensive collection of PPI data.26 Based on the results, we 
constructed a PPI network to visualize and analyze the interactions between these genes’ protein products.

Functional Enrichment Analysis
We conducted functional enrichment analysis using “clusterProfiler” R package to explore Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with CD8 Tex-related genes.27,28 Cellular 
component (CC), molecular function (MF) and biological process (BP) categories were explored in GO analysis. We 
performed GO and KEGG analyses to illustrate the function of CD8 Tex-related genes. Additionally, we performed 
enrichment analysis via Metascape (https://metascape.org/) to further illustrate the functions of CD8 Tex-related genes.29

CD8 Tex-Related lncRNAs Selection
Due to the varying nomenclature across different platforms, we first gained the overlapping lncRNA species from 
TCGA-LIHC, GSE14520 and GSE40144 datasets. CD8 Tex-related lncRNAs were selected based on their co-expression 
and correlation with CD8 Tex-related mRNAs. The criteria for determining CD8 Tex-related lncRNAs were P<0.00,001 
and absolute value of coefficient >0.3.

Cluster Analysis
On the basis of CD8 Tex-related lncRNA expression profiles, we performed consensus cluster analysis to identify 
molecular clusters.30 We utilized “kmeans” function from “cluster” package to determine the optimal number of clusters. 
Survival analysis was carried out to compare prognostic difference between the various clusters.

Single Sample Gene Set Enrichment Analysis and Immune Cell Infiltration
After CD8 Tex-related lncRNAs acquired, we conducted the single ssGSEA. The prognostic significance of ssGSEA score in 
HCC was evaluated. To calculate the abundance of tumor-infiltrating immune cells in samples, we employed cell-type 
identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT, https://cibersort.stanford.edu/) algorithm.31 

Additionally, we utilized various algorithms, including Estimation of Stromal and Immune Cells in Malignant Tumors Tissues 
using Expression data (ESTIMATE, https://bioinformatics.mdanderson.org/estimate/index.html),32 Tumor Immune 
Estimation Resource (TIMER, http://timer.comp-genomics.org/),33 quanTIseq (http://icbi.at/quantiseq),34 MCP-counter 
(http://github.com/ebecht/MCPcounter),35 XCELL (http://xCell.ucsf.edu/)36 and EPIC (http://epic.gfellerlab.org),37 to predict 
the infiltrated T cell fractions. The impact of ssGSEA score on T cell fraction predictions was further explored.

Development and Validation of CD8 Tex-Related lncRNA Prognostic Signature
After CD8 Tex-related lncRNAs obtained, overall survival time (OS) and survival status of patients were integrated by 10 
machine learning algorithms and 96 algorithm combinations in total. In this study, the algorithms employed included 
random survival forest (RSF), survival support vector machine (survival-SVM), ridge, elastic net (Enet), the least 
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absolute shrinkage and selection operator (LASSO), supervised principal components (SuperPC), generalized boosted 
regression modelling (GBM), partial least squares regression for Cox (plsRcox), CoxBoost and stepwise Cox. Five of 
these algorithms had a variable filtering function, including RSF, LASSO, CoxBoost, backward stepwise Cox, and both 
stepwise Cox regression. We applied 96 algorithm combinations to the CD8 Tex-related lncRNAs to fit predictive 
models. The dataset with the largest sample size, TCGA-LIHC, served as the training cohort. All models were then tested 
on GSE14520 and GSE40144 datasets, which were considered validation cohorts. Subsequently, the Harrell’s concor
dance index (C-index) of all datasets was calculated. The model with the highest average C-index was deemed the 
optimal one. Risk score of each case was calculated using the best model. Samples were classified into different groups 
based on their risk scores. Disease-free survival time (DFS) and recurrent status were also collected. We further validated 
the efficacy of the signature in predicting recurrence risk.

Construction of Competing Endogenous RNA Network
Competing endogenous RNA (ceRNA) represented a regulatory mechanism within biological systems, where diverse RNAs 
compete to bind with miRNAs. As a consequence, ceRNAs affected gene expression and potentially influenced various 
biological processes. In this study, we identified CD8 Tex-related mRNAs and lncRNAs that have the potential to bind 
a common miRNA. Package “multiMIR” was used to explore the mRNA–miRNA interaction. We analyzed validated data 
from 3 databases: miRecords (http://mirecords.biolead.org/), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/index.html/) 
and Tarbase (http://microrna.gr/tarbase/). We selectively included only those interactions that have been validated using 
a dual-luciferase reporter gene system. We further anticipated lncRNA-miRNA interactions by consulting ENCORI database 
(https://rnasysu.com/encori/). We identified the shared miRNAs between the two sets of interactions. Finally, a CD8 Tex- 
related ceRNA network was constructed based on these findings.

Pathway Enrichment Analysis and Genetic Mutation Analysis
To investigate the pathways primarily enriched in the groups, we utilized the hallmark gene sets from Molecular 
Signatures Database (MSigDB).38 Somatic mutation variants of samples in TCGA cohort were acquired. Mutation 
Annotation Format (MAF) was analyzed using “maftools” package.39 Gene mutation was visually presented in 
a waterfall plot, arranged in descending order based on their frequencies. Tumor mutation burden (TMB) was defined 
as the numbers of mutations detected per million bases.

Potential Therapeutic Drug Sensitivity Estimation
To assess the potential therapeutic drugs, “pRRophetic” package was employed to calculate the half-maximal inhibitory 
concentration (IC50) of each patient.40 Generally speaking, lower IC50 values meant higher drug sensitivities. We 
identified potentially sensitive drugs for different HCC subtypes based on these IC50 values. Differentially expressed 
genes (DEGs) between different risk groups were identified using “limma” package.41 The threshold for p-value was set 
at 0.05, while the absolute value of log2 fold change was set as 1.0. Subsequently, we explored potential drugs of HCC in 
L1000 Fireworks Display (L1000FWD, http://amp.pharm.mssm.edu/L1000FWD),42 the Drug Gene Interaction Database 
(DGIdb, http://www.dgidb.org),43 and the Connectivity Map (CMap, https://portals.broadinstitute.org/cmap/).44 For 
CMap, we utilized the SPIEDw web tool (http://www.spied.org.uk/) to interrogate the database.45 Drug structure was 
searched in DrugBank database (https://go.drugbank.com/).46

Cell Culture
Four human HCC cell lines (HepG2, HuH-7, HepG2.2.15 and PLC5) and a normal hepatic cell line (L02) used in 
this study were purchased from Procell (Wuhan, China). HepG2, HuH-7, HepG2.2.15 and PLC5 cells were all 
cultured in RPMI-1640 medium (Gibco, NY, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, NY, 
USA) in a 5% CO2 atmosphere at 37 °C. Meanwhile, L02 cells were cultured in DMEM (Gibco, NY, USA) under 
similar conditions.
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Reverse Transcription Quantitative PCR
Total RNA samples were isolated from HCC tissues and cell lines using TRIzol reagent (Applygen, Beijing, China) 
according to the instructions. For reverse transcription quantitative PCR (RT-qPCR), complementary DNA (cDNA) was 
synthesized from RNA samples using TruScript Reverse Transcriptase and Kits (Norgen Biotek). Quantitative analysis of 
lncRNA expressions was then carried out using SYBR Premix Ex Taq II (Takara, Tokyo, Japan). The relative lncRNA 
expressions were calculated using the 2−ΔΔCT method with GAPDH serving as an endogenous control.

Transient Transfection of Cell Lines with siRNA
In this study, siRNAs were designed and synthesized by RiboBio (Guangzhou, China). siRNAs were transfected into the 
cells using DharmaFECT4 (thermos scientific, USA) in accordance with the provided instructions. Eight hours post- 
transfection, fresh complete medium was added to the cultures. Forty-eight hours after transfection, RT-qPCR was 
performed to assess the efficiencies of gene silencing.

Cell Counting Kit-8 and Colony Formation Assays
We conducted Cell Counting Kit-8 (CCK-8) and plate colony formation assays to test cell proliferation in vitro. Human 
HCC cell lines were obtained during the logarithmic growth phase. Cells were seeded into 96-well plates at a density of 
approximately 2000 cells per well in 100μL of culture media. The plates were incubated at 37°C and 5% CO2 for 96 
hours. At 0, 24, 48, 72, and 96 h, 10μL of CCK-8 reagent (APExBIO) was added to each well. After incubation for 2 
hours, the absorbance/optical density (OD) value of each well at 450 nm was measured.

For the colony formation assay, single-cell suspensions of cell lines were prepared and seeded into a 6-well plate (500 
cells per well). These were incubated at 37°C incubator in a 5% CO2 atmosphere. Once visible colonies appeared, 
cultures were terminated, and cells were fixed with 4% paraformaldehyde (Maokang Biotechnology Co., Ltd, Shanghai, 
China) for 30 minutes. Subsequently, they were stained with 0.1% crystal violet for 30 minutes and counted.

Cell Migration and Invasion Assays
We performed cell migration and invasion assays according to the instructions (Corning, 3422). Cells were collected, 
centrifuged, and resuspended in serum-free DMEM (Gibco, NY, USA). For migration assays, a cell suspension contain
ing 5*104 cells was pipetted into the upper chamber of the Transwell insert. For invasion assays, the same volume of cell 
suspension was pipetted into the Matrigel-coated upper chamber. DMEM media supplemented with 10% FBS was added 
to the lower chamber. The Transwell plate was then placed in a cell culture incubator and incubated for 24 hours. Finally, 
the migrated or invaded cells were fixed with 4% paraformaldehyde for 20 minutes and stained with crystal violet for 20 
minutes.

Wound Healing Assay
Cells were seeded in 6-well plates at a density of 5*105 cells per well and incubated overnight in cell culture medium at 
37°C. An artificial wound was created using a P200 pipette tip, and the detached cells and fragments were thoroughly 
washed away with PBS. After incubating for 12 hours, images of cell migration near the wound were captured using 
a microscope.

Flow Cytometric Analysis of Apoptosis and Cell Cycle
Cells in logarithmic growth phase were collected, digested and suspended in cold PBS, followed by a transfer to binding 
buffer. To analyze apoptosis, cell suspensions were incubated with 5 µL of annexin V-FITC (KeyGen Biotech, China) 
and 10 µL PI (KeyGen Biotech, China) in the dark for 15 minutes at room temperature. Apoptosis was subsequently 
detected using a FACSCalibur instrument (BD Biosciences).

To analyze the cell cycle, cell suspensions were fixed overnight with 70% ethanol at 4°C. After centrifuging the fixed 
cells, they were incubated in propidium iodide (PI) in the dark for 30 minutes at room temperature. Cell cycle was 
analyzed using a FACSCalibur instrument (BD Biosciences).
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Organoid Culture and Growth Assay
This study followed the ethical guidelines of the Declaration of Helsinki. All patients or their immediate family members 
wrote an informed consent form before taking part in any study procedure. Hepatocellular carcinoma tissue was sheared 
and digested in DMEM (Gibco, NY, USA) supplemented with IV collagenase (Sigma, Germany; 1 mg/mL) at 37°C for 
15 minutes. PBS was added to terminate the digestion. After centrifuging and filtering, tissue was further embedded in 
Cultrex Reduced Growth Factor Basement Membrane Extract (Trevigen, USA) and cultured in human hepatocellular 
carcinoma basal medium (Biozellen, USA), comprising advanced DMEM/F12 medium, N21-MAX supplement, N2- 
MAX supplement, glutamine, nicotinamide, HEPES, A83-01, N-acetylcysteine, FGF-10, BMP7, EGF, HGF, Noggin, 
Wnt-3α, R-Spondin 1, Gastrin I, Forskolin and Y-27632. The mixture of organoid and medium was placed in a 24-well 
cell incubator for 3 days. Cultrex Organoids Harvesting Solution (3700–100-01, R&D Systems, USA) was added to 
recover and passage the organoids.

The organoid was cultured in proliferation medium (Biozellen, USA), consisting of advanced DMEM/F12 medium, 
N21-MAX supplement, N2-MAX supplement, glutamine, nicotinamide, HEPES, A83-01, N-acetylcysteine, FGF-10, 
BMP7, EGF, HGF, R-Spondin 1, Gastrin I and Forskolin. Growth of organoid was observed under a microscope. For 
passaging, the organoid was digested using Cultrex Organoids Harvesting Solution (3700–100-01, R&D Systems, USA). 
After the matrix degeneration, the sample was centrifuged (1000 rpm, 5 minutes) and washed with PBS. The precipitated 
cells were subsequently cultured in proliferation medium (Biozellen, USA). We first treated the organoids into single 
cells to transfect. The procedures for transfecting siRNAs into organoids are similar to those used in cell lines. Single 
cells from the organoids were collected to verify the transfection effects and culture the organoids.

Immunofluorescence Staining
The organoids were stored in PBS and fixed in 4% paraformaldehyde (Maokang Biotechnology Co., Ltd, Shanghai, 
China) at 4°C for 60 minutes. They were then blocked with 5% bovine serum albumin (BSA) for 60 minutes at room 
temperature. Subsequently, the organoids were incubated for 3 hours at room temperature and settled under gravity. To 
investigate the proliferative ability of the organoids, we focused on the expression of Ki67 within them. The samples 
were incubated with anti-Ki67 antibody (1:250; Abcam, Cambridge, MA, USA) at 4°C for 60 minutes, followed by 
overnight incubation at 4°C. After washed with PBS, they were incubated with Goat Anti-Human IgA-FITC Conjugated 
antibody (BSZH Scientific Inc., Beijing, China) at 37°C for 30 minutes. Nuclei were counterstained with DAPI for 15 
minutes. Finally, the samples were viewed and analyzed under a fluorescence microscope.

Statistical Analysis
Continuous variables were analyzed using the t test, and categorical variables were compared through the chi-square test. 
Pearson’s correlation was used to assess correlations between continuous variables. The optimal cut-off value was 
determined by survminer package. Kaplan–Meier curves of OS and DFS were plotted with the aid of survival package, 
with Log rank test for estimating survival difference. P < 0.05 was considered statistically significant for all analyses. All 
statistical processes were conducted using R 4.1.0 software.

Results
ScRNA-Seq Landscape in HCC and Identification of Marker Genes of CD8 Tex Cells
For GSE125449 dataset, overall cellular composition among these samples does not change after the filtering steps 
(Supplementary Figure 1A and B). After data normalization, the top 2000 variable features were found for downstream 
analysis (Supplementary Figure 1C). Data was reduced to 12 principal components (Supplementary Figure 1D and E). 
The data dimensionality was determined using JackStraw and ElbowPlot methods (Supplementary Figure 1F and G). 
Fifteen clusters were identified and visualized by the T-distributed stochastic neighbor embedding (t-SNE) method 
(Figure 1A). The top 10 marker genes of each cluster were obtained (Supplementary Table 2). Based on the previous 
reports and marker genes, cells were classified into eight different types, including malignant cell, monocyte/macrophage, 
B cell, plasma cell, endothelial cell, CD8 Tex cell, fibroblast and hepatic progenitor cell (Figure 1B).24
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Figure 1 Single-cell landscape of HCC in GSE125449 and GSE140228 cohorts. (A) Fifteen clusters were identified by t-SNE methods in GSE125449 cohort. (B) Cell type 
annotation in GSE125449 cohort. (C) AUCell scores of different cell clusters in GSE125449 cohort. (D) Feature plot of AUCell scores in GSE125449 cohort. (E) Twenty- 
one clusters were identified by t-SNE methods in GSE140228 cohort. (F) Cell type annotation in GSE140228 cohort. (G) AUCell scores of different cell clusters in 
GSE140228 cohort. (H) Feature plot of AUCell scores in GSE140228 cohort. **** P < 0.0001.
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A similar procedure was carried out in GSE140228 cohort.25 We successively conducted quality control, normal
ization, variable features identification, data scaling, linear dimensional reduction, and dimensionality determination 
(Supplementary Figure 2A-G). Afterwards, 21 clusters and 8 different types of cells were identified (Supplementary 
Table 2, Figure 1E and F).

Finally, 42 and 782 CD8 Tex cells were annotated, respectively. Significant marker genes for each cluster and cell 
type in GSE125449 and GSE140228 were identified (Supplementary Table 3, Supplementary Figure 3A and B). We 
intersected the marker genes of CD8 Tex cells from both datasets and deemed them as CD8 Tex-related genes 
(Supplementary Figure 3C, Supplementary Table 4).

We further calculated CD8 Tex-related score for each cell using five algorithms, including AUCell, AddModuleScore, 
PercentageFeatureSet, ssGSEA and GSVA. The results indicated that AUCell scores in CD8 Tex cells were significantly 
higher than those in other cell types (Figure 1C, D, G and H). We observed similar outcomes with the other 4 algorithms 
(Supplementary Figure 4A-H and Supplementary Figure 5A-H). Specifically, the enrichment scores in CD8 Tex cells 
were significantly higher than those in other cell types.

PPI Network and Functional Enrichment Analyses of CD8 Tex-Related Genes
To gain deeper insights into the potential action mechanism of CD8 Tex-related genes, a PPI network was constructed 
through STRING database (Figure 2A). GO enrichment analysis showed that enriched BP terms were associated with 
leukocyte cell–cell adhesion, regulation of T cell activation, positive regulation of leukocyte cell–cell adhesion, positive 
regulation of cell–cell adhesion and positive regulation of T cell activation (Figure 2B). CC terms were related to focal 
adhesion, cell-substrate junction, external side of plasma membrane, immunological synapse and alpha-beta T cell 
receptor complex (Figure 2C). The significant enrichment of MF terms encompassed structural constituent of ribosome, 
signaling adaptor activity, signaling receptor complex adaptor activity, phosphatidylinositol 3-kinase binding and T cell 
receptor binding (Figure 2D). The KEGG enrichment analyses identified EB virus infection, T cell receptor signaling 
pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer, Th1 and Th2 cell differentiation and primary 
immunodeficiency (Figure 2E). GO enrichment analysis through Metascape indicated that CD8 Tex-related genes were 
mainly enriched in immune system process, multicellular organismal process and positive regulation of biological 
process. These genes were significantly related to lymphopenia, lupus erythematosus and combined immunodeficiency, 
and they were enriched in thymus, spleen and MOLT4 cells (Supplementary Figure 6A-C).

Identification of CD8 Tex-Related lncRNAs
Due to inconsistencies in the names and probes of lncRNAs, we first took intersection of lncRNAs identified in TCGA- 
LIHC, GSE14520 and GSE40144 datasets (Supplementary Figure 7A). Subsequently, 33 lncRNAs were obtained. 
Pearson’s correlation analysis was then utilized to identify CD8 Tex-related lncRNAs. According to the established 
criterion, 28 lncRNAs were identified as CD8 Tex-related lncRNAs, namely MAPKAPK5-AS1, PDCD4-AS1, TCL6, 
HAND2-AS1, MEG3, LINC01140, KLF3-AS1, LINC00652, MCM3AP-AS1, GSN-AS1, OR7E47P, DLEU2, SNHG17, 
GUSBP11, LINC00216, HLA-F-AS1, INE1, LINC00115, LINC00667, LINC00574, SNX29P2, IDI2-AS1, FLJ13224, 
CPS1-IT1, ASMTL-AS1, DGCR5, LINC00963 and PART1 (Supplementary Table 5).

Cluster Analysis
Cluster analysis was performed using “kmeans” function. Based on the between-cluster and within-cluster sum of 
squares, it was determined that the optimal clustering was 2 clusters (Supplementary Figure 7B and C). Consequently, 
patients were divided into 2 distinct clusters, comprising 122 and 249 samples, respectively (Figure 3A). PCA analysis 
revealed the distinct characteristics between clusters 1 and 2 (Figure 3B). Patients in cluster 2 exhibited significantly 
longer OS and DFS compared to those in cluster 1 (P<0.05, Figure 3C and D).

TIME and ssGSEA of Bulk RNA-Seq Data
TIME of samples were assessed using five algorithms, including TIMER, QUANTISEQ, MCPCOUNTER, XCELL and 
EPIC. Indicators related to T cells were extracted to elucidate the relationships between clusters and TIME. The heatmap 
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Figure 2 Functional enrichment of CD8 Tex-related genes. (A) PPI network of CD8 Tex-related genes. (B–D) GO enrichment analyses of CD8 Tex-related genes in BP 
terms (B), CC terms (C) and MF terms (D). (E) KEGG enrichment analyses of CD8 Tex-related genes.
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presented the different TIME between clusters 1 and 2 (Figure 4A). We calculated ssGSEA scores of each patient based 
on CD8 Tex-related lncRNAs. It indicated a significant negative correlation between the ssGSEA score and T_cells_CD8 
fraction estimated by CIBERSORT algorithm (Figure 4B). Survival analysis revealed that patients with a high ssGSEA 
score had significantly shorter OS and DFS when compared to those with a low ssGSEA score (Figure 4C and D).

Construction of a CD8 Tex-Related lncRNA Signature
Twenty-eight CD8 Tex-related lncRNAs were integrated into machine learning procedure. We employed a combination 
of 96 machine learning algorithms to establish a CD8 Tex-related lncRNA signature (Figure 5A). The C-index of 

Figure 3 Samples were divided into 2 clusters based on CD8 Tex-related lncRNAs. (A) Silhouette coefficient of each sample in two clusters. (B) PCA analysis of the two 
clusters. (C–D) Patients in cluster 1 suffered significantly worse prognosis than those in cluster 2. (C) OS. (D) DFS.
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different cohorts was used to evaluate the performance of algorithms. RSF model showed optimal fitting, achieving the 
highest average C-index at 0.588. We illustrated the tree structure of RSF model in Supplementary Figure 8A. 
Association between number of trees and error rate is shown in Figure 5B. In the RSF model, 28 CD8 Tex-related 
lncRNAs presented varying degrees of importance. The top three most significant lncRNAs were MAPKAPK5-AS1, 
MCM3AP-AS1 and CPS1-IT1 (Figure 5C). Brier score was applied to assess the accuracy of probabilistic prediction. It 
revealed that the brier score of RFS method was much lower than KM method, indicating that the accuracy of RFS 
method was significantly higher that KM method (Supplementary Figure 8B). Risk score was calculated based on the 
RFS model, allowing samples to be categorized into high-risk and low-risk groups. Function “var.select” was used to 
filter variables of RSF model, resulting in 11 lncRNAs remaining, including MCM3AP-AS1, MAPKAPK5-AS1, PART1, 
CPS1-IT1, ASMTL-AS1, LINC00667, HLA-F-AS1, LINC00652, PDCD4-AS1, LINC01140 and TCL6. Relationships 
between risk scores, survival time, status and CD8 Tex lncRNA expression are compiled in Figure 5D-F. As risk score 
increasing, survival rate of patients decreased obviously. MCM3AP-AS1, MAPKAPK5-AS1, PART1, ASMTL-AS1, 
LINC00667, HLA-F-AS1, LINC00652, PDCD4-AS1, LINC01140 and TCL6 acted as risk factors, with their expression 

Figure 4 Different immune landscapes of the two clusters in TCGA-LIHC cohort. (A) Associations of cluster, clinical characteristics and TIME. (B) Associations between 
ssGSEA scores and immune infiltration calculated by CIBERSORT algorithm. (C and D) Patients with high ssGSEA score suffered significantly worse prognosis than those 
with low ssGSEA score. (C) OS. (D) DFS. * P < 0.05, ** P < 0.01, *** P < 0.001.

Journal of Hepatocellular Carcinoma 2024:11                                                                                    https://doi.org/10.2147/JHC.S459150                                                                                                                                                                                                                       

DovePress                                                                                                                       
1341

Dovepress                                                                                                                                                               Ge et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=459150.docx
https://www.dovepress.com/get_supplementary_file.php?f=459150.docx
https://www.dovepress.com
https://www.dovepress.com


Figure 5 Establishment and validation of the prediction model. (A) A total of 96 sorts of prediction models and their C-index via machine learning method. (B) Error rate of 
RSF model at different number of trees. (C) Importance of different variables. (D–F) Survival time, status and CD8 Tex-related lncRNA expression as the risk score growing. 
(D) TCGA-LIHC cohort, (E) GSE14520 cohort and (F) GSE40144 cohort.
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levels increasing as the risk scores rose. On the other hand, CPS1-IT1 functioned as a protective factor. Survival analyses 
indicated that OS of patients in high-risk group was significantly shorter than that of patients in low-risk group in TCGA- 
LIHC, GSE14520 and GSE40144 (Figure 6A-C). Similarly, patients in high-risk group suffered significantly higher risk 
of recurrence compared to those in low-risk group (Supplementary Figure 8C-E). Furthermore, we took the intersection 
of the filtered variables obtained from RSF, Lasso, CoxBoost and StepCox (Figure 6D). Four CD8 Tex-related lncRNA 
were remained in the intersection, including MCM3AP-AS1, MAPKAPK5-AS1, PART1 and LINC00652.

Pathway Enrichment and ceRNA Network Construction
We calculated ssGSEA scores of hallmark gene sets and compared the difference between high- and low-risk groups 
(Figure 6E). It indicated that samples in the low-risk group were primarily enriched in metabiotic related pathways, 

Figure 6 Identification of the core CD8 Tex-related lncRNAs. (A–C) Prognostic difference between high- and low-score groups. (A) TCGA-LIHC cohort, (B) GSE14520 
cohort and (C) GSE40144 cohort. (D) Intersection of variables selected by LASSO, CoxBoost, RSF, stepCox (both) and stepCox (backward) algorithms. (E) Enriched 
pathways in high-risk and low-risk groups. (F) Leukocyte fractions of high- and low-score groups. (G) TIDE scores of high- and low-score groups. (H) CeRNA network of 
CD8 Tex-related mRNAs and lncRNAs. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
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including KRAS signaling, oxidative phosphorylation, peroxisome, adipogenesis, fatty acid metabolism, bile acid 
metabolism and xenobiotic metabolism, whereas samples in the high-risk group mainly enriched in cell division- 
related pathways, including G2M checkpoint, mitotic spindle, DNA repair, etc. Furthermore, leukocyte fractions and 
Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/) scores were extracted from the published 
literatures. It revealed that leukocyte fraction in low-risk group was significantly higher than that in high-risk group 
(Figure 6F). Additionally, TIDE score was significantly higher in high-risk group when compared to low-risk group. 
Moreover, T cell exclusion was significantly higher in high-risk group (Figure 6G).

Based on CD8 Tex-related mRNAs and lncRNAs, we constructed a ceRNA regulatory network. The ceRNA network 
encompassed 2 CD8 Tex-related lncRNAs, 10 CD8 Tex-related mRNAs and 15 miRNAs. We identified 21 ceRNA 
interactions that were related to CD8 Tex (Supplementary Table 6).

Mutation Status
Genetic variation showed that the top 5 mutated genes in TCGA-LIHC cohort were TTN, TP53, CTNNB1, MUC16 and 
PCLO (Supplementary Figure 9A). Missense mutation was the most common type of variant classification. The most 
common variant type and single nucleotide variation (SNV) class were single nucleotide polymorphism (SNP) and 
“C>T”, respectively (Supplementary Figure 9B and C). Co-mutation analyses demonstrated that the concurrent occur
rence of gene mutations was significantly excessive among the top highest 10 mutations. The most frequent co- 
occurrence and mutually exclusive mutations were OBSCN-FLG and TP53-CTNNB1, respectively (Supplementary 
Figure 9D). Characteristics of variant classification, variant type, SNV class and variants per sample were similar in 
both low- and high-risk groups (Figure 7A and B). The top 5 genes with the highest mutation frequency in high-risk 
group were TP53, TTN, MUC16, CTNNB1 and OBSCN (Figure 7C). In contrast, the low-risk group had TTN, 
CTNNB1, MUC16, TP53 and ALB as the top five genes with the highest mutation frequency (Figure 7D). Compared 
to low-risk group, patients in high-risk group exhibited a higher frequency of mutations in TP53, ZFHX4, DNAH7, 
EPHA4 and DNAH17. Conversely, mutation frequency of UBR4, MAGI2, CDH23, NUP214 and SAMD9 in low-risk 

Figure 7 Mutation analysis of samples in high- and low-risk groups. (A and B) Summary of mutation status. (A) High-risk group. (B) Low-risk group. (C and D) Waterfall 
plots show mutation frequencies and types of the top 10 most commonly mutated genes. (C) High-risk group. (D) Low-risk group. (E) Mutational differences between high- 
and low-risk groups. (F) TMB of high- and low-risk group. * P < 0.05, ** P < 0.01, *** P < 0.001.
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group was much lower than that in high-risk group (Figure 7E). TMB of each sample was calculated. It revealed that 
TMB in high-risk group was significantly higher than that in low-risk group (Figure 7F).

Drug Sensitivity Analysis
We further assessed the sensitivity of high- and low-risk samples to common chemotherapy drugs. Differences in the 
resistance potential between high- and low-risk groups were observed. Patients in the low-risk group were more sensitive 
to lapatinib, temsirolimus, sorafenib and metformin (Figure 8A-D, P all <0.05). In contrast, patients in the high-risk 
group were more sensitive to JNK.inhibitor.VIII, cisplatin, camptothecin and bosutinib (Figure 8E-H, P all <0.05). 
Relevant drug structures were also displayed. DEGs between high- and low-risk groups were obtained. The CMAP, 
L1000FWD and DGIdb databases were used to identify small molecular compounds for LIHC. Intersection of the 
molecular compounds included flunisolide and vinblastine (Figure 8I).

Downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 in HCC Cells 
Suppressed Proliferation, Migration and Invasion in vitro
L-02 and four HCC cell lines were cultured to verify the expression and potential functions of CD8 Tex-related lncRNAs. 
We performed RT-qPCR in normal hepatic and HCC cell lines. The primers used were listed in Supplementary Table 7. It 
indicated that the expression of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 was significantly higher in HCC cells 
compared to L-02 cell line (Figure 9A). PLC5 and HuH-7 cell lines were selected for further study due to their higher 
expression of CD8 Tex-related lncRNAs. Targeting siRNAs were employed to specifically downregulate the expression 
of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 expression in HCC cell lines (Supplementary Table 8). All these 
siRNAs exhibited good knockdown efficiencies (Figure 9B). CCK-8 and colony formation assays were conducted to 
assess the proliferative abilities of the cells. Knockdown of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 significantly 
inhibited the proliferation of HCC cell lines (Figure 9C and D). Transwell assays were used to investigate the effects of 
CD8 Tex-related lncRNAs on cell migration and invasion. Knockdown of MCM3AP-AS1, MAPKAPK5-AS1 and 
PART1 suppressed cell migration and invasion in HCC cell lines (Figure 9E and F, P all <0.01). Wound healing assays 
were also conducted to evaluate the capacities of cell migration. Migratory capacity of HCC cells was suppressed after 
downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 (Figure 10A, P all <0.001).

Downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 Promoted Apoptosis 
and Arrested Cell Cycle in G1 Phase
We measured apoptosis and cell cycle by flow cytometry. Inhibition of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 
significantly promoted apoptosis in HCC cell lines (Figure 10B, P all <0.05). After knockdown of MCM3AP-AS1, 
MAPKAPK5-AS1 and PART1, HCC cells in S phase decreased, and cells in G0/G1 phase increased. These results 
indicated that knockdown of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 promoted cell cycle arrest in G1 phase 
(Figure 10C). To further know about the effects of CD8 Tex-related lncRNAs in pan-cancer, we explored the expression 
features in TCGA pan-cancer cohort, which contained 23 tumors. As shown in Figure 11A, MCM3AP-AS1 was up- 
regulated in 14 tumors, and down-regulated in KICH. MAPKAPK5-AS1 was up-regulated in 16 tumors and down- 
regulated in BRCA. PART1 was up- and down-regulated in 7 and 10 tumors, respectively. LINC00652 was up- and 
down-regulated in 6 and 6 tumors, respectively.

Downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 Hindered Growth in 
Organoids
To investigate the roles of CD8 Tex-related lncRNAs in HCC, organoid model derived from a patient was established. 
We successfully transfected siRNAs into HCC organoids. Knockdown of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 
significantly suppressed HCC organoid growth in vitro (Figure 11C-E). Immunofluorescence staining revealed that the 
frequency of Ki67-positive organoids was notably reduced following the downregulation of MCM3AP-AS1, 
MAPKAPK5-AS1 and PART1 (Figure 11F-H). We illustrated the entire process of this study in Figure 12.
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Figure 8 Drug sensitivity analyses and structure prediction. (A) Lapatinib, (B) Temsirolimus, (C) Sorafenib, (D) Metformin, (E) JNK.inhibitor.VIII, (F) Cisplatin, (G) 
Camptothecin, (H) Bosutinib. (I) Intersection of the potential drugs via cMAP, L100FWD and DGIdb databases based on DEGs.
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Figure 9 Downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 suppressed HCC cell proliferation, migration and invasion. (A) Expression levels of MCM3AP- 
AS1, MAPKAPK5-AS1 and PART1 in normal hepatic cell and hepatocellular carcinoma cell lines by RT-qPCR. (B) Relative expression level of siNC and siRNA in PLC5 and 
HuH-7 cell lines by RT-qPCR. (C) The ability of cell proliferation was evaluated by CCK-8 assay in PLC5 and HuH-7 cell lines. (D) The ability of cell proliferation was 
evaluated by CCK-8 assay in PLC5 and HuH-7 cell lines. (E–F) The abilities of cell migration and invasion were evaluated by transwell assays in PLC5 and HuH-7 cell lines. 
(E) Migration ability. (F) Invasion ability. Error bars showed the SD from three independent experiments. ** P < 0.01, *** P < 0.001.
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Figure 10 Downregulation of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 suppressed migration, promoted apoptosis and arrested cell cycle progression in G1 phase. (A) 
The ability of cell migration was suppressed after knockdown of MCM3AP-AS1, MAPKAPK5-AS1 and PART1. (B) The apoptosis rates of PLC5 and HuH-7 cells were 
evaluated by flow cytometry after transfection. (C) Cell cycle analysis of PLC5 and HuH-7 cells were conducted by flow cytometry after transfection. Error bars showed the 
SD from three independent experiments. * P < 0.05, ** P < 0.01, *** P < 0.001.
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Figure 11 Validation experiments at pan-cancer and organoid levels. (A) Differential expression of MCM3AP-AS1, MAPKAPK5-AS1 and PART1 in tumor and normal 
samples of 23 tumors in TCGA database. Redness and blueness indicated upregulation and downregulation in tumor samples, respectively. (B) RT-qPCR validated the effects 
of knockdown. (C–E) The growth of HCC organoids with or without siRNAs treatment. (C) siMCM3AP-AS1. (D) siMAPKAPK5-AS1. (E) siPART1. (F–H) 
Immunofluorescence images of HCC organoids stained with DAPI (nuclei, blue) and Ki67 (red). (F) siMCM3AP-AS1. (G) siMAPKAPK5-AS1. (H) siPART1. * P < 0.05, ** 
P < 0.01, *** P < 0.001, **** P < 0.0001.
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Discussion
In this study, markers of CD8 Tex cell were obtained via scRNA-seq. CD8 Tex-related lncRNAs were identified by 
correlation analysis. Consensus cluster analysis indicated that HCC samples could be categorized into two distinct 
clusters, each exhibiting unique immune infiltration characteristics. Prognostic related lncRNAs were filtered through 96 
algorithm combinations, revealing RSF as the optimal method. Risk score of all samples was computed using the RSF 
model. Patients with high RSF score suffered poorer prognosis compared to those with low RSF score. Notably, the two 
groups exhibited different mutation characteristics and drug sensitivities. Finally, we delved the expression patterns and 
potential function roles of CD8 Tex-related lncRNAs in HCC cell lines and organoids. Downregulation of MCM3AP- 
AS1, MAPKAPK5-AS1 and PART1 in HCC cells suppressed proliferation, migration, and invasion while promoting 
apoptosis in vitro.

The advancement of sequencing technology has granted us a profounder understanding of malignant tumors.47 This 
has enabled us to recognize crucial biomarkers in disease progression.48 Traditional bulk sequencing method provides an 
average value of gene expression across a cell population, potentially overlooking the variations between individual cells. 

Figure 12 Flow chart of this study.
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As a cutting-edge technology, scRNA-seq plays a crucial role in identifying rare cell types within tissues and 
organisms.49 It enables the identification and characterization of distinct cell populations and subpopulations, thus 
allowing researcher to study the genetic information of individual cells.22 In cancer research, it aids in the identification 
of rare cancer stem cells, understanding tumor heterogeneity, and monitoring the dynamics of tumor evolution.50 

Additionally, in immunology, it assists in dissecting immune cell responses and identifying rare immune cell subsets.51

Tex refers to a dysfunctional state and functional exhaustion that occurs in T cells, primarily in the context of chronic 
infections, cancer, or prolonged antigen exposure.52 In such scenarios, T cells experience a chronic, progressive loss of 
effector functions, including reduced cytokine production, decreased cytotoxicity, resistance to reactivation, and impaired 
proliferation. Tex is characterized by the upregulation of inhibitory receptors, such as PD-1, TIM-3, and LAG-3.53 This 
phenomenon plays an important role in tumor progression and metastasis.54 These receptors dampen T cell activity and 
contribute to immune suppression. It was reported that local expansion of Tregs and CD8 Tex cells led to their 
preferential accumulation in HCC.55 Immune checkpoint blockade (ICB) therapies have emerged as the leading strategy 
to restore T cell function and enhance the immune response against tumor cells.56

Gaining insights into the mechanisms and pathways of CD8 Tex cells could provide additional strategies to regulate 
the immune system and eliminate tumors. Despite numerous reports on CD8 Tex cell markers, little is known about CD8 
Tex-related lncRNAs. Therefore, we tried to explore CD8 Tex-related lncRNAs based on their correlations with CD8 
Tex-related markers. After identifying CD8 Tex-related lncRNAs, a prognostic signature was established using 10 
common machine learning algorithms and 96 algorithm combinations. By comparing the C-index of various algorithms, 
RSF was ultimately chosen as the optimal signature with an average C-index at 0.588. Among the machine learning 
algorithms we employed, five had a variable filtering function, including RSF, LASSO, CoxBoost, backward stepwise 
Cox, and both stepwise Cox regression. Intersection of variables selected by these algorithms included MCM3AP-AS1, 
MAPKAPK5-AS1, PART1 and LINC00652. These variables also played important roles in RSF models.

Our previous study indicated that MAPKAPK5-AS1 could facilitate proliferation in HBV-related hepatocellular.57 

Specifically, MAPKAPK5-AS1 stabilized c-Myc and induced transcriptional activation of CDK4, CDK6 and SKP2, 
ultimately facilitating G1/S transition. Predominantly expressed in M2 macrophage, MAPKAPK5-AS1 was transferred 
to HBV+ HCC cells via exosomes. HBeAg could upregulate MAPKAPK5-AS1 expression by m6A modification.57 

Wang et al revealed a MAPKAPK5-AS1/PLAGL2/HIF-1α signaling loop in HCC.58 MAPKAPK5-AS1 upregulated 
PLAGL2 expression and enhanced HCC growth and metastasis by activating the EGFR/AKT signaling pathway.58 

Moreover, MAPKAPK5-AS1 was proven to promote HCC progression through ceRNA mechanisms. Peng et al indicated 
that MAPKAPK5-AS1 could sponge miR-429 and upregulate ZEB1, thereby driving HCC progression.59 Lv et al 
showed that MAPKAPK5-AS1 competitively bound to miR-376b-5p and prevent ECT2 from degradation, thus facil
itating HCC metastasis.60

The other three lncRNAs have also been reported to play important roles in progression and metastasis of HCC. Wang 
et al recognized that MCM3AP-AS1 exerted an oncogenic role by targeting miR-194-5p and promoting FOXA1 
expression in HCC.61 Zhang et al indicated that MCM3AP-AS1 interacted with miR-455 and promoted HCC metastasis 
via the EGFR and autophagy axis.62 PART1 promoted progression of HCC through miR-149-5p/MAP2K1 and miR-590- 
3p/HMGB2 axes.63,64 Zhou et al indicated that PART1 could be derived from HCC extracellular vesicles and promoted 
M2 polarization via miR-372-3p/TLR4 axis.65 To the best of our knowledge, association between LINC00652 and HCC 
progression was limited right now.

In this study, we endeavored to delve into CD8 Tex-related lncRNA via scRNA-seq and have successfully established 
a novel CD8 Tex-related lncRNA signature. However, it is imperative to acknowledge several limitations. First, 
platforms utilized for the various cohorts were diverse, which contributed to a relatively small number of candidate 
lncRNAs. Second, all samples included in this study were retrospective, necessitating future validation through multi
center prospective research. Third, Tex was highly related to hepatitis B and C virus infections. This might potentially 
introduce bias into the results of this study. Finally, the specific mechanisms of filtered CD8 Tex-related lncRNAs in 
HCC remained elusive, necessitating further experimentation.

In conclusion, leveraging scRNA-seq and correlation analysis, we successfully filtered CD8 Tex-related lncRNAs. 
A CD8 Tex-related lncRNA signature was constructed and validated using the RSF model. The signature served as 
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a valuable tool for decision-making in clinical works. These findings provided new insights into the regulatory 
mechanisms of CD8 Tex-related lncRNAs in HCC and could facilitate the development of novel therapeutic strategies.
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