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a b s t r a c t

Mitophagy (mitochondrial autophagy), which removes damaged, effete and superfluous mitochondria, has
several distinct variants. In Type 1 mitophagy occurring during nutrient deprivation, preautophagic
structures (PAS) grow into cup-shaped phagophores that surround and sequester individual mitochondria
into mitophagosomes, a process requiring phosphatidylinositol-3-kinase (PI3K) and often occurring in
coordination with mitochondrial fission. After sequestration, the outer compartment of the mitophagosome
acidifies, followed by mitochondrial depolarization and ultimately hydrolytic digestion in lysosomes.
Mitochondrial damage stimulates Type 2 mitophagy. After photodamage to single mitochondria, depolar-
ization occurs followed by decoration and then coalescence of autophagic LC3-containing structures on
mitochondrial surfaces. Vesicular acidification then occurs. By contrast to Type 1 mitophagy, PI3K inhibition
does not block Type 2 mitophagy. Further, Type 2 mitophagy is not associated with phagophore formation or
mitochondrial fission. A third form of self-eating of mitochondria is formation of mitochondria-derived
vesicles (MDVs) enriched in oxidized mitochondrial proteins that bud off and transit into multivesicular
bodies. Topologically, the internalization of MDV by invagination of the surface of multivesicular bodies
followed by vesicle scission into the lumen is a form of microautophagy, or micromitophagy (Type
3 mitophagy). Cell biological distinctions are the basis for these three types of mitophagy. Future studies
are needed to better characterize the molecular and biochemical differences between Types 1, 2 and
3 mitophagy.
& 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Introduction

During fasting, pancreatic islets release glucagon, which pro-
motes gluconeogenesis and autophagy in the liver [1,2]. Refeeding
leads to pancreatic insulin release, which suppresses hepatic
autophagy. Such autophagy during fasting and other forms of
nutrient deprivation furnishes amino acids and fatty acids to
maintain cellular metabolism. Mitochondria are particularly rich
sources of protein and lipid, and during nutrient deprivation to
cultured hepatocytes about 85% of autophagic events involve
mitochondria [3]. This process of mitochondrial autophagy is
termed mitophagy [3–5].

In healthy liver, as well as in other organs like heart, brain and
kidney, cell proliferation is minimal. Nonetheless, individual mito-
chondria turn over with a half-life of 10–25 days as mitophagy
removes worn out mitochondria in balance with biogenesis of new
mitochondria [6,7]. Mitophagy protects against release of pro-
apoptotic proteins, generation of toxic reactive oxygen species
(ROS) and futile hydrolysis of ATP by aged, damaged and depolar-
ized mitochondria [4,5,8–10]. Mitophagy also eliminates mitochon-
dria during cytoplasmic remodeling and degrades mitochondrial
DNA (mtDNA), including damaged and mutated mtDNA promoting
mitochondrial dysfunction and disease [3,11,12]. A proper balance
of mitophagy to mitochondrial biogenesis seems essential for
cellular well-being, since inadequate and excess mitophagy both
can promote cell injury and death [8,13,14].

Progression of mitophagy

Microtubule-associated protein-1 light chain-3 (LC3) is the
mammalian ortholog of the yeast autophagy-associated protein
Atg8. During autophagy, cytosolic LC3 (LC3-I) becomes conjugated
to phosphatidylethanolamine to form an LC3-phosphatidyle-
thanolamine conjugate (LC3-II), which is recruited to forming
and newly formed autophagosomal membranes [15]. The fusion
protein, green fluorescent protein-LC3 (GFP-LC3), is thus a con-
venient fluorescent marker of autophagic events [16]. GFP-LC3 is
mostly diffuse in the cytosol under nutrient-replete conditions.
However, some GFP-LC3 resides in small (0.2–0.3 mm) preauto-
phagic structures (PAS) close to mitochondria [3]. During nutrient
deprivation, PAS grow into cup-shaped isolation membranes or
phagophores that envelop and sequester individual mitochondria
into autophagosomes (mitophagosomes) (Fig. 1). Mitochondrial
fission frequently occurs in coordination with sequestration of
mitophagosomes. Once initiated, sequestration is complete within
6–7min. When mitophagy is stimulated by nutrient deprivation,
mitochondria maintain their membrane potential (ΔΨ) during
sequestration, and depolarization does not occur until after
sequestration is complete, as indicated by loss of ΔΨ-indicating
fluorophores like tetramethyrhodamine methyester (TMRM)
(Fig. 1). After sequestration, mitophagosomes acidify and fuse with
lysosomes (or with late endosomes that then fuse with lyso-
somes). Mitochondrial contents are then digested after about 10
min [3,17]. Phosphatidylinositol 3-kinase (PI3K) inhibitors, wort-
mannin and 3-methyladenine, block mitophagic sequestration
virtually completely during nutrient deprivation, signifying invol-
vement of the classical beclin-1/Vps34 (class III PI3K) autophagic
pathway [3,18].

Depolarization-induced mitophagy

Global mitochondrial damage caused by mitochondrial uncoupling
(depolarization) and oxidative stress induces a robust autophagic
response and ultimately cell death [19–22]. The question remains,
however, whether such mitophagy is actually due directly to mito-
chondrial damage and depolarization, since global uncoupling also
causes a profound bioenergetic deficit that creates a nutrient
deprivation-like and autophagy-stimulating metabolic state. Evidence
that depolarization of single mitochondria can induce selective
mitophagy comes from photodamage experiments in which small
groups of mitochondria are exposed to bright 488-nm laser light,
which excites mitochondrial flavins, leading to ROS production and
mitochondrial injury [5,23–25]. At lower cumulative exposure, this
light depolarizes mitochondria transiently, but greater light exposure
leads to sustained and irreversible depolarization, which is accom-
panied by inner membrane permeabilization akin to the mitochon-
drial permeability transition (MPT).

After laser-induced photodamage to mitochondria in nutrient-
replete hepatocytes, GFP-LC3 fluorescence decorates the edges of indi-
vidual depolarized mitochondria beginning after about 30min and
continuing for up to at least 60min (Fig. 2A and B) [25]. Importantly,
decoration with GFP-LC3 only occurs when laser-induced mitochon-
drial depolarization is sustained. If a mitochondrion initially depo-
larizes after light exposure but subsequently repolarizes, labeling by
GFP-LC3 does not ensue. At first, GFP-LC3 labeling of the surfaces of
individual depolarized mitochondria is discontinuous. Over time,
however, GFP-LC3 fluorescence coalesces into a thin continuous ring,
and the individual mitophagosomes acidify (Fig. 2B). Notably, mito-
phagy does not occur outside the region of photodamage, and the
phototoxic stress does not lead to cell death. Additionally, autophagic
sequestration of individual mitochondria after photodamage appears
to occur without mitochondrial fission or involvement of PAS.

Fig 1. Mitochondrial fission, autophagic sequestration and depolarization during
Type 1 mitophagy. Hepatocytes from GFP-LC3 transgenic hepatocytes were loaded
with ΔΨ-indicating TMRM and incubated in nutrient-free Krebs-Ringer–HEPES
buffer (KRH) containing 1 mM glucagon as confocal images were collected every
minute. Note association of a PAS with a U-shaped mitochondrion (12min of
nutrient deprivation), which grew into a cup-shaped phagophore (14 and 18min)
that enveloped and then sequestered the middle part of the mitochondrion
coordinately with mitochondrial fission (19min). The sequestered mitochondrial
fragment remained polarized for several minutes, as shown by retention of red
TMRM fluorescence (26min) before depolarizing (30min).
Adapted from [3].
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Unexpectedly and in marked contrast to nutrient deprivation-induced
mitophagy, PI3K inhibitors do not stop photodamage-induced mito-
phagy (Fig. 3). If anything, PI3K inhibitors promote greater accumula-
tion of mitophagosomes after photodamage, possibly by preventing
subsequent PI3K-dependent fusion with lysosomes or lysosomal
precursors [25].

Type 1 and Type 2 mitophagy

These observations indicate that sequestration of mitochondria
into autophagosomes occurs by different cellular mechanisms,
which can be termed Type 1 and Type 2 mitophagy (Fig. 4). Nutrient
deprivation-induced mitophagy typifies Type 1 mitophagy in which
PAS enlarge to surround and sequester individual mitochondria into
mitophagosomes, often in coordination with mitochondrial fission.
Photodamage-induced mitophagy exemplifies Type 2 mitophagy. In
Type 2 mitophagy. GFP-LC3 decorates the surfaces of individual
depolarized mitochondria. This surface labeling first occurs in small
aggregates of GFP-LC3. The aggregates subsequently coalesce and
fuse into complete rings segregating each damaged mitochondrion
into a mitophagosome. Unlike Type 1 mitophagy, cup-shaped
phagophores do not form during Type 2 mitophagy, and mitochon-
drial fission is not evident. Nonetheless after formation by either a
Type 1 or Type 2 mechanism, the mitophagosomes then acidify and
their contents become degraded. A major biochemical distinction
between Type 1 and Type 2 mitophagy is that PI3K inhibition
with 3-methyladenine or wortmannin blocks Type 1 but not Type
2 mitophagic sequestration, implying that Type 2 mitophagy is
independent of beclin-1 (Fig. 4). Beclin-1 and PI3K-independent
initiation of damage-induced mitophagy has also been described in
SH‑SY5Y human neuroblastoma cells and primary dopaminergic
neurons exposed to the parkinsonian neurotoxin 1-methyl‑4-phe-
nylpyridinium [26,27].

Mitochondria-derived vesicle formation (micromitophagy or
Type 3 mitophagy)

Another mechanism for targeted removal of damaged mitochon-
drial components is formation of mitochondria-derived vesicles (MDV)
that bud off and then transit to lysosomes, as shown in elegant recent

Fig 2. Type 2 mitophagy after selective photodamage. In (A), a TMRM-loaded GFP-
LC3 hepatocyte was exposed to photodamaging 488-nm laser light within the area
indicated by the circle. Note mitochondrial depolarization at 1min after photo-
irradiation, followed by decoration of the depolarized mitochondria with GFP-LC3
(31min, arrow). GFP-LC3 subsequently formed complete rings around the damaged
mitochondria (51min). In (B), a GFP-LC3 hepatocyte was loaded with ΔΨ-indicating
MitoFluor Far Red (MFFR) and LysoTracker Red (LTR) for 30min and then exposed
to photodamaging 488-nm laser light within the area indicated by the circle.
Note mitochondrial depolarization after photoirradiation, as indicated by loss of
blue pseudo-colored MFFR fluorescence (1min). GFP-LC3 subsequently began to
decorate the depolarized mitochondria (31min, arrow) to form mitophagosomes,
which acidified as indicated by uptake of red LTR fluorescence (79 and 106min).
A pre-existing autophagosome was also present (baseline, asterisk), which matured
into a red-fluorescing autolysosome and moved out of the field during the
experiment.
Adapted from [25].

Fig. 3. Inhibition of Type 1 but not Type 2 mitophagy by 3-methyladenine. In (A), TMRM-loaded GFP-LC3 transgenic hepatocytes were incubated 120min in serum-
containing Waymouth's growth medium (left panel), KRG plus glucagon (KRH/G), or KRH/G plus 10mM 3-methyladenine (3 MA), a PI3K inhibitor and classical autophagy
blocker. In comparison to Waymouth's medium alone, incubation in KRH/G caused abundant formation of GFP-LC3-tagged autophagosomes, many of which contained
TMRM-labeled polarized mitochondria (middle panel). 3 MA treatment prevented autophagosomal formation virtually completely (right panel). In (B), GFP-LC3 hepatocytes
were subjected to 488-nm photoirradiation (circle), as described in Fig. 2, in the presence of 3 MA. Note that 3 MA did not prevent formation of mitophagosomes after
photodamage (58min, compare to Fig. 2). Wortmannin (100 nM), another PI3K inhibitor, similarly failed to prevent mitophagosome formation after photodamage (not
shown). Adapted from [25].
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experiments [28,29]. MDV are cargo-selective vesicles released from
mitochondria independently of the mitochondrial fission machinery.
Oxidative stress stimulates MDV formation, and the MDVs themselves
are enriched in oxidized mitochondrial proteins [29]. Unlike Type
2 mitophagy, MDV formation does not require mitochondrial depolar-
ization. Although MDV formation and transit to lysosomes occurs
independently of the autophagic proteins ATG5 and LC3, this form of
self-eating of mitochondria does require PTEN-induced putative
kinase-1 (pink1) and parkin, proteins well known to be associated
with mitophagy [30]. Interestingly, electron microscopy reveals that
MDVs end up as vesicles within multivesicular bodies, a form of late
endosome, as shown by immunostaining for transporter of the outer
membrane-20 (TOM20) [28]. Such findings suggest that MDV incor-
poration occurs by invagination of the surface of multivesicular bodies
followed by vesicle scission into the lumen. Afterwards, the multi-
vesicular bodies fuse with lysosomes to complete the hydrolytic
degradation of the MDV. Topologically, the transit of MDV into
multivesicular bodies and then lysosomes is a form of microauto-
phagy, or micromitophagy, termed here as Type 3 mitophagy (Fig. 4).

Micromitophagy is well characterized in yeast but differs from
micromitophagy (Type 3 mitophagy) in mammalian cells in that
digestive vacuoles (lysosomes) of yeast engulf whole mitochondria,
whereas multivesicular bodies of mammalian cells swallow up small
mitochondrial MDV fragments [31,32]. Overall, micromitophagy facil-
itates selective removal of damaged and oxidized mitochondrial
components as a form of mitochondrial quality control that occurs
without mitochondrial depolarization or overt functional impairment.

Future directions

Cell biological differences constitute the principal distinctions
between the three types of mitophagy described here, and future
studies are needed to characterize the molecular and biochemical
differences between these variants of mitophagy. Models to induce
mitophagy need scrutiny as well. For example, mitochondrial depo-
larization with an uncoupler such as dinitrophenol or FCCP is widely
used to induce mitophagy, but such treatment may promote more
than one type of mitophagy. One effect of uncoupling, mitochondrial
depolarization, activates Type 2 mitophagy, whereas the bioenergetic
deficit after uncoupling produces a nutrient deprivation-like state
and hence Type 1 mitophagy. Similarly depending on severity,
oxidative stress likely induces all three types of mitophagy: Type
3 mitophagy with mild oxidative stress and Types 1 and 2 mitophagy
as more severe oxidative stress causes mitochondrial depolarization
and ATP depletion. Thus, use of models that selectively activate
specific types of mitophagy will be essential to delineate the exact
molecular mechanisms underlying each form of mitophagy.

The cell biological differences between the different types of
mitophagy give clues as to likely differences in their biochemistry
and molecular biology. For example in Type 1 mitophagy, mito-
chondrial depolarization does not occur until after a mitochon-
drion is sequestered and captured inside a mitophagosome [3].
Indeed, our data indicates that mitochondrial depolarization does
not occur until the outer compartment of the mitophagosome
(space between the membranes originating from the phagophore)
acidifies (Fig. 5) [33]. By contrast, sequestration in Type 2 mito-
phagy does not begin until well after mitochondrial depolarization
[25]. Pink1 and parkin are proteins whose mutations cause familial
forms of Parkinson's disease, and mitochondrial depolarization
leads to pink1-dependent recruitment of parkin to the mitochon-
drial outer membrane. Parkin is an E3 ubiquitin ligase that
ubiquinates outer membrane proteins to target mitochondria for
mitophagy [20,34–38]. Thus, pink1 and parkin are essential for
Type 2 mitophagy but may not be involved in Type 1 mitophagy,
although pink1 and parkin are also involved in Type 3 mitophagy
perhaps because MDV are depolarized [30]. Future work will be
needed to determine the role, if any, of pink1 and parkin in Type
1 mitophagy where mitochondrial depolarization follows rather
than precedes autophagic sequestration. Likewise, since PI3K
inhibitors block Type 1 but not Type 2 mitophagy, the beclin1/
vps34 PI3K complex would appear to play an essential role in Type
1 mitophagy but not to be involved in Type 2 mitophagy. However,
these expectations require experimental testing and confirmation.

Mitochondrial dynamics are also different in the three types of
mitophagy. In Type 1 mitophagy, mitochondria fission typically
occurs in coordination with sequestration of mitophagosomes. By
contrast in Type 2 mitophagy, mitochondrial fission is not
observed. Instead, fusion seems required to form a continuous
mitophagosomal membrane from LC3-labeled structures that
initially decorate depolarized mitochondria. Indeed, LC3 mem-
branes may also fuse with the mitochondrial outer membrane
during Type 2 mitophagy, consistent with reports that mitochon-
drial outer membrane components incorporate into autophagoso-
mal membranes [39,40]. Careful correlative electron microscopy

Fig. 4. Scheme of Types 1, 2 and 3 mitophagy. In Type 1 mitophagy induced by
nutrient deprivation, activation of beclin1/PI3K leads to formation of an LC3-GFP-
labeled phagophore that sequesters a mitochondrion into a mitophagosome often
in coordination with mitochondrial fission. Mitochondrial depolarization then
occurs after sequestration due to onset of the MPT. Subsequently, the mitophago-
some fuses with lysosomes, and hydrolytic digestion of the entrapped mitochon-
drion occurs. In Type 2 mitophagy, mitochondrial injury by photodamage or other
injurious stress causes MPT onset and sustained mitochondrial depolarization with
swelling of the inner membrane–matrix compartment. In PI3K- and beclin1-
independent fashion, GFP-LC3-labeled membrane vesicles attach to the depolar-
ized mitochondrion and coalesce to form a mitophagosome. Further mitophago-
somal processing occurs as in Type 1 mitophagy. In Type 3 mitophagy, or
micromitophagy, MDV containing oxidized mitochondrial proteins bud off from
mitochondria and then become internalized into multivesicular bodies in a pink1/
parkin-dependent fashion. Multivesicular bodies subsequently fuse with lysosomes
to complete hydrolytic degradation of the mitochondrial fragments. In the scheme,
red denotes mitochondrial polarization.
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will be needed to characterize more precisely the topology of
membrane fusion events during Type 2 mitophagy. Lastly in Type
3 mitophagy, a fission event is required for the budding off of MDV
from the mitochondrial surface. However, the fission apparatus to
release MDV is different from that associated with binary fission of
mitochondria, since MDV formation is not dependent on dynamin-
related protein-1 (Drp1), the GTPase required for binary fission of
mitochondria [28]. The molecular basis for membrane fission in
Type 3 mitophagy thus also needs further study.

Autophagy after nutrient deprivation is often described as non-
selective, but this assumes what we really do not know. Specifically,
we do not know whether mitochondria targeted by Type 1 mito-
phagy carry a greater burden of damaged components, such as
oxidized proteins and lipids, than mitochondria that avoid Type
1 mitophagy. Mild oxidative stress is established to stimulate Type
3 micromitophagy, but future experiments are needed to determine
how mild oxidative and other stresses affect the probability of
mitochondrial sequestration and degradation by Type 1 mitophagy.

Another question concerns the role of the MPT in mitophagy.
Although mitochondrial depolarization after onset of MPT is sufficient
to initiate Type 2 mitophagy, MPT blockers like cyclosporin A and
nonimmunosuppressive N-methyl-4-isoleucine cyclosporin (NIM811)
also block nutrient deprivation-induced Type 1 mitophagy, apparently
by preventing mitochondrial depolarization after sequestration
[11,41–44]. Factors inducing apparent MPT onset after Type 1 mito-
phagic sequestration as well as why MPT onset is required for further
mitophagic processing remain poorly understood.

Overall, mitophagy represents an essential quality control
mechanism whose disruption causes disease through failure to
remove dysfunctional mitochondria that promote oxidative stress
and cell death, including mitochondria with mutated mtDNA.
Mitophagy is also an essential survival strategy against nutrient
deprivation and starvation. Future studies should be fruitful in
addressing open questions about the several variants of mitophagy.
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