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Extinction events in the geological past are similar to the present-day biodi-
versity crisis in that they have a pronounced biogeography, producing
dramatic changes in the spatial distributions of species. Reconstructing
palaeobiogeographic patterns from fossils therefore allows us to examine
the long-term processes governing the formation of regional biotas, and
potentially helps build spatially explicit models for future biodiversity loss.
However, the extent to which biogeographic patterns can be preserved in
the fossil record is not well understood. Here, we perform a suite of simu-
lations based on the present-day distribution of North American mammals,
aimed at quantifying the preservation potential of beta diversity and spatial
richness patterns over extinction events of varying intensities, and after
applying a stepped series of taphonomic filters. We show that taphonomic
biases related to body size are the biggest barrier to reconstructing biogeo-
graphic patterns over extinction events, but that these may be compensated
for by both the small mammal record preserved in bird castings, as well as
range expansion in surviving species. Overall, our results suggest that the
preservation potential of biogeographic patterns is surprisingly high, and
thus that the fossil record represents an invaluable dataset recording the
changing spatial distribution of biota over key intervals in Earth History.
1. Introduction
Extinction events in the geological past are thought to have had a pronounced
biogeography, including spatial heterogeneity in rates of extinction and recov-
ery [1–5], changes in the geographical range sizes of affected species [6–8],
and changes in beta diversity on a wide range of spatial scales [9–12]. Similarly,
the anthropogenic factors contributing to the present-day biodiversity crisis
(which has also been called the ‘6th mass extinction’ [13]) are biogeographically
complex [14,15], and are having global-scale effects on the spatial distributions
of species [16–19]. Given that many contemporary proximal extinction drivers
are also recognized as having driven biotic crises in the past [20], reconstructing
biogeographic patterns over past extinction events may represent a powerful
tool for building predictive and spatially explicit models of biodiversity loss
[2], allowing us to address the questions: where will extinction be most
severe? How will biogeographic patterns be altered? And, which regions are
in the most urgent need of protection? These questions comprise a major
research area within the field of ‘conservation palaeobiogeography’ [21], and
are an area where palaeontological data can be used to understand the effects
of ongoing global change.
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The extent to which biogeographic patterns can be pre-
served in the fossil record, however, has only just begun to
be investigated [22–25]. A wide variety of factors, including
the changing spatial and temporal distributions of fossilifer-
ous sediment, the distribution of fossil localities, and
differential taphonomic potentials of species may all exert
controls over how accurately spatial diversity patterns can
be preserved (e.g. [26]). Here, we examine whether two cen-
tral facets of biogeography—beta diversity and spatial
richness patterns—can be reliably preserved in fossil locality
data over a range of hypothetical extinction scenarios, and
when accounting for a number of taphonomic processes.

Beta diversity was originally conceived to describe vari-
ation in taxonomic composition across space [27] and is
central to addressing the processes underlying the formation
of local and regional biotas [28–32]. In the geological past,
beta diversity has been shown to change in response to extinc-
tion, origination, immigration, and shifts in the geographical
ranges of species [9,11,12]. In modern settings, changes in
beta diversity have been shown to be a sensitive indicator of
ecological stress [33], and, consequently, studies using beta
diversity underpin much of conservation theory and practice
[29,32]. Understanding how beta diversity changed over past
biotic crises may therefore help to identify modern areas under-
going ecological stress, or ecosystems at risk of incipient
collapse [11,33,34].

Spatial richness patterns, in contrast, represent a different
facet of biogeography, and a separate set of conservation
priorities. The fact that species are not distributed
homogeneously in space is a fundamental observation in ecol-
ogy, with huge efforts dedicated to determining the biotic,
abiotic, and historical controls on richness patterns at a
broad range of spatial scales [35]. Areas of high local
richness (which may or may not strictly be biodiversity
‘hotspots’, see e.g. [36]) necessarily represent conservation pri-
orities [37–39]; being able to reliably identify such areas in the
past would thus allow palaeontologists to establish whether
highly biodiverse areas are prone to moving, expanding, or
shrinking in a variety of global change scenarios, or are
more (or less) vulnerable to mass extinction (e.g. [40]).

This study, therefore, represents a first attempt to calibrate
the extent to which we can use the terrestrial fossil record to
predict the biogeographic effects of ongoing global change,
both in terms of the effects of extinction on beta diversity
and changes to spatial richness patterns. We employ a simu-
lation-based framework based on known patterns of extant
North American mammal distributions and the distribution
of fossil localities from a key interval of the Cenozoic. We
apply a stepped series of preservation biases based on
published relationships between mammal body mass,
population density, and expected number of carcasses
[41–43], and simulate extinction of varying intensities (25%,
50%, and 75% species extinction) by removing small-ranged
taxa. We then calculate metrics for beta diversity and map
patterns of richness as tests of how well we can detect
known biogeographic patterns using a biased fossil record.
2. Material and methods
(a) Species
In order to preserve realistic range geometries and size distri-
butions in simulations, we use the polygon distributional data
for 374 extant terrestrial mammal species (taken from the Inter-
national Union for Conservation of Nature (IUCN) Redlist:
www.iucnredlist.org/) whose ranges extend into North America
(i.e. the USA, Canada, and Mexico); these species describe an
approximately lognormal distribution of range sizes (electronic
supplementary material, S1), which is typical for a majority of
terrestrial taxonomic groups [44–47].

(b) Simulating reductions in beta diversity
We first rasterized each species’ range using a 1° latitude and
longitude grid, and then summed diversity within grid cells
across North America; this process produced a species richness
map for our mammal species that served as the ‘baseline’ for
experiments (figure 1). We calculated beta diversity for this base-
line as a function of multisite Sørensen’s dissimilarity using
species lists for every occupied grid cell. Multisite metrics (such
as Sørensen’s dissimilarity) are similar to Whittaker’s [27] orig-
inal formulation, and account for compositional heterogeneity
for assemblages of more than two sites [48,49].

In this study,we assume extinction as a driver of change in beta
diversity. Although extinction is not the only regional-scale process
operating on geological (rather than ecological) timescales that can
affect beta diversity—origination [50], climate [10], faunal immi-
gration [8], and tectonism [51,52] have all been shown to have
effects on the differentiation of faunas in the geological past—
extinction events are overwhelmingly thought to preferentially
remove small-ranged species [6,12,53–55], reducing endemism
and thus faunal heterogeneity. To simulate extinction, we sequen-
tially remove 25%, 50%, and 75% of the smallest ranged species in
our baseline distribution; this results in three different extinction
scenarios with an increasing preponderance of large-ranged
species, and more similar species pools across local assemblages.

(c) Beta diversity experiments
We test whether extinction-driven reductions in beta diversity
can be reliably preserved in the fossil record under five different
experimental conditions, each of which adds a layer of complex-
ity and realism in simulations, and thus allows us to identify the
source(s) of uncertainty in reconstructing biogeographic patterns.

In our first experiment (1, ‘random localities’), we iteratively
(x100) and randomly place simulated fossil sites within North
America (see also [23,24]). We then extract species from these
sites in each iteration, and calculate beta diversity in the same
fashion as in our baseline. To test whether results are sensitive
to the number of fossil ‘localities’, we run simulations using 3,
30, and 300 sites; these numbers represent the upper and lower
range of the actual number of mammal fossil localities typically
recorded in Cenozoic time slices, and which have been used in
prior palaeobiogeographic analyses [8,56]. Repeating this exer-
cise using our three extinction scenarios allows us to test
whether resulting changes in beta diversity can be reliably
recorded in simulated fossil localities.

In our second experiment (2, ‘real localities’), we account for
the patchy distribution of fossil localities in time and space [26]
by restricting fossil sites to the latitude and longitude coordinates
of actual fossil localities from the Rancholabrean North Ameri-
can Land Mammal Age (Late Pleistocene—240–11 thousands of
years ago (kya)). This interval was chosen because of the large
number of known fossil localities (allowing us to employ our 3,
30, and 300 site sampling protocol; figure 1), and because it is
potentially a critical interval for assessing drivers of the Pleisto-
cene extinction of megafauna [57].

In our third experiment (3, ‘taphonomy’), we add a series of
equations modified from Fraser [22] to our simulated sites, that
controls for differing taphonomic potentials among mammal
species by estimating a ‘probability of preservation’. The
equations build on a number of macroecological correlates for

http://www.iucnredlist.org/
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Figure 1. Flow chart illustrating the methods employed for reconstructing changes in the spatial organization of biota with increasing extinction intensity. (Left)
Mammalian species richness is first mapped onto 1° grid cells for 0, 25%, 50%, and 75% extinction scenarios. (Centre) In each scenario 3, 30, and 300 ‘localities’ are
iteratively simulated; in our first experiments (random) these are placed randomly, while from our second experiment (localities) onwards, these are chosen from
existing Rancholabrean fossil sites (shown here). Species lists compiled from simulated sites are then passed through a stepped series of taphonomic filters (taph-
onomy, lagerstätten, and castings). (Right) In each iteration, final species lists are then used to calculate beta diversity as a function of multisite Sørensen’s index,
and also used to map diversity back onto continental North America (here using a 3 × 3 grid moving window interpolate richness across empty grid cells). These
simulated beta diversity and richness patterns are compared back to original extinction scenarios, to see how accurately biogeographic changes associated with
extinction are recorded in simulations. (Online version in colour.)
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population density [41,42], body mass, and death rate [43] to pro-
duce an estimate for the number of carcasses for each species:

log D ¼ � 0:75log W þ 4:23 ½43� ð2:1Þ
dr ¼ 3:09W�0:33 ½41� ð2:2Þ
and Ce ¼ dr10log D ½42�, ð2:3Þ
where W is body mass (g), D is the population density, dr is the
death rate, and Ce is the expected number of carcasses for a given
species. Probability of preservation was then summarized as the
ratio of sampled to expected carcasses:

log
Fs0
Fe

¼ � 1:720þ 0:683 log W ½42�,

where W is body mass (in kg) and Fs0=Fe is the ratio of sampled
to expected carcasses.

This series of equations therefore accounts for body size and
relative rarity, both of which exert a strong control on the likeli-
hood of fossil preservation in different species, and thus the
reliability of reconstructed biogeographic patterns [22]. Applying
the above equations to the 374 species used in this analysis pro-
duces an approximately lognormal distribution of preservation
potentials, with the vast majority of species exhibiting low
chances of fossilization (electronic supplementary material, S2).
We use the above series of equations in simulations by establish-
ing a random sampling vector between 0 and 1 divided into 0.01
increments; for every instance where a simulated fossil ‘site’
intersects with a species range, we count that species as ‘found’
at that site if a random number taken from our sampling
vector is equal to or lower than that species’ probability of
preservation.

All experiments thus far assume similar taphonomic poten-
tials across all localities, and do not account for potential fossil
lagerstätten, which might preserve all species equally regardless
of body mass and/or rarity. In our fourth experiment (4, ‘lager-
stätten’), we therefore address the conservative nature of our
equation for ‘preservation potential’ by additionally simulating
the presence of rare fossil lagerstätten (which in the Rancholab-
rean could reasonably represent cave deposits—see e.g. [58]).
To do this, we include another function which introduces a 1%
probability that any simulated fossil locality is characterized by
exceptional preservation, and thus preserves every species that
occurs there. This 1% figure reflects a conservative estimate for
the rarity of fossil lagerstätten [59].

Lastly, our equation for calculating differing taphonomic
potentials among species represents a significant bias against
the preservation of taxa with small body sizes [60–62]. However,
in addition to more conventional fossil lagerstätten (such as the
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Rancho La Brea tar pits in Los Angeles county), which are simu-
lated in our fourth experiment, the pellets regurgitated by owls
and other birds (castings) are an important geological deposit
that overwhelmingly preserve small animals, and provide valu-
able insights into small mammal communities [63–66]. In our
fifth experiment (5, ‘castings’), therefore, we simulate the collec-
tion of bird castings from all localities by recording all species
between 5 and 800 g body mass (which represents a typical
range of prey size for medium-sized owls [67]) as ‘found’.

We illustrate simulated beta diversity as boxplots, where
boxes contain the first and third quartiles of simulated diversity
estimates, whiskers illustrate the maximum and minimum, and
notches give 95% confidence intervals around the median. We
define a change in beta diversity in any of our extinction scen-
arios as ‘likely to be detected’ if the boxes on boxplots show no
overlap with our baseline scenario (i.e. less than 25% overlap
in the total range of diversity values), and thus a high probability
that change in beta will be preserved in the fossil record.

(d) Reconstructing spatial richness patterns
Finally, we test whether continental-scale biogeographic patterns
in our baseline maps can be accurately reproduced in our five
experimental scenarios, by extracting species lists from simulated
fossil localities and reconstructing diversity across 1° grid cells.
We calculate the agreement between ‘true’ and simulated rich-
ness rasters in each iteration using a rank-based and non-
parametric correlation test—Kendall’s Tau—producing a vector
of agreement estimates, whereby higher Tau values indicate
greater similarity between ‘true’ and simulated diversity rasters.
We calculate agreement first in a simple grid-wise fashion (Simu-
lated), and also using a smoothing function on our simulated
richness raster to interpolate richness values across empty cells
(Extrapolated); this function employs a 3 × 3 grid cell moving
window, then calculates the mean richness for each 9-cell block
and assigns this value to the central cell.

(e) Additional tests
We subject the results of our ‘castings’ beta diversity experiments
to two additional tests that examine the preservational fidelity of
changes in beta diversity to different patterns of extinction selec-
tivity and/or biotic response.

First, extinction events are typically thought to select against
small-ranged taxa (leaving more species common to all local
species pools and thus reducing beta diversity). However, sur-
viving species, or new species evolving in the aftermath, can
experience an increase in range size as they proliferate and dis-
perse in response to the availability of free ecospace [68,69].
Range expansion among surviving taxa would add more species
common to all local assemblages, and thus exacerbate reductions
in beta diversity. We test the strength of this effect by expanding
the ranges of the top 5%, 10%, and 20% of the largest-ranged sur-
vivors (for 25%, 50%, and 75% extinction thresholds,
respectively) to fill that of North America, thus simulating dra-
matic range expansion among surviving species, and/or
replacement by extremely cosmopolitan and invasive taxa.

Second, a key question is: given the space- and taphonomy-
related biases inherent in fossil preservation, to what extent
might random extinction of species lead to changes in beta diver-
sity, and to what extent might these changes be preserved in the
fossil record? To test this, we simulate ‘random’ extinction
whereby 25%, 50%, and 75% of species are removed with no
selectively for range size. Note that, given that species are
removed at random, this test necessitated iteratively (x100)
removing random species to generate baseline trends, in order
to explore the distribution of possible results.

All analyses were performed in the statistical software
environment R [70].
3. Results
(a) Baseline beta and biogeographic patterns
Our three extinction scenarios (25%, 50%, and 75% extinction)
result in a decline in beta diversity. This decline is relatively
minor in our 25% and 50% extinction experiments, but
more severe when 75% of the smallest ranged species are
removed (figure 2a). In terms of diversity patterns, our base-
line map for extant mammal species richness shows a clear
area of high richness in the southwest USA and northern
Mexico, and a broad gradient characterized by high richness
in the west (roughly corresponding to the eastern extent of
the Rocky Mountains), and low richness in the east and
southeast (figure 1). This broad east-west gradient in richness
is still apparent at 75% ‘extinction’, illustrating that this
pattern is influenced by large-ranged species, as well as
small-ranged species.

(b) Beta diversity experiments
Our ability to detect reductions in beta diversity associated
with extinction improved with more sampled fossil localities.

Using the multisite Sørensen index (figure 2), reductions
in beta diversity associated with 50% and 75% extinction
were readily detected (i.e. boxes display less than 25% over-
lap) using 30 localities in ‘random locality’ experiments,
while only 75% extinction could be detected in ‘real
localities’. No reduction in beta diversity was detectable
with the addition of either ‘taphonomy’ or ‘lagerstätten’. In
our last experiment (5, ‘castings’) a reduction in beta was
once again detectable at 75% extinction. Using 300 localities,
reductions in beta diversity associated with 50% and 75%
extinction can be detected in both experiments 1, ‘random
localities’ and 2, ‘real localities’. With the addition of our
first two taphonomic filters (3, ‘taphonomy’ and 4, ‘lagerstät-
ten’) only 75% extinction could be detected, while in our final
experiment (5, ‘castings’) both 50% and 75% extinction
thresholds were detectable.

No reductions in beta diversity were detected using only
three fossil localities, nor was the 25% extinction threshold
detected in any experiments.

(c) Reconstructing species richness patterns
Kendall’s Tau correlations between simulated and ‘true’ rich-
ness patterns (figure 3) illustrate high correlation (Tau = 0.7–
0.9) in our first and second experiments (1, ‘random localities’
and 2, ‘real localities’), but much lower correlations (Tau =
0.0–0.4) in our third experiment (3, ‘taphonomy’). With the
addition of lagerstätten, Tau values increase slightly, while
remaining lower than the first two experiments. Lastly, in
our fifth experiment (5, ‘castings’) correlations once again
become higher (Tau = 0.4–0.8). In general, there is little ten-
dency for increase/decrease in correlation with increasing
extinction intensities, with the exception of ‘castings’, where
correlations between simulated and ‘true’ richness patterns
are lower (Tau =∼0.45 as opposed to Tau =∼0.55) at our
75% extinction threshold than other scenarios.

(d) Additional tests
The results of additional tests are shown in figure 4. Our first
additional test––simulating range expansion in surviving
taxa—produces a baseline scenario where decrease in beta
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diversity with increasing extinction intensity is more linear
than in our original experiments (for example, contrast
figure 2a with figure 4a). Our ‘castings’ experiments under
these conditions readily detect these reductions in beta diver-
sity, recovering significant decreases at all extinction
intensities. Our second additional test—simulating random,
rather than range-selective extinction—produces a very
different baseline scenario, with no obvious trend in beta
diversity with increasing extinction intensity (save increasing
variance, reflecting the differing distributions of large- versus
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small-ranged taxa removed in each iteration). Repeating our
‘castings’ experiment under these conditions reveals a close
match with the baseline results (i.e. no consistent trend).
4. Discussion
At first glance, our results would suggest that the preser-
vation potential of biogeographic patterns, both in terms of
identifying decreases in beta diversity associated with extinc-
tion and the location of biogeographic richness patterns, are
relatively low. Plotting estimates of gamma diversity (i.e.
total North American diversity) over the same set of simu-
lations (electronic supplementary material, S3) shows that,
even when an extinction signal is captured in gamma (i.e.
the overall number of recovered species), a decrease in beta
diversity is not always detected. Even in our most optimisti-
cally modelled scenario (i.e. 300 localities, where bird castings
are recovered from every simulated locality), we can only
reliably identify decreases in beta diversity associated with
50% and 75% extinction, representing severe biotic crises
(potentially ‘mass extinctions’). In a similar vein, our diver-
sity reconstruction experiments recover Kendall’s Tau
values of approximately 0.6, which, although significant
( p-values consistently less than 0.05), indicate an imperfect
replication of richness patterns across North America. How-
ever, for several reasons, we argue that these results are
conservative, and that the potential for recovering deep-
time changes in biogeographic patterns is higher than these
numbers would suggest.

For example, we note that the actual decrease in beta
diversity associated with lower extinction intensities is rela-
tively small; 50% species extinction, for example, only
results in an approximately 5% decrease in regional beta
diversity, which is naturally hard to detect. In spite of this,
our first additional test illustrates that a reduction in beta
diversity associated with 25% species extinction can be
detected on continental scales, when only 5% of surviving
taxa undergo range expansion (figure 4a). Setting post-expan-
sion ranges to fit the entirety of North America is arbitrary,
but our 5% figure is certainly conservative (in the aftermath
of late Pleistocene extinction approximately 70% of surviving
species significantly expanded their ranges – see [71]). The
results of our experiments thus illustrate that range expansion
amongst a relatively small proportion of surviving taxa can
significantly contribute to decrease in beta diversity, and
this decrease likely be recorded in fossil locality data.

We acknowledge, however, that several aspects of our
study are idealized. For example, in simulating extinction
events of varying intensities, we remove the 25%, 50%, and
75% smallest ranged taxa. Although past biotic crises have
shown a general tendency to preferentially select against
small-ranged species (e.g. [54]), this tendency is rarely per-
fect, and over some extinction events selectivity was more
or less random with respect to geographical range size
[53,72,73]. Our second additional test provides some insight
into the potential impact of this different selectivity scenario.
Baseline results for this test illustrate that random extinction
does not produce consistent increases or decreases in beta
diversity (figure 4b). This is faithfully replicated in our simu-
lation experiments, which likewise illustrate no consistent
tendency for beta diversity to change with increasing extinc-
tion intensity. The large variance in simulated beta at the 75%
extinction threshold does suggest that there may a slight risk
of false positive signals at high extinction intensities (and
when selectivity is random with respect to range size), but
also that this is unlikely to be a pervasive issue through
longer swathes of geological time. Lastly, although the vast
majority of studies have identified small range size as a pre-
dictor of extinction risk, some studies have suggested
stronger correlations with other macroecological attributes,
such as body size [74,75]. Future studies should therefore
further investigate extinction risk factors other than geo-
graphical range, including life-history traits [76]. In
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addition, a preliminary investigation into the preservation
potential of beta diversity patterns when large-ranged species
are driven extinct reveals some interesting contradictions,
although we consider this scenario unlikely in the real
world (electronic supplementary material, S4–S5). We do,
however, note that small range size has been shown to be a
significant predictor of extinction risk in the current biodiver-
sity crisis (e.g. [77]), and so argue that our simulations have at
least some present-day relevance.

With measures of beta diversity, the biggest decrease in
fidelity comes with inclusion of a taphonomic body size
bias; taphonomic processes in terrestrial settings overwhel-
mingly bias against the preservation of small mammals
[61], and the vast majority of the North American mammal
fauna possess small body sizes [78–80]. Mechanisms for pre-
serving the small mammal record are thus critical to
preserving biogeographic patterns in deep time. In this
regard, our choice of 1 in 100 localities representing lagerstät-
ten is an approximation, but the actual number is potentially
far lower (although, as isolated point sources of diversity
lagerstätten are unlikely to be useful, as they would likely
create apparent hotspots that may or may not be representa-
tive of regional biogeographic patterns). In addition, our best
results are obtained through simulating the preservation (and
recovery) of bird castings at every locality; however, bird cast-
ings are not a common feature of the fossil record [81–83],
and, even when found, may not sample every small
mammal within the local assemblage. Although bird castings
are well known from Pleistocene deposits, they are less well
known from older time slices (the oldest described pellets
are Oligocene [84,85]), potentially making this taphonomic
window relevant only to the latter parts of the Cenozoic.
However, others argue that this more likely represents a col-
lection (and recognition) bias—gastric pellets have a number
of properties that should favour fossilization, but may lack
visual characteristics that would ordinarily lead to their col-
lection [82]. In addition, other authors have noted that a
wide variety of predatory vertebrates (in addition to birds),
including varanid lizards, crocodilians, marine mammals,
and potentially even several extinct groups all produce gas-
tric pellets in a similar fashion [82,85,86], potentially
creating a small vertebrate fossil record from a range of
palaeoenvironments stretching back prior to the Oligocene.
The fossil record of small mammals in castings may thus be
much richer and more complete than is commonly thought,
and raises the possibility that biogeographic patterns may
be accurately reconstructed for key intervals in deep time.

In summary, extinction events in the geological past have
had a pronounced biogeography, and understanding the
spatial responses of biota to extinction in the geological
past may have potential to help interpret current patterns
of biodiversity loss [2]. Our study illustrates that: (a) the pres-
ervation potential of biogeographic patterns—i.e. changes in
beta diversity and spatial richness patterns—over simulated
moderate to intense extinction events (greater than 50%
species loss) may be surprisingly high. Although decreases
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in beta driven by low to moderate (25–50%) extinction of
small-ranged species are relatively minor, range expansion
in surviving ‘disaster’ taxa exacerbate this effect, and these
reductions can be detected under our most optimistic scen-
arios. In addition, the biggest barrier to reconstructing these
patterns likely lies in the small mammal record; taphonomic
processes overwhelmingly bias against the preservation of
small body sizes, which in North American mammals
makes up the bulk of diversity. However, bird castings and
other predatory castings offer an invaluable taphonomic
window for preserving small mammal species, and one
which is under-explored [87].

These results thus justify new avenues of research looking
at the biogeographic response of biota to a variety of global
change scenarios, including extinction events, in deep time.
In particular, changes in beta diversity through time will
help to determine the long-term processes that have sculpted
present-day patterns in biogeography (especially in combi-
nation with palaeo-range reconstruction [8,11]), as well as
help predict how we expect processes of community assem-
bly and ecosystem function to change in response to
ongoing anthropogenic disturbance (e.g. [88]). In concert,
mapping the changing distribution of spatial richness
patterns potentially offers long-term data germane to
ongoing efforts in conservation biology, for example, in
designing the size and location of protected areas. At the
broadest scale, this study joins the growing body of work
illustrating that the fossil record represents a surprisingly
faithful dataset recording the changing spatial distribution
of biota over key intervals of Earth History [22–25].
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