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Abstract

Motivation: Regulatory elements (REs), such as enhancers and promoters, are known as regulatory sequences func-
tional in a heterogeneous regulatory network to control gene expression by recruiting transcription regulators and
carrying genetic variants in a context specific way. Annotating those REs relies on costly and labor-intensive next-
generation sequencing and RNA-guided editing technologies in many cellular contexts.

Results: We propose a systematic Gene Ontology Annotation method for Regulatory Elements (RE-GOA) by leverag-
ing the powerful word embedding in natural language processing. We first assemble a heterogeneous network by
integrating context specific regulations, protein–protein interactions and gene ontology (GO) terms. Then we per-
form network embedding and associate regulatory elements with GO terms by assessing their similarity in a low di-
mensional vector space. With three applications, we show that RE-GOA outperforms existing methods in annotating
TFs’ binding sites from ChIP-seq data, in functional enrichment analysis of differentially accessible peaks from
ATAC-seq data, and in revealing genetic correlation among phenotypes from their GWAS summary statistics data.

Availability and implementation: The source code and the systematic RE annotation for human and mouse are
available at https://github.com/AMSSwanglab/RE-GOA.

Contact: luyurun@amss.ac.cn or ywang@amss.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ontology building and ontology annotation are fundamental in biol-
ogy (Thomas et al., 2007). A large number of function prediction
and annotation methods have been proposed in the past decades, ei-
ther at pathway level from the point of view of biochemical reac-
tions or at gene level by its regulatory element (RE) and its protein
product (Zhou et al., 2019). With the development of high-
throughput experiment technologies, REs located in the 98% non-
coding regions of genome have been intensively studied for their
context specific regulatory functions from different aspects. For in-
stance, Nord et al. (2020) discussed neurobiological functions of
transcriptional enhancers; Field et al. (2020) studied how enhancers
regulate their target genes and how enhancers and promoters com-
municate; Fishilevich et al. (2017) provided an online resource for
enhancer–gene relations; and Li et al. (2020) described CRISPR/
dCas9-based enhancer-targeting epigenetic editing systems,

enCRISPRa and enCRISPRi, for efficient analysis of enhancer func-
tions in situ and in vivo. These works highlighted the necessity and
feasibility to apply ontology analysis at the regulatory element reso-
lution. Meanwhile, this task is either costly or tailor-made, and sys-
tematical and computational methods are in pressing need.

A widely adopted strategy for interpreting RE’s function is to
borrow annotations from its ‘nearest gene’. GREAT (McLean et al.,
2010) associated REs with genes based on a regulatory domain that
extends in both directions to the nearest gene’s Transcription Start
Site (TSS). Such methods ignored the complex many to many RE-
gene mapping in the gene regulation. On one hand, cis-regulatory
elements can control a gene far away in genome (Ribich et al., 2006)
instead of solely regulating the nearest genes, or regulate multiple
genes (Zhang et al., 2019). This difficulty was emphasized by a re-
cent study revealing that non-coding REs associated with a human
craniofacial disorder causally affect two clusters of enhancers
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regulating SOX9 expression during a restricted window of facial
progenitor development at a distance up to 1.45 Mb (Ribich et al.,
2006). Those REs are located far away outside of genes and fail the
routine way to annotate non-coding regions with genes located
within 500 kb, such as GREAT (McLean et al., 2010). In addition,
this dramatic case points out that RE’s function should be studied in
specific cellular contexts. On the other hand, some target genes of
cis-regulatory elements are translated to transcription factors (TF)
and then regulate other genes. Therefore, the relationships among
REs and genes are better represented as a network containing more
than one type of nodes and edges due to the complexity of gene
regulation. The topological structure of the whole network rather
than the local neighbor genes allows a better understanding of REs’
functions.

We recently proposed a Paired Expression and Chromatin
Accessibility analysis (PECA) method to reconstruct context-specific
regulatory network (Duren et al., 2019). The Gene Regulatory
Network (GRN) constructed by PECA consists of four types of nodes:
RE, TF, chromatin regulator (CR) and target gene (TG), and three
types of edges: CR recruitment to RE, TF binding to RE and RE regu-
lating TG. Our heterogeneous network introduces REs as harbors to
link diverse molecules to determine gene expression level, which
extends traditional regulatory networks that only describe the interac-
tions among TFs and their target genes. This is a valuable asset for
functional annotation of REs in a context specific regulation process
(Heinz et al., 2015). Meanwhile, powerful network embedding and
graph neural network approaches have been recently developed and
hold the promise to effectively integrate diverse types of information
(Sharan et al., 2007, Shi et al., 2017). For example, metapath2vec
(Dong et al., 2017) can embed a heterogeneous network into vector
representations and is successfully used by GEEK (Cao et al., 2020)
for an integrative study of heterogeneous gene regulatory mechanisms.
Another network embedding application is the transferred multi-
relational embedding model Bio-JOIE (Hao et al., 2020), which cap-
tures the knowledge of Gene Ontology (GO) and Protein-Protein
Interaction (PPI) networks and demonstrates its superb capability in
modelling the SARS-CoV-2-human protein interactions.

In this article, we propose a heterogeneous network embedding-
based approach for annotating REs with GO terms by integrating
Gene Ontology Annotation (GOA) with two biological networks
including PPI and GRN. GOA can describe the features of genes and
gene products from different aspects (Ashburner et al., 2000), PPIs
present physical contacts between proteins in the cell; GRN models
the regulatory relations among TFs, REs and genes. Together, a
framework for RE functional annotation, Regulatory Elements
Gene Ontology Annotation (RE-GOA), integrates heterogeneous
biological networks and generates resources of REs annotation for
human and mouse. To demonstrate the utility of RE-GOA, we apply
it to analyzing three different types of data including TF binding
sites from ChIP-seq data, differential accessible peaks from ATAC-
seq and GWAS summary statistics. The results show that RE-GOA
is a promising tool for annotation of regulatory elements.

2 Materials and methods

2.1 Overview of Gene Ontology Annotation method for

Regulatory Elements (RE-GOA)
We propose a network embedding-based framework, RE-GOA, for
annotating regulatory elements. As shown in Figure 1, RE-GOA
takes three biological networks including GOA, PPI and GRN as in-
put, utilizes the global and local topological information from all
these networks, and outputs functional annotations to REs. The
three networks, GOA, PPI and GRN, contain different information
of genes and other biological objects. GO terms can be divided into
three parts to respectively describe molecular functions (MF) that
genes and gene products have, biological processes (BP) accom-
plished by multiple molecular activities, and the locations relative to
cellular components (CC) where genes and gene products perform
functions. GO terms are structured as a Directed Acyclic Graph
(DAG) and used to annotate genes and gene products in GO

Annotation. PPIs are abstracted as a weighed undirected network,
where proteins are represented as nodes and the weight of edges rep-
resents the interaction strength between proteins. GRN describes
weighted directed regulations among genes, regulatory elements and
transcription factors in certain cellular contexts. It was recon-
structed from paired expression and chromatin accessibility data
(Duren et al., 2019).

As shown in Figure 1, RE-GOA annotates REs with GO terms
by three steps. First, biological networks including GRN, PPI and
GOA are integrated into a heterogeneous network with four types
of nodes: GO terms, genes, TFs and REs, and five types of edges:
term A is_a term B, gene is annotated by term, protein (gene) C
interacts with protein (gene) D, TF binds to RE and RE regulates
gene. In addition, two relationships can be inferred from the above
existing edges. An RE is indirectly annotated by a term if one of
RE’s target genes is annotated by the term. Two REs co-regulate if
they regulate the same gene.

Second, four types of nodes in the constructed heterogeneous
network can be embedded into vector space by representation learn-
ing. The key idea behind this step comes from Natural Language
Processing (NLP), where the goal is to learn an embedding for each
node such that the resulting node vectors can naturally capture their
neighborhood in the network. Technically, this is done by meta-
path-guided random walks in the heterogeneous network followed
by a word2vec as a one-layer artificial neural network called skip-
gram (Mikolov et al., 2013a,b). Eight different meta-paths (Fig. 2a)
are defined according to the domain knowledge on gene regulation
and can capture useful information in the network.

Once the GO terms, REs and genes in the heterogeneous net-
work are embedded into a low-dimensional vector space, we can
systematically assign terms to REs as the third step. A GO term
whose embedding vector has larger cosine similarity with an RE
indicates a higher possibility of existence of a latent relationship be-
tween the term and RE (Fig. 1, Step 3). To battle the complex hier-
archical relationships in GO, we determine Thres Tð Þ based on
cosine similarity as the threshold of term T to achieve maximum
f1 value using gene function annotation as gold standard. By check-
ing the GO terms of closely related target genes for REs, RE-GOA is
finally produced by filtering out terms lower than their thresholds.
The detailed workflow is shown in Supplementary Figure S1.

2.2 Constructing a heterogeneous network
The GO hierarchy and GOA, GRN and PPI networks contain differ-
ent information for biological objects. Here we integrate these net-
works into a heterogeneous network with four types of nodes: GO
terms, genes (or proteins), TFs and REs (the CR nodes in GRN are
ignored), and seven types of edges where five of them are obtained
directly from original networks, and two types of edges inferred
from existing edges:

1. term T1 isa term T2 obtained from Gene Ontology hierarchy,

where ‘isa’ means that term T1 is a child node of term T2 in GO;

2. gene G being annotated by a term T obtained from GOA which

is downloaded from AmiGO (http://amigo.geneontology.org/

amigo/search/annotation), and adjustments are made according

to the True Path Rule (Blake 2013), declaring that if a gene is

annotated by a GO term t, then it is also annotated by t’s ances-

tor terms. So here we annotate genes with terms annotating

them in AmiGO and their ancestors in GO, which means:

GOAg Gð Þ ¼ [t2GOAAmi Gð Þ t0jt0is an ancestor of t
� �

[ GOAAmi Gð Þ;

where GOAg Gð Þ represents the set of terms annotating G in our

method and GOAAmi Gð Þ is the raw annotation set of gene G in

AmiGO;

3. protein (gene) G1 interacting with protein (gene) G2obtained

from PPI network;

4. TF F binding to RE R obtained from GRN;
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5. RE R regulating gene G obtained from GRN;

6. RE R being indirectly annotated by term T if there exists a gene

G such that R regulates G and G is annotated by T;

7. RE R1coregulating with RE R2 if there exists a gene G such that

R1 regulates G and R2 regulates G.

The following rules are defined for inferring indirect edges:

R regulates G; G is annotated by T
) R is indirectly annotated by T;

R1 regulates G; R2 regulates G) R1 coregulates with R2;

For convenience, we define

GOAraw Rð Þ ¼ [G2reg Rð ÞGOAg Gð Þ

where reg Rð Þ is the set of genes which RE R regulates in GRN, and
GOAraw stores the indirect annotations to REs inferred from GRN
and GOA.

2.3 Embedding the constructed heterogeneous network
Biological networks are heterogeneous with different types of nodes
and edges, and embedding methods could flexibly integrate these
heterogeneous data and provide a low-dimensional representation
of the data for downstream tasks. Taking the constructed heteroge-
neous network as input, we convert the information contained in
the network structure into embedding vectors in a low-dimensional
space, such that the vector of each node in this space form a signa-
ture of the node that captures hidden associations in the network.

Metapath2vec provides an effective way for representation
learning of heterogeneous network (Dong et al., 2017), which for-
malizes meta-paths-based random walks to construct the heteroge-
neous neighborhood of a node and then leverages a heterogeneous
skip-gram model to perform node embedding. A heterogeneous net-
work is defined as a graph G ¼ V;E;Tð Þ, in which V and E are sets
of nodes and edges, and T ¼ TV ;TEf g. Each node v and edge e are
associated their mapping functions / vð Þ : V ! TV and
u eð Þ : E! TE, respectively, indicating their types, where TV and TE

denotes the set of node and edge types (jTV j þ jTE j > 2) (Pal et al.,
2016). Given a heterogeneous network G ¼ V;E;Tð Þ, metapath2-
vec defines the objective function to maximize the probability of the
heterogeneous context Nt vð Þ, t 2 TV given a node v as follows
(Dong et al., 2017).

arg max
h

Rv2VRt2TV
Rct2Nt vð Þlogp ctjv; hð Þ

where NtðvÞ denotes v’s neighbors with the tth type of nodes,

p ctjv; hð Þ ¼ eXct �Xv

Ru2V eXu �Xv , where Xv is the embedding vector for node v,

and h ¼ fv! Xv 2 Rd jv 2 Vg denotes embedding vectors of the
nodes.

Combining meta-paths-guided random walk and representation
learning allows us to integrate the highly heterogeneous data within
a single general framework. The simple form of the meta-paths also
allows the utility of different network components separately. To
capture network information relevant to RE’s function, meta-paths
are required as input for encoding domain knowledge. Each meta-
path is an ordered sequence of node types connecting biological
objects with one or more relationships. For example, when G repre-
senting a gene and R representing an RE, the meta-path ‘RGGR’
connects two REs (R1 and R2) indirectly through gene G1 regulated
by RE R1, gene G2 interacting with gene G1, and RE R2 regulating
gene G2. Here for convenience, we use ‘T’ to stand for a GO term,
‘G’ a gene, ‘R’ an RE and ‘F’ a TF. Fully considering the potential
relationships of the biological objects involved in RE’s biological
functions, we define eight meta-paths as follows which are also
shown in Figure 2a.

• RT, which connects RE with the terms annotating it, capturing

local information transformed from gene to RE that regulates the

gene;

• FRF (FRFRF . . .), which connects RE with the TF having the

‘binding to’ relationship in GRN, capturing the relationship be-

tween TF and RE, under the assumption that REs binding with

the same TF tend to have similar function;
• RGGR (RGGRRGGR . . .), which connects two REs if they regu-

late the same gene in GRN, connects two genes whose protein

products have interactions in the PPI network, and connects RE

and gene if they have the ‘regulate’ relationship in GRN;
• GRFRG (GRFRGRFRG . . .), which connects gene and RE if

they have the ‘regulate’ relationship in GRN, and connects RE

with TF which have the ‘binding to’ relationship in GRN. The

two meta-paths GRFRG and RGGR connect RE with the genes

it regulates, and the REs co-regulate with it, capturing global in-

formation transferred in the heterogeneous network;
• GTT (GTTT . . .), which connects G with the terms annotating

it, and connects two terms if they have the ‘is a’ relationship in

GO hierarchy;
• GTG (GTGTGT . . .), which connects G with the terms annotat-

ing it. The meta-paths GTT and GTG , respectively, capture

relations between genes and GO terms and relations among GO

terms;
• GTTG (GTTGGTTG . . .), which connects G with the terms

annotating it, connects two terms if they have the ‘is a’ relation-

ship in GO, and connects two genes whose protein products

have interactions in the PPI network;
• GGG (GGGGG . . .), which connects two genes whose protein

products have interactions in the PPI network. Meta-paths

GTTG and GGG capture information from PPI, assuming that

genes interacting with each other share similar function.

Guided by the meta-paths defined, we conduct random walks in the
heterogeneous network. Those random walks are then formed into a
corpus where the nodes are taken as words and walks as sentences. We
use the word2vec package in python with skip-gram model (Mikolov
et al., 2013a,b) to train the corpus and obtain an embedding of the het-
erogeneous network which represents nodes with vectors.

In the subsequent sections, we use vðTÞ, vðGÞ, vðRÞ and vðFÞ to
denote the embedding vectors of GO terms, genes, REs and TFs, re-
spectively. The whole algorithm of the heterogeneous network
embedding is described in Supplementary Algorithm S1.

2.4 Assigning GO terms to REs
We can compute the biological objects’ pairwise cosine distance
based on their embedding vectors. Nodes tend to have vectors with
larger cosine similarity if they are more adjacent in the walks gener-
ated according to the defined meta-paths. So, we assign a GO term
to an RE or gene when their embedding vectors have larger enough
cosine similarity.

GO terms are located in different levels in hierarchies of the
ontology and provide different amount of information. The deeper
the terms are located in hierarchies, the more concrete information
they provide. With various features, terms have different similarities
with genes. Thus, a big challenge is to determine a different, specific
threshold for each term to annotate REs. In this section, we will an-
notate REs in three steps: first calculate threshold for each term,
then generate GOAembed which annotates REs with terms according
to the thresholds and embeddings, and lastly, RE-GOA is finally
produced by intersect GOAembed and GOAraw.

2.4.1 Calculating threshold for each GO term

Determining suitable threshold of vectors’ cosine similarity for each
term is very important for getting proper annotation of REs. As
assumed, a GO term tends to annotate a gene when they have simi-
lar vector representations. So, we use gene function prediction task
to calculate threshold for each term. First of all, we define similarity
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between terms and genes as follows according to the
True Path Rule.

simðG;TÞ ¼ max
T02des Tð Þ[ Tf g

cossimðvðGÞ; vðT0ÞÞ

where desðTÞ denotes the descendants of term T in GO hierarchies.
More stringent thresholds with high precision and low recall

may cause fewer annotations for each RE, and looser thresholds
with low precision and high recall may draw in more mistakes.

Here, we define ThresðTÞ as the threshold with which the term can
get maximum f1 value in gene function prediction task.

Thres Tð Þ ¼ arg max
t2 �1;1ð Þ

2pret Tð Þ�rect Tð Þ
pret Tð Þ þ rect Tð Þ

where pret Tð Þ ¼ jGstandard Tð Þ\ Gpredict T;tð Þj
jGpredict T;tð Þj , rect Tð Þ ¼ jGstandard Tð Þ\ Gpredict T;tð Þj

jGstandard Tð Þj ,

in which Gstandard ðTÞ ¼ fGjT 2 GOAgðGÞg and

GpredictðT; tÞ ¼ fGjsimðG;TÞ > tg.

Gene Regulatory 
Network

Protein-Protein 
Interac�on Gene 

Ontology

Protein-Protein 
Interac�on

Gene Regulatory 
Network

Gene 
OntologyIntegra�on

Input: Biological networks Heterogeneous network

Heterogeneous 
network

Chains of biological 
objects

Meta-path 
based 
random walks

Representa�on 
learning

=(2.2,-1.3,-1.8,...,-1.6,1.3,0.6)

=(0.1,-1.4,-2.1,...,1.9,-2.4,1.0)

=(1.0,-2.7,1.5,...,0.3,2.1,2.5)

=(-1.2,-1.5,1.6,...,-1.4,-1.0,2.7)

=(-1.8,-2.3,-1.1,...,1.7,0.4,-2.7)

=(0.7,1.1,1.2,...,0.3,1.0,-1.9)

REs

Genes

Terms

=(-2.3,0.1,2.7,...,1.3,-2.2,0.3)
=(2.6,0.0,0.3,...,1.4,1.1,1.8)

…

…

…

Vector 
representa�ons of 
biological objects

Vector 
representa�ons of 
biological objects

Select threshold 
which meets 
maximum in gene
func�on predic�on

Fi
lte

r RE-GOA
, ,

, ,

,

… …

ChIP-seq data ATAC-seq data GWAS summary 
sta�s�cs data

, , ,

, , ,

, ,

, ,

… …

Output: RE’s GO Annota�on

Step1: Heterogeneous network construc�on

Step2: Representa�on learning

Step3: RE annota�on

……

=(2.2,-1.3,-1.8,...,-1.6,1.3,0.6)

=(0.1,-1.4,-2.1,...,1.9,-2.4,1.0)

=(1.0,-2.7,1.5,...,0.3,2.1,2.5)

=(-1.2,-1.5,1.6,...,-1.4,-1.0,2.7)

=(-1.8,-2.3,-1.1,...,1.7,0.4,-2.7)

=(0.7,1.1,1.2,...,0.3,1.0,-1.9)

REs

Genes

Terms

…

…

TermGene and its 
proteins

TFRE

(TF) binds to (RE)

(RE) regulates (Gene)
(Protein 1) interacts with 
(Protein 2)

(Gene) is annotated by 
(Term)

(Term A) _ (Term B)

Calculate 
similarity between 
vectors of terms 
and REs

Similarity between 
vectors of REs and
terms ( , )

Threshold of each
term ( )

, ≥ ( )

Applica�ons

=(-2.3,0.1,2.7,...,1.3,-2.2,0.3)
=(2.6,0.0,0.3,...,1.4,1.1,1.8)

…

RE and term 
associated with the 
same gene in GRN/GO

(RE) is indirectly annotated 
by (Term)

(RE1) co-regulates with (RE2)

Annota�ng TF via its 
binding regions from 
ChIP-seq data

Func�onal enrichment analysis 
of differen�al genomic regions 
from ATAC-seq data

Revealing gene�c correla�on 
among phenotypes from their 
GWAS summary sta�s�cs data

(a)

Fig. 1. Schematic diagram of RE-GOA framework. RE-GOA takes three biological networks including GRN, PPI, GOA as input and REs’ annotation as output. The three

major steps include: (1) constructing heterogeneous network; (2) network embedding; (3) associating REs and GO terms. To demonstrate the high quality of RE-GOA, three

applications are carried out including annotating TF via its binding regions from ChIP-seq data, functional enrichment analysis of differential genomic regions from ATAC-seq

data, and revealing genetic correlation among phenotypes from their GWAS summary statistics data

2902 Y.Lu et al.



We only consider terms that are associated with genes and
define threshold specific to each term. Such thresholds can make a

balance between precision and recall. The detailed algorithm
for threshold determination is described in Supplementary
Algorithm S2.

2.4.2 Annotating RE with GO terms

After calculating the threshold for each term, we annotate RE with
terms according to the thresholds and embeddings. Specifically, we
calculate similarity between REs and terms first as follows:

simðR;TÞ ¼ max
T02des Tð Þ[ Tf g

cossimðvðRÞ; vðT 0ÞÞ

We define GOAembedðRÞ as the terms whose similarity with RE R
is larger than its threshold as follows:

GOAembed Rð Þ ¼ [T2Anno Rð Þ ancðTÞ [ AnnoðRÞ

where AnnoðRÞ ¼ fTjsimðR;TÞ > ThresðTÞg and ancðTÞ denotes
the ancestors of term T.

With GOAembed and GOAraw, we now annotate REs with their
intersection, i.e. terms in both GOAraw and GOAembed:
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defined for representation learning to capture the diverse information in the heterogeneous network. Each meta-path is an ordered sequence of node types representing that

two nodes are connected with a relationship. Random walks are generated based on the meta-paths and used for representation learning. (b–d) Integration of the networks out-

performs using only part of the meta-paths in gene function prediction. Integrating three networks (GOA þ PPI þ GRN) and embedding with defined meta-paths result in

higher AUROC in gene function prediction than using only two of them (GOA þ PPI and GOA þ GRN). The inferred, indirect annotation relations between REs and terms

also improve accuracy. (e) Illustration of the strategy to divide GRN into two parts: Proximal (distance of REs to its target gene within 5 kb) and Distal (distance larger than

5 kb). (f) The proximal and distal parts of GRN both play an important role in RE-GOA. Discarding either of the two parts reduces the precision of gene function prediction.

(g) Ratio of annotations inferred from distal, proximal or both regulatory relationships of REs in RE-GOA. Taking advantage of both distal and proximal infers over 50% of

the annotations in RE-GOA
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GOAreðRÞ ¼ GOAembedðRÞ \ GOArawðRÞ

The complete annotation algorithm is described in
Supplementary Algorithm S3.

2.5 Assembling biological network data
Gene Ontology, structured as a DAG, is a foundation for computa-
tional analysis of large-scale molecular biology and genetics experi-
ments in biomedical research. Terms in Gene Ontology are divided
into three non-overlapping ontologies, Molecular Function (MF),
Biological Process (BP) and Cellular Component (CC). Terms in GO
and is a relations between terms are extracted in our studies to con-
struct a DAG, whose nodes represent the terms and edges represent
the is a relations between terms. ‘Tchild isaTparent’ means Tchild spe-
cializes Tparent in GO, and a term may have more than one parent
term. GO annotations associate genes and gene products with terms
to describe a gene’s function in molecular level, the cellular compo-
nents where it functions, and the biological processes it participates
in. The Gene Ontology and GO Annotation are available at http://
geneontology.org/.

Protein–Protein Interaction (PPI) networks are mathematical
representations of the physical contacts between proteins in the cell.
These contacts occurring between defined binding regions in the
proteins are specific and have a particular meaning. A PPI network
is structured as a weighted undirected network which models pro-
teins as its nodes and models the interactions and interaction
strengths between proteins as its edges and weights. There are differ-
ent online sources for PPI, and in this article, we use PPI from
STRING at https://string-db.org/, which provides relatively denser
functional linkage networks.

Paired Expression and Chromatin Accessibility (PECA) provides
a useful framework for modelling gene regulation from bio-sample
matched and cell-type matched RNA-seq and DNase-seq data
(Duren et al., 2019). The Gene Regulation Network (GRN) inferred
by PECA consists of four types of nodes: cis-Regulatory element
(RE), chromatin regulator (CR), Transcription Factor (TF) and
Target Gene (TG), and three types of edges (CR recruiting RE, TF
binding to RE and RE regulating TG). The GRN provides a detailed
view of how trans- and cis-regulatory elements work together to af-
fect gene expression in a context-specific manner. The GRN of
mouse and human used in this article can be downloaded from
http://web.stanford.edu/~zduren/PECA/.

2.6 Evaluating performance of embedding generated by

gene function prediction
We evaluate the performance of heterogeneous network embedding
on gene function annotation using GOA for genes as gold standard
positives. We split the existing GOA database into two parts. One is
used to embed the network and the other to test the accuracy of the
embedding. There are 607 460 annotations of human in AmiGO
(http://amigo.geneontology.org/amigo/search/annotation) while half
of them are repeated. We filter the redundant annotations and ran-
domly divide them into a train set (80%) and a test set (20%).

2.7 RE-GOA-based functional enrichment analysis of

genomic regions
Based on the RE-GOA generated, we develop a tool for functional
enrichment analysis of a set of genomic regions. GREAT (McLean
et al., 2010), a widely used method, analyzes functional significance
of the cis-regulatory region set by explicitly modelling the vertebrate
genome regulation landscape and using many rich sources of infor-
mation. Although defines a ‘regulatory domain’ for each gene to as-
sociate genomic regions and improves functional interpretation
compared with previous methods to a certain degree, GREAT
ignores distal and many to many regulations among REs and genes.

Based on RE-GOA, for a given set of genomics regions, we only
retain chromatin regions whose distance from the nearest RE is
smaller than 1 kb, and associate these regions with GO term set by
the nearest RE and its annotations. Similarly to GREAT, we com-
pute ontology term enrichments using a binomial test that explicitly

accounts for variability in RE by measuring the total fraction of the
RE annotated for any given ontology term as follows.

P
�
t
�
¼ Pr

binom
ðk � njN; pðtÞÞ

where t is the term for test, N is the number of peaks remaining,
k ¼ jfgjt 2 GOAðNREðgÞÞgj, NREðgÞ denotes the nearest RE of
peak g, and pðtÞ denotes the ratio of REs annotated by term t to all
the REs having annotations in RE-GOA.

We adjust the calculated P value using the BH correction and
sort terms according to the adjusted P value (FDR). Terms with
smaller FDR are more enriched in the input region set.

2.8 Annotating TF via its binding regions from ChIP-seq

functional enrichment analysis
Chromatin Immuno-Precipitation followed by high-throughput
sequencing (ChIP-seq) is a broadly used technique for identifying TF
binding sites genome wide (Park, 2009). To quantitatively evaluate
the performance of RE-GOA-based functional annotation of TFs,
we compare functional enrichment results with Cistrome-GO as it
shows high performance over other methods (Li et al., 2019). We
use BP terms annotating the evaluated TFs in AmiGO as the gold
standard. Given a functional enrichment analysis from Cistrome-
GO or RE-GOA, we define a threshold for the methods to be com-
pared and the terms whose FDR is smaller than the threshold are
selected. Terms with FDR corrected P-values are selected for evalu-
ation, meaning:

TF ¼ ftjpFðtÞ < hg

in which h is the chosen threshold, pFðtÞ denotes the FDR-corrected
P value of term t given the ChIP-seq peaks of F.

Same as Cistrome-GO, for each of these top enriched terms, its
semantic similarity with each of the standard BP terms is calculated
using GOGO (Zhao et al., 2018), and the maximum semantic simi-
larity (MSS) is used to measure the similarity between the enriched
BP term and the TF BP standard terms. Precision, recall and f1 value
are also considered as important measures. The measures used for
evaluation include,

AvgMSS ¼ Rta2TpredictðFÞ max
tb2TstandardðFÞ

simðta; tbÞ

pre ¼
jTpredictðFÞ \ TstandardðFÞj

jTpredictðFÞj

rec ¼
jTpredictðFÞ \ TstandardðFÞj

jTstandardðFÞj

f1 ¼
2�pre�rec

preþ rec

where TpredictðFÞ ¼ [t2TF
anc tð Þ [ TF denotes the predicted result,

TstandardðFÞ ¼ ftjt 2 GOAðFÞg denotes the standard result, and
ancðtÞ is the set of term t’s ancestors in GO. We compare our results
with Cistrome-GO following its codes on https://bitbucket.org/liu
lab/cistrome-go/src/master/.

2.9 Functional enrichment analysis of differential

genomic regions from ATAC-seq data
Assay for Transposase-Accessible Chromatin with high-throughput
sequencing (ATAC-seq) is a powerful and widely used technique to
measure genome-wide chromatin accessibility (Buenrostro et al.,
2015). Differential ATAC-seq analysis aims at identifying the differ-
ence in chromatin accessibility between two different conditions.

The tool which associates peaks with nearest annotated regula-
tory elements can be developed for functional enrichment analysis
of the differential peaks. After significantly differential accessible
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peaks are obtained from two ATAC-seq data, RE-GOA-based func-
tional enrichment analysis procedure is carried out to analyze differ-
ence in chromatin accessibility in two conditions.

2.10 Revealing genetic correlation among traits by

function similarity
We use enriched terms by RE-GOA of associated SNPs from two
traits to reveal their genetic correlation. For a given set of SNPs asso-
ciated with a certain trait, we can conduct functional enrichment
analysis based on RE-GOA, with which the enriched terms can help
us to better understand the trait. After obtaining the enriched terms
of a trait, we focus on associations between traits. In this article, we
calculate the Jaccard similarity between two enriched term sets of
two traits as their correlation, i.e.:

Sim T1; T2ð Þ ¼ jS1 \ S2j
jS1 [ S2j

where T1 and T2 are two traits, and S1 and S2 are the sets of
enriched terms of the SNPs associated with T1 and T2, respectively.

We conduct genetic correlation analysis on 206 GWAS summary
statistics which are selected from 4176 phenotypes and 11 372
GWAS summary statistics from UK-Biobank (https://www.ukbio
bank.ac.uk/) based on the following conditions.

1. Sample size is larger than 50 000, and the size of samples for

both binary and categorical phenotypes is larger than 10 000.

2. More than 500 significant SNPs that pass 5� 10�8 threshold.

3. Sex-specific and ‘raw’ type GWAS are excluded.

4. Duplicated phenotypes and phenotypes associated with ‘job’,

‘parent’ or ‘sibling’ are removed.

We compare our results with another genetic correlation detec-
tion method, LDSC and the genetic correlation calculated by LDSC
is downloaded from https://ukbb-rg.hail.is/.

3 Results

3.1 RE-GOA can effectively integrate information from

different networks
Three biological networks, GRN, PPI and GOA, are integrated into
a heterogeneous network with four types of nodes and seven types of
edges. Statistics about the heterogeneous networks are listed in
Supplementary Table S1. To capture the information in the heteroge-
neous network, multiple meta-paths are defined. Each meta-path is
an ordered sequence of node types that connects two nodes with a re-
lation. To demonstrate that RE-GOA can effectively integrate infor-
mation by embedding the heterogeneous network, we test whether
the embedding vectors for genes are informative about gene func-
tions. We extract genes’ annotations in GOA database as gold stand-
ard which allows us to benchmark the performance by accuracy.

We first quantitatively evaluate the relative contributions of the
different data components in our heterogeneous network. We com-
pare the performance of gene function prediction based on different
combinations of input data (described in Section 2). One is the
model that embeds a heterogeneous network which integrates GOA,
PPI and GRN. The other two only integrate GOA and PPI, and
GOA and GRN, respectively. The area under the receiver operator
characteristics (AUROC) is calculated. The larger the AUROC is,
the better the model performs. The results (Fig. 2b–d) show that
both PPI and GRN are predictive and all of the three subnets (GOA,
PPI, GRN) are necessary and contribute to the model. The model
combining GOA and PPI performs better than the one combining
GOA and GRN in BP but not in CC. RE-GOA performs the best by
integrating all of the three data sources. This demonstrates that our
integrative strategy is effective and different components of the het-
erogeneous network are complementary to each other.

We next demonstrate that the choice of meta-paths can indeed
capture the local and global structure in the network and assess the
contributions from different meta-paths. The meta-paths can be div-
ided into three subsets using different relationships within PPI, GO
or GRN. The separated experiments have been conducted and the
results (Fig. 2b–d) show that both PPI and GRN are predictive and
all of the three subnets (GO, PPI, GRN) are necessary and contrib-
ute to the model. Four meta-paths are defined to capture the regula-
tory relations in GRN. As discussed above, RT links REs with terms
directly according to the annotation of genes which are regulated by
the REs; the meta-paths FRGRF and RGGR both capture the regu-
latory relationship between cis-regulatory elements and target genes;
and the meta-path FRF captures the relationship of TF binding to
RE. We compare the models with different meta-path combinations
to demonstrate their effectiveness based on gene function prediction
(Table 1). The meta-path RT is shown to be crucial since the accur-
acy reduces a lot without it in all three GO categories (Fig. 2b–d,
Table 1). FRF improves accuracy in MF and CC more than in BP
when compared with the compound meta-paths. It is worth noting
that using solely the direct path RT or one of the indirect paths
(FRF, RGGR and GRFRG) decreases the accuracy of gene function
prediction in BP, while their combination promotes accuracy. Based
on these observations, all of the meta-paths are integrated, resulting
in overall the highest accuracy.

Finally, we demonstrate that RE-GOA can capture the distal
regulation in the heterogeneous network. The GRN modeled by
PECA includes both proximal and distal REs with distance to the
TSS of its target gene up to 500 kb. According to the distance of RE
to TSS of genes, we divide the regulations among REs and genes into
proximal regulation (within 5 kb) and distal regulation. We then
carry out gene function prediction with either proximal or distal reg-
ulations in GRN. Figure 2e shows that both of them are critical to
the model. Although the proximal regulations only account for a
small part of the whole GRN (0.2%), the absence of them results in
about 0.05 decline of the AUROC. The model with proximal regula-
tions even performs better than the model with distal regulation
relations only. Figure 2f indicates that both of the annotations
inferred by distal and proximal regulations provide correct annota-
tions. Distal part provides more than proximal part in MF, whereas
proximal part contributes more in BP and CC.

3.2 RE-GOA provides a genome wide resource for RE’s

ontology annotation in human and mouse
After making sure that network embedding in heterogeneous net-
work can correctly capture information, we apply RE-GOA to gen-
erating a resource for RE annotation in human (hg19) and mouse
(mm9). Supplementary Table S4 lists some statistics of the resource.
Based on this RE-GOA generated resource, we develop a procedure
for functional enrichment analysis of genomic regions. For a given
set of genomic regions, we only retain chromatin regions whose dis-
tance from the nearest RE is within 61 kb, and associate these
regions with term set by the nearest RE and its annotation. Similarly
to GREAT (McLean et al., 2010), we compute ontology term

Table 1. Comparing different meta-path combinations in gene func-

tion prediction

Meta-paths Combination of meta-paths RE-GOA

RT � � � � � �
FRF � � � � � �
GRFRG þ RGGR � � � � � �
AUROC

BP 0.889 0.829 0.86 0.907 0.872 0.905

MF 0.905 0.872 0.949 0.95 0.956 0.952

CC 0.747 0.766 0.925 0.91 0.922 0.913
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enrichments using a binomial test that explicitly accounts for vari-
ability in RE by measuring the total ratio of the REs annotated by
any given ontology term to all the REs annotated in RE-GOA.
Supplementary Figure S2 shows a brief workflow of the functional
enrichment analysis based on our RE-GOA, and the details can be
found in Section 2.

In order to demonstrate the accuracy and performance of the
RE-GOA and RE-GOA-based functional enrichment analysis of
genomic regions, we next apply it to three different biological data
analysis tasks, including annotating TFs via their binding regions
from ChIP-seq data in different tissues, analyzing differential access-
ible peaks of ATAC-seq data, and estimating GWAS summary
statistics-based phenotype similarities.

3.3 RE-GOA outperforms Cistrome-GO in annotating TF

binding sites from ChIP-seq data
The ChIP-seq data describe the TF binding sites in a genome wide
way (Park, 2009). Our functional enrichment analysis tool based on
RE-GOA can be used for ChIP-seq data analysis, and Figure 3a
shows a workflow for RE-GOA annotating TFs via their binding
regions from ChIP-seq data. The genomic regions obtained from
ChIP-seq data are taken as input for this procedure, and the enriched
terms are output for annotating TFs’ function.

To quantitatively evaluate the performance of RE-GOA, we ex-
tract ChIP-seq datasets of 247 human TFs available in the Cistrome
data base (http://cistrome.org/db/#/) which were collected by Li
et al. (Li et al., 2019) and the standard GO annotation available in
AmiGO (Carbon et al., 2009). For each TF, the largest number of
peaks is used for comparison. For each TF ChIP-seq dataset, we use
the top 15 000 peaks (ranked by �logPvalue, if the peak number is
larger than 15k) or all peaks (if peak number is less than 15k).
Supplementary Figure S3a shows a distribution of peaks’ distances
to the nearest RE. Averagely over 60% of the peaks are in 1 kb dis-
tance from REs, which means that most of the peaks have been
annotated by an RE in our method. The ChIP-seq peak file is input
for both RE-GOA and Cistrome-GO (Li et al., 2019), and we calcu-
late AvgMSS, precision, recall and f1 value as evaluation indexes
(described in Section 2). In order to balance precision and recall, we
define different thresholds for the two methods: 5� 10�8 for RE-
GOA and 5� 10�2 for Cistrome-GO. The median performance of
RE-GOA is better than that of Cistrome-GO in all four accuracy
indicators (BP: Fig. 3b, MF: Supplementary Fig. S2b, CC:
Supplementary Fig. S2c). RE-GOA improves the four indicators up
to 30% on average in comparison with Cistrome-GO.

Chen et al. (2020) divided TFs into two types, long-range and
short-range TFs, and offered a resource of regulatory ranges of TFs.
Figure 3c shows the stability of RE-GOA on different types of TFs.
RE-GOA provides higher precision than Cistrome-GO in 31 out of
32 long-range TFs and 9 of 10 short-range TFs, which indicates that
RE-GOA performs well in both long-range and short-range TFs.

Cellular identity is primarily regulated by TFs to recognize and
bind to context specific sequences in the genome for regulating gene
expression. D’Alessio et al. (2015) identified candidate core TFs
across different cell types. We mark TFs which are specific in their
ChIP-seq sample tissues. As shown in Supplement Figure S4a, RE-
GOA outperforms Cistrome-GO in all of the tissue specific TFs.
Supplementary Figure S4b–h shows tissues with more than 10 sam-
ples and non-zero tissue specific TFs.

CEBPA is known as the main epithelial ‘gatekeeper’. Its expres-
sion is necessary to prevent unnecessary mesenchymal transition
and supports the important role of epithelial–mesenchymal transi-
tion in mediating breast cancer metastasis (Lourenço et al., 2020).
We extract CEBPA ChIP-seq data of Pleura from Trompouki et al.
(2011) and annotate its function by RE-GOA. Figure 3d shows a
comparison of RE-GOA and Cistrome-GO for CEBPA ChIP-seq
top 10 enriched terms. RE-GOA provides better results for CEBPA
ChIP-seq data analysis than Cistrome-GO. Thirteen out of the all
220 standard terms are enriched by RE-GOA whereas 10 of them
are not found by Cistrome-GO. Moreover, RE-GOA provides
more precise and specific results than Cistrome-GO. Besides the

terms which annotate CEBPA in AmiGO, terms about signaling
and cell communication such as GO: 0023051 regulation of sig-
naling and GO: regulation of cell communication are enriched in
the RE-GOA results, and are closely associated with samples from
Trompouki et al. (2011). This demonstrates that RE-GOA can
capture not only TF’s function but also cellular context features
from samples.

3.4 RE-GOA presents more reasonable differential

ATAC-seq analysis results than GREAT
ATAC-seq is used widely for studying genome-wide chromatin ac-
cessibility (Buenrostro et al., 2015), and differential ATAC-seq ana-
lysis are designed aiming at analyzing chromatin accessibility of
samples from different conditions. RE-GOA can be used for func-
tional enrichment analysis of the differential peaks. A workflow for
differential ATAC-seq analysis is shown in Figure 4a and the details
have been discussed in Section 2.

We perform this procedure on ATAC-seq data of retinoic acid-
induced mESC cells at days 0, 2, 4, 10 and 20 (mESC, D2, D4, D10
and D20) (Duren et al., 2020). We select peaks whose openness rate
between two time points is greater than a selected threshold (which

means
Ot1

Ot2
> / or

Ot2

Ot1
> /, where Ot1

and Ot2
represent openness at

t1 and t2, respectively, and here, we selected / ¼ 2), and at least at
one time point openness is larger than 2 (which means Ot1

> 2 or
Ot2

> 2). The number of differential peaks is listed in
Supplementary Figure S5a. There are over 20 000 differential peaks
in day 0 versus day 2, day 4 versus day 10 and day 10 versus day 20,
and about 7000 differential peaks for day 2 versus day 4.

After obtaining the differential peak sets, we perform enrichment
analysis using RE-GOA and compare with GREAT. Supplementary
Figure S5b shows that most of the peaks are located in 1 kb near the
REs. In order to evaluate the performance of RE-GOA quantitative-
ly, differentially expressed genes (DEGs) are calculated from
matched RNA-seq data by comparing adjacent time points and the
Gene Set Enrichment Analysis (GSEA) results for those DEGs are
used as gold standard. We pick out the terms with P value < 0:05
in the enrichment analysis by GREAT and RE-GOA. We then com-
pare their results after obtaining all of the term’s ancestors as shown
in Figure 4b and c and Supplementary Figure S5c. RE-GOA outper-
forms GREAT with higher precisions and f1 value at all four time
points.

Some important GO terms are identified. For example,
GO:0048709 oligodendrocyte differentiation is enriched in GSEA
result, indicating that a crucial process takes place at day 2 to day 4
of RA-induced mESC differentiation. This term is also enriched in
the results of D2–D4 peaks provided by RE-GOA. As shown in
Figure 4d, RE-GOA associates three peaks with REs which are
annotated by GO:0048709. These REs regulate gene Ntrk2 in
GRN, which is located up to 461 kb downstream of the REs, where-
as this distal regulation is hard to be found by GREAT.

3.5 RE-GOA reveals genetic correlation among pheno-

types from their GWAS summary statistics data
A large number of resources and methods have been developed for
Genome-Wide Association Study (GWAS) (Visscher et al., 2017) for
complex traits, which are highly polygenetic and pleiotropic. While
the limited capacity in performing large-scale evaluation of function-
al impact thwarts the understanding of biological mechanisms
(Albert et al., 2015), RE-GOA could be used for analyzing GWAS
summary statistics. A framework for RE-GOA-based trait similarity
calculation is shown in Figure 5a, and the details are described in
Section 2. Given a set of SNPs, RE-GOA could find enriched GO
terms associated with the corresponding trait, which may reveal the
mechanism between genes and traits. We define similarity between
two traits as the Jaccard similarity of their enriched term sets.

We conduct experiment on 206 traits from UK-Biobank (https://
www.nealelab.is/uk-biobank) (details for selecting statistics are pre-
sented in Section 2). Supplementary Figure S6b shows that RE-GOA
could capture features of about 30% of the SNPs. Figure 5b lists the

2906 Y.Lu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
http://cistrome.org/db/#/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data
https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac185#supplementary-data


top 10 enriched terms of trait BMI calculated by RE-GOA, and one
can see that most of them are related to metabolic process. This
demonstrates that RE-GOA can provide reasonable interpretations
for the traits based on their SNPs. As comparison, only 1 of 4 terms
enriched in the GREAT results is related with metabolic process
(Supplementary Fig. S6a). A heatmap is shown in Figure 5c for gen-
etic correlation estimation for all 21 321 pairwise combinations of
the 206 traits. Supplementary Figure S6c shows that trait similarities
concentrate on values from 0.2 to 0.4. We also calculate traits’ gen-
etic correlation rg using LDSC (Bulik-Sullivan et al., 2015).
Supplementary Figure S6d shows that the trait similarities using
LDSC concentrate on the values around 0. Based on these observa-
tions, we compare trait pairs whose RE-GOA similarity is larger
than 0.4 with those whose rg calculated by LDSC is larger than 0.4.
As Figure 5d shows, common pairs and different pairs between RE-
GOA and LDSC both account for a large part. Traits related to dis-
eases of heart and circulatory system including Angina, Coronary
atherosclerosis, Diseases of the circulatory system, IHD (Ischemic
Heart Disease) and CHD (Coronary Heart Disease) have high

similarity in both RE-GOA and LDSC (Fig. 5e and f). Terms about
metabolic activities such as GO:0051246 regulation of protein
metabolic process are enriched in RE-GOA-based enrichment ana-
lysis of the three traits, Angina, Coronary atherosclerosis and
Diseases of the circulatory system. The similarities (Jaccard
Similarity and rg) between traits calculated by RE-GOA and LDSC
respectively have a cosine similarity up to 0.98, which indicates that
both methods could capture the genetic correlation among the traits.
Coronary atherosclerosis and IHD (Ischemic Heart Disease) have
high similarity calculated by both RE-GOA (Jaccard sim-
ilarity¼0.9) and LDSC (rg¼1), and the links between them have
been studied and confirmed in the past years (Ahmadi et al., 2016;
Marzilli et al., 2012). Asthma and Lymphocyte count are not identi-
fied as genetically correlated with rg ¼ 0:049 calculated by LDSC,
while terms about immune system are enriched in both of their SNPs
enrichment analysis result (Fig. 5g). Asthma is known as a self-
immune disease, and the correlation between asthma disease with
lymphocyte type and neutrophil to lymphocyte ratio is well studied
(Gungen et al., 2017; Moldaver et al., 2017; Schuyler et al., 1981).

Fig. 3. RE-GOA annotates TFs via their binding regions from ChIP-seq data. (a) Workflow of RE-GOA-based annotating TF via its binding regions from ChIP-seq data.

Taking TF ChIP-seq data in a certain tissue as input, RE-GOA annotates TFs via their binding regions’ enriched function. (b) The boxplot of precision, recall, f1-value, and

Average Maximum Semantic Similarity (Avg-MSS) of RE-GOA and Cistrome-GO in 247 TFs’ ChIP-seq data. RE-GOA outperforms Cistrome-GO in TFs’ functional enrich-

ment analysis. (c) Scatter plot of precision of RE-GOA and Cistrome-GO for 247 TFs, including both long-range TFs and short-range TFs. (d) Comparison of CEBPA’s ChIP-

seq enrichment analysis in GE-GOA and Cistrome-GO with its annotation in GO database as gold standard. Given CEBPA ChIP-seq data from Pleura, we take out the top 10

enriched terms of RE-GOA and Cistrome-GO. The 10 terms and all of their ancestors are compared with the gold standard: annotation in AmiGO
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In summary, RE-GOA provides reasonable results in revealing gen-

etic correlation among phenotypes from their GWAS summary sta-
tistics data.

4 Discussion and conclusions

In this article, we propose a framework (RE-GOA) for assigning
gene ontology annotation to cis-regulatory elements via heteroge-
neous network embedding. This expands the traditional ‘genes’ eye

view. Based on the annotation that RE-GOA generates, we perform
functional enrichment analysis of specific gene region set, and use it

in three different biology applications including annotating TF bind-
ing sites from ChIP-seq data, analyzing differentially accessible
peaks from ATAC-seq data, and revealing genetic correlation of

phenotypes from GWAS data. Our major contribution consists of a
heterogeneous network embedding method by integrating context

specific regulatory networks with PPI and gene ontology

hierarchical structures. When utilized in biological applications, RE-
GOA outperforms the existing methods in studying ChIP-seq,
ATAC-seq and GWAS data. Moreover, we systematically generate a
resource for RE ontology annotation in human and mouse.

The method for functional enrichment analysis based on RE-
GOA has unique features compared with other peak analysis tools
such as GREAT. One of the most prominent features is to use the
context specific distal regulations of REs rather than associate peaks
with ‘the nearest gene’. This is significant since REs can stimulate
gene activity via long genomic distances. Besides that, RE-GOA inte-
grates GRN, PPI and GOA into a heterogeneous network and holds
the promise to provide more accurate annotation. Importantly, tak-
ing advantage of embedding techniques from NLP makes it possible
to embed heterogeneous network into vector space, which allows la-
tent information mining. And we have shown that combining the di-
verse networks can effectively improve the performance.

Gene Ontology categorizes and defines different relations among
terms and the commonly used relationships include: ‘is a’, ‘part of ’,

(a)

(d)

(b) (c)

Fig. 4. RE-GOA performs functional enrichment analysis of differential genomic regions from ATAC-seq data. (a) Workflow of RE-GOA-based functional enrichment analysis

of differential genomic regions from ATAC-seq data. Given ATAC-seq data in two different conditions, we first extract the differential peaks by comparing the two ATAC-seq

data, and then conduct RE-GOA-based functional enrichment analysis on these differential peaks. (b, c) Comparison of RE-GOA and GREAT in BP. Taking GO enrichment

analysis of differential expressed genes between two time points as gold standard, RE-GOA provides higher f1-value over GREAT. (d) GO:0048709 is enriched in REGOA’s

result but missed by GREAT. RE-GOA could associate peaks with nearest annotated Res which regulate gene Nkrt2 in GRN, and are annotated by term GO:0048709 in RE-

GOA. While GREAT associates peaks with nearest genes, which do not have annotation GO:0048709 in AmiGO. To summary, GO:0048709 is enriched in RE-GOA’s results

and absent in GREAT’s
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Fig. 5. RE-GOA reveals genetic correlation among phenotypes from their GWAS summary statistics data. (a) Workflow of RE-GOA-based genetic correlation inference from

GWAS data. Given two traits’ GWAS summary statistics, we first use RE-GOA-based functional enrichment analysis to obtain a set of GO terms for each trait. Then we calcu-

late the Jaccard similarity between two GO term sets as the similarity of the two traits. (b) BMI’s top 10 enriched BP terms. Given SNPs of BMI, RE-GOA reveals metabolic

process related terms. (c) Heatmap of similarity among traits from UKBiobank. A clustered heatmap for RE-GOA-based GWAS trait similarity is shown. (d) Comparison of

the most similar trait pairs in RE-GOA and LDSC. (e) Similar trait pairs are found both by RE-GOA and LDSC sharing many common enriched terms. Terms about metabolic

process are enriched in RE-GOA-based enrichment analysis for heart and circulatory system. (f) Heatmap for similarity calculated by RE-GOA and LDSC among traits shows

have high similarity. (g) Traits with low similarity calculated by LDSC have high similarity in RE-GOA. Asthma is known as a type of autoimmune disease. Immunity related

GO terms are enriched. In RE-GOA, asthma has a high similarity with Lymphocyte count because they are both associated with immunity
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‘has part’ and ‘regulates’ (includes ‘negatively regulates’ and
‘positively regulates’). We use only ‘is a’ relationship in our study
and neglect others such as ‘part of ’ and ‘regulates’ considering their
limited coverage in Gene Ontology. All terms (except the root terms
representing categories themselves) have an ‘is a’ sub-class relation-
ship to another term, and ‘is a’ is involved in most reasoning rules
for defining meta-paths. As shown in Supplementary Table S2, only
a small part of the GO terms have ‘part of ’, ‘has part’ and
‘regulates’ relations with others and a continuous meta-path can
hardly be defined based on these relationships. Moreover, some-
times these relationships occur in cross-subontology connections be-
tween two different subontologies. For example, 1,068 ‘part of ’
relations link a MF term to a BP term; 844 ‘regulates’ relations claim
that a BP term regulates a MF term. In our study, we construct het-
erogeneous network with the three parts of Gene Ontology separate-
ly, and the cross-subontology relations are neglected. We further
conduct experiments using all of the relationships within the same
sub-ontology. We extend the ‘is a’ relationship in the defined meta-
paths with all the relationships in GO, and validate the network in
gene function prediction. The result show (Supplementary Table S3)
that simply merging all of the relationships reduces the AUROC in
MF and CC more than its improvement in BP.

Regulatory network construction is crucial by emphasizing RE’s
function in long distance regulation and in specific cellular contexts.
The gene regulatory network we used in our RE-GOA connects REs
to their target genes according to their co-activity across samples
with paired gene expression and chromatin accessibility data instead
of assigning REs to their nearest genes. In the similar spirit, regula-
tory network can be constructed by other omics data and methods,
including modelling networks via enhancer-promoter DNA sequen-
ces, Hi-Chip data, eQTL correlation and multi-genomic data inte-
gration. For example, DC3 provides a method for joint analysis of
various bulk and single-cell data and constructs gene regulatory net-
work from deconvoluted Hi-Chip data, with which chromatin con-
tacts between active REs and target genes are measured (Zeng et al.,
2019); EP2vec uses NLP methods and predicts enhancer-promoter
interactions from three-dimensional genomic interactions (Zeng
et al., 2018); a two-sample SMR þ HEIDI framework uses eQTL
data from GTEx and the eQTLGen project takes a deep insight into
tissue-specific transcriptional mechanisms (Richardson et al., 2020).
All of these gene regulatory networks constructed by different meth-
ods are adaptable for our RE-GOA framework.

The network embedding is used widely in bioinformatics, and
various embedding methods have been developed in the past years.
However, most of them, such as graph convolution networks
(GCNs) (Kipf et al., 2017) or DeepWalk (Perozzi et al., 2014), do
not distinguish among node and edge types and turn the network
into a homogeneous network. In our work, the heterogeneity ena-
bles the definition of meta-paths to encode domain knowledge, mak-
ing the framework explainable and scalable for diverse data.
However, due to the complexity of indirect regulations, the meta-
paths maybe not be enough to capture all the potential relations
among biological objects. In addition, the design of meta-paths for
each type of heterogeneous networks can be biased by specific do-
main knowledge. For the next step, we will explore distinct ways to
extract information from heterogeneous network without manually
designing meta-paths. One possible direction is to define basic meta-
relations to parameterize the weight matrices for calculating atten-
tion over each edge. This strategy can incorporate information from
high-order neighbors of different types through message passing
across layers, which can be regarded as ‘soft’ meta-paths (Hu et al.,
2020).

In our future work, RE-GOA can be extended to integrate more
diverse biological data and to include gene regulatory networks con-
structed by other methods and pathway analysis, and more sophisti-
cated algorithms can be developed for integrating data of high
heterogeneity. In this study, only the types of nodes are considered
for meta-path definition, while a strategy for properly using the dif-
ferent GO relationships remains to be proposed. In addition, due to
the large number of nodes in the heterogeneous network, lengthy
times have to be spent on training and annotating. Also, in the

application for GWAS summary statistics, we can only identify the
functional correlation relationships among traits, but fail to distin-
guish the causal relations. These are among the difficulties to be
tackled in our future work.
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