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Abstract

In primates, the gonatotropin-releasing hormone (GnRH) neurosecretory system,

consisting of GnRH, kisspeptin, and neurokinin B neurons, is active during the neona-

tal/early infantile period. During the late infantile period, however, activity of the

GnRH neurosecretory system becomes minimal as a result of gonadal steroid inde-

pendent central inhibition, and this suppressed GnRH neurosecretory state continues

throughout the prepubertal period. At the initiation of puberty, the GnRH neurose-

cretory system becomes active again because of the decrease in central inhibition.

During the progress of puberty, kisspeptin and neurokinin B signaling to GnRH neu-

rons further increases, resulting in the release of gonadotropins and subsequent

gonadal maturation, and hence puberty. This review further discusses potential sub-

strates of central inhibition and subsequent pubertal modification of the GnRH neu-

rosecretory system by the pubertal increase in steroid hormones, which ensures the

regulation of adult reproductive function.
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1 | INTRODUCTION

Unlike the neurohypophysis, the adenohypophysis does not receive

direct innervation from the hypothalamus. Yet, the hypothalamus

influences the secretory activity of adenohypophyseal hormones

luteinsing hormone (LH) and follicle-stimulating hormone (FSH), which

are indispensable for puberty onset and maintenance of reproductive

function. As early as early last century, the concept that sexual matu-

ration is controlled by the central nervous system has been proposed,

as a result of a clinical observation showing that delayed puberty in

patients with Frohlich's syndrome is associated with damage of the

ventral region of the brain.1 Three decades later, Hohlweg and

Junkmann2 advanced the concept that a neural sex center is involved

in controlling puberty and reproductive cyclicity. Meanwhile, during the

1940s to 1950s, Everett3 and Sawyer4 showed the influence of the

hypothalamus on cyclic ovulation in rats with neuropharmacological

tools in several publications. It was not, however, until 1955 that Har-

ris5 showed clear evidence implicating the hypothalamus as central for

the initiation of puberty. Harris and Jacobson6 demonstrated that either

prepubertal pituitary glands transplanted into adult hypophysectomized

rats or immature ovaries grafted into adult ovariectomized rats were

able to sustain estrous cyclicity, whereas grafting adult pituitary gland

or ovaries into sexually immature hypophysectomized or ovariecto-

mized rats failed to maintain the estrous cyclicity. Finally, in 1971,

two competitive research groups, comprising Amoss et al.7 and

Matsuo et al.8 isolated and sequenced the mammalian form of the

gonadotropin-releasing hormone (GnRH) peptide.

Puberty is one of the most prominent developmental events in

life. During puberty, major hormonal, morphological, physiological,

and behavioral changes occur such that after puberty the full capacity

of reproductive function is established. Because puberty is a transi-

tional period between childhood and adulthood, in primates it takes a
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couple to several years from beginning to completion. Normal timing

of puberty onset is particularly important because precocious puberty

not only impairs physical growth, but also leads to higher risks of dis-

eases such as cancers, hypertension, diabetes, hypercholesterolemia,

and metabolic syndrome in adulthood, and delayed puberty influences

psychological maturation.9–12 During the past 50 years, we have

attained direct evidence showing that an increase in pulsatile GnRH

release is the key mechanism of puberty onset and have demon-

strated how activity of the GnRH neuron increases during the transi-

tional period along with changes in upstream regulatory neuronal

systems. This review summarizes what we know about the mecha-

nism of the pubertal increase in GnRH release in primates.

2 | ONTOGENY OF GNRH NEURONS AND
CHANGES IN GNRH RELEASE PATTERN
DURING EMBRYONIC DEVELOPMENT

Unlike most neurons in the brain, mammalian GnRH neurons originate

from the nasal epithelium during the early gestational period and

migrate into the brain, namely the preoptic area (POA) and medial

basal hypothalamus (MBH).13,14 In the rhesus macaque, GnRH neu-

rons are found in the nasal placode as early as embryonic day

(ED) 32 (E32) and commonly at ED34–36.15–18 GnRH neurons

migrate along the nasal septum and then terminal nerve, enter the

forebrain through the cribriform sieve at ED38,16 and subsequently

migrate into the MBH by ED47.15 The basic distribution pattern of

GnRH neurons in the brain is already established at ED5516,19

(Figure 1), although GnRH neurons continue migrating into the POA

and MBH until the last trimester. At ED55–70, monkey GnRH neu-

rons are active because gonadotrophs in the pituitary are functional

and sex-specific gonadal steroids are detectable in the umbilical cord

at ED70.20 Moreover, mRNA expression in GnRH neurons in vitro

derived from E36 rhesus macaque embryos dramatically increases

after 3 weeks in culture, which is equivalent to approximately ED56–

57 in vivo.21 The negative feedback loop in the male hypothalamic-

pituitary-gonadal axis is operative during the second trimester

because gonadectomy in male monkeys at ED98–104, but not in

female macaques, results in the elevation of LH and FSH.22

A similar ontogenic profile of the reproductive neuroendocrine

system has been also described in humans.23 In human fetuses, GnRH

neurons are found in the nasal placode as early as embryonic week

(EW) 5.5, although most of them originate in the olfactory pit at

EW6.0–6.5. GnRH neurons enter the forebrain through the terminal

nerve and then cribiform sieve by EW6.5, and they migrate into the

hypothalamus by EW9.024,25 (Figure 1). FSH and LH are detectable in

the pituitary by EW10, the pituitary starts to respond to GnRH and

release gonadotropins into the general circulation by EW11–12, and

their content increases until EW25–29. Circulating gonadotropins

reach peak levels at mid-gestation, and both LH and FSH levels subse-

quently decline during late gestation.26–28 Interestingly, a sex differ-

ence in gonadotropin levels is seen during mid-gestation26,29,30:

(1) Pituitary content and circulating concentrations of LH and FSH in

female fetuses are higher than those in male fetuses. (2) Circulating

testosterone levels are much higher in male fetuses than circulating

estradiol levels in female fetuses. The sex difference in gonadotropin

levels and the decrease in gonadotropin levels in fetuses during the

late gestational period are attributed to the development of the nega-

tive feedback mechanism by gonadal steroid hormones from the fetal

gonads, as well as from the placenta.31

3 | CHANGES IN GNRH RELEASE AFTER
BIRTH THROUGH PUBERTY

3.1 | Neonatal/infantile period

The direct measurement of GnRH release during the neonatal and

early juvenile/prepubertal period has not been conducted. As such,

GnRH neural activity in primates during this period are assessed by

changes in circulating gonadotropins. In infantile male monkeys, GnRH

neurons are active: (1) Circulating LH and testosterone are elevated

during the first 2–3 postnatal months32,33 and (2) diurnal variations of

testosterone are observed.34 Importantly, the diurnal variation in

infantile males is quantitatively similar to that seen in sexually mature

males.35 Plant34 shows that the hypothalamic-pituitary axis in males is

already fully mature at the neonatal stage because bilateral

orchidectomy at 1 week of age results in an increase in LH and FSH

secretion, with a pulse pattern very similar to that in castrated adult

males.36 By contrast, in female monkeys, circulating LH is only slightly

elevated during the first 3 months,33,37 a moderate elevation of estro-

gen levels is observed during late gestation through the neonatal

period in females,33 and ovariectomy in females at 1 week of age

induces an attenuated and abbreviated elevation of LH release with

slower pulse frequency compared to those in orchidectomized male

infants.37,38 As such, in females, the negative feedback mechanism

appears to be only partially operative in the late gestational period

through the neonatal period. Presently, the precise underlying

F IGURE 1 Ontogeny of gonatotropin-releasing hormone (GnRH)
neurons and pituitary-gonadal axis during the embryonic stage in
rhesus monkeys (top) and humans (bottom). Modified from
Terasawa.111
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mechanism of the sex difference in activity of GnRH neurons during

the neonatal period remains unclear. Both LH and FSH levels in male

monkeys decrease after 3–4 months of age.37,39,40

Similar to the rhesus macaque, GnRH neurons in human male

neonates are already active. LH levels abruptly increase within the

first few minutes after birth, followed by an increase in serum concen-

trations of testosterone during the first 3–21 h.41 High levels of LH in

the human male infant decline within 6 months and remain low until

the time of puberty. FSH levels in human males are slightly elevated

for the first three postnatal months, after which they become

low.42,43 Circulating levels of testosterone are also elevated for

2–4 months postnatally.44 By contrast, in female neonates LH levels

are only slightly elevated during the first few months of postnatal life,

but FSH levels are high for the first 5 months.42,45 After the first

6 months of life, circulating levels of FSH, LH and gonadal steroids

become low, and the hypothalamic-pituitary-gonadal system enters a

quiescent stage until the time of puberty. Again, similar to that seen in

macaques, the hypothalamic-pituitary suppression is attributable to

non-gonadal origin because elevated concentrations of LH and FSH in

infants with gonadal dysgenesis declines when they reach the juvenile

period, as seen in eugonadal children.43,46,47 The transient increase in

circulating gonadotropin and gonadal steroids during the neonatal period

is also called “mini-puberty”. Physiological significance of mini-puberty in

males is two fold: (1) transient elevation of testosterone would be impor-

tant for development of male genitalia, such as penile and testicular

growth as well as the proliferation of gonadic cells in humans48,49 and

(2) neurobehavioral development in later human life.50

3.2 | Juvenile/prepubertal period

Activity of the hypothalamic-pituitary-gonadal system is minimal dur-

ing the prepubertal period. This state of quiescence, unique in pri-

mates, represents a period of non-gonadal inhibition upon GnRH

release. Indeed, direct measurements of GnRH release in the hypo-

thalamus indicate that during the entire prepubertal period both the

pulse frequency and pulse amplitude of GnRH release are low until

the time of puberty in both males and females and regardless of the

F IGURE 2 Schematic illustration of postnatal changes in mean release of gonatotropin-releasing hormone (GnRH), kisspeptin, and neurokinin B
(NKB) through puberty in the median eminence of non-human primates (the second, third and fourth rows51–54). Mean release of glutamate, GABA,
and neuroestradiol in the median eminence in females is also shown (fifth, sixth and sevenths rows80,82,86,115). All data are extrapolated from the
measured values in our previous publications. Note that, although we did not discuss in the text, neuroestradiol is elevated in the macaque median
eminence during the prepubertal stage and decreases during the early pubertal stage.95 As such, neuroestradiol might be a component of central
inhibition in concert with GABA.115 The GnRH neurosecretory system is active during the infantile period, but it is suppressed by a central inhibition
during the juvenile period, which can be seen as a low frequency and low amplitude of GnRH release (top row51,52). Note that mean release of
GnRH, kisspeptin, and NKB starts to increase at puberty onset and those changes are further augmented through puberty. A higher evening level of

release in GnRH and kisspeptin, shown by filled bars (open bars indicate morning levels) becomes prominent at the time of puberty onset, and the
nocturnal increase in GnRH release continues until first ovulation in females, after which GnRH release is reduced to the adult level. In males, the
nocturnal increase in GnRH release continues through adulthood. A nocturnal increase in NKB release would occur at puberty onset, but currently
we have data from early and midpuberty combined. LH, luteinsing hormone. Modified from Terasawa116
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presence or absence of their gonads (Figure 2).51–54 Importantly, the

GnRH neurosecretory system in juvenile monkeys is gonadal steroid

independent because developmental reduction in GnRH/LH release is

observed in both male and female gonadectomized monkeys37,40 and

administration of gonadal steroids do not alter either GnRH or gonad-

otropin levels.55 Furthermore, although the GnRH neurosecretory sys-

tem does not respond to estradiol or androgens, it responds to

various neurostimuli, such as electrical stimulation and NMDA chal-

lenge. Electrical stimulation of the basal hypothalamus in prepubertal

female monkeys results in GnRH release as high as that seen in puber-

tal female monkeys56 and infusion of NMDA into the median emi-

nence (ME) of prepubertal female monkey results in GnRH release.57

Importantly, long-term administration of NMDA at 3 h-intervals in

prepubertal male monkeys results in precocious LH elevation followed

by precocious puberty.58 Therefore, GnRH neurons are under the

central inhibition during the prepubertal period. Presently, the precise

mechanism of the central inhibition remains to be investigated. Cur-

rent knowledge on this topic is discussed in a later section.

In prepubertal humans, both LH and FSH levels are very low.

However, results of sensitive assays indicate that during the prepu-

bertal period a minimum GnRH neuronal activity remains because

release of LH and FSH is pulsatile and the nocturnal LH and FSH

rhythm (i.e., evening levels are higher than those during daytime) is

detected.59,60 In non-human primates, although nocturnal increases in

GnRH release are seldom seen during the prepubertal period, it is

readily observed during the early pubertal period.

3.3 | Pubertal period

The first hormonal sign of puberty precedes the first physical sign of

puberty. At an early phase of puberty (i.e., early pubertal stage), the

basal level, pulse frequency and pulse amplitude of LH/FSH release all

increase before nipple growth and menarche in girls.61 In rhesus

females as well, the basal level, frequency, and amplitude of GnRH,

LH, and FSH start to increase several months before menarche.51 Fur-

thermore, it has been well documented that at an early stage of

puberty, nocturnal increase in the LH pulse amplitude becomes promi-

nent in both males and females in humans and rhesus monkeys.59,62,63

The pubertal increase in gonadotropin release leads to secretion of

estradiol from the ovary and testosterone from the testis, resulting in

secondary sex characteristics, such as nipple growth, sex-skin devel-

opment, and subsequently, menarche in females. In males, however,

external signs of puberty (i.e., an increase in testicular size) are difficult

to detect until the mid-pubertal stage.54

During the mid-pubertal stage, increases in GnRH, LH and estra-

diol/testosterone accelerate. Although GnRH pulse frequency remains

stable after the onset of puberty, the basal level and pulse amplitude

of GnRH and LH continue to increase throughout puberty, until first

ovulation in females and full spermatogenesis in males occur. During

the mid-pubertal period the nocturnal increases in GnRH release

become increasingly prominent.51 Importantly, a pubertal increase in

GnRH release is independent from the presence or absence of

gonadal steroids in circulation in both sexes because release of GnRH

and LH in neonatally or prepubertally gonadectomized male and

female monkeys also starts to increase at a similar age as gonadally

intact counter parts.40,52,62

Collectively, active GnRH neurons at the neonatal period are

suppressed by central inhibition throughout the prepubertal period

until the time of puberty, when a sustained increase in GnRH release,

followed by elevated gonadotropin release occurs. The importance of

the increased GnRH release at puberty onset is also experimentally

shown.64 Then, what is the mechanism to initiate puberty?

4 | NEUROENDOCRINE SIGNALING
INITIATING THE PUBERTAL INCREASE IN
GNRH RELEASE

Clinical studies in human genetics indicate that kisspeptin and neuro-

kinin B (NKB) signaling play critical roles in puberty, as patients with

mutations in the genes encoding KISS1 or NK3 and their receptors,

KISS1R or NK3R, respectively, exhibit abnormal timing of puberty or no

puberty.65–67 Subsequent studies in animal experiments suggest that

(1) kisspeptin neurons express estrogen receptor alpha (ERα);

(2) kisspeptin neurons in the anterior ventral nucleus (AVPV) innervate

cell bodies of GnRH neurons, whereas kisspeptin neurons in the arcuate

nucleus (ARC) innervate GnRH neuroprocesses; and (3) kisspeptin is an

upstream regulator of basal as well as preovulatory GnRH release.68–71

Herde et al.72 renamed GnRH neuroprocesses in the ME as “dendrones”
because these neuroprocesses have properties of both dendrites and

axons. Moreover, because a subset of kisspeptin neurons in the ARC of

the mouse and sheep co-expresses NKB and dynorphin,73 Goodman

and colleagues have named them “KNDy neurons”.74–77 In primates,

however, only a small subset of kisspeptin neurons in the ARC co-

express both NKB and dynorphin78,79 and co-expression of kisspeptin,

NKB, and dynorphin within a single ARC neuron may not be critical for

pulse-generation because interaction between the three peptides could

occur at their neuroterminals. As such, in this review, we discuss these

three types of neurons, as the independent units forming the regulatory

network for GnRH release (Figure 3).

Our recent studies suggest that during the prepubertal period the

release of NKB and kisspeptin neurons is also very low and release of

both peptides increases along with the pubertal increase in GnRH

release (Figure 253; also unpublished observations by JP Garcia and E

Terasawa). Therefore, central inhibition governs the entire GnRH neu-

rosecretory system and the removal of central inhibition is essential

for the onset of puberty.

4.1 | Central inhibition

Underlying mechanisms and neuronal substrates composing central

inhibition are not well understood. Many years ago, we proposed the

hypothesis that the GABA neuron is a part of the neural substrate of

central inhibition. This hypothesis is based on the observations that
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(1) GABA release in the ME in prepubertal monkeys was higher than

that in early- and mid-pubertal monkeys80; (2) infusion of the GABAA

receptor blocker, bicuculline, into the ME stimulates GnRH release in

prepubertal, but not pubertal monkeys80; (3) infusion of antisense oli-

gonucleotides to the rate limiting enzyme for GABA synthesis, GAD-

67 and GAD-65 mRNAs, into the ME of prepubertal monkeys resulted

in a large increase in GnRH release, whereas the same procedure in

pubertal monkeys stimulated only a small increase in GnRH

release81,82; and finally (4) pulsatile infusion of bicuculline into the

base of the third ventricle results in precocious menarche and first

ovulation.83 More recent studies further indicate that infusion of

bicuculline into the ME stimulates kisspeptin release84 and NKB

release85 in prepubertal, but not pubertal monkeys. Importantly, the

results from a follow-up study of the antisense mRNA infusion study

that a decrease in GABA synthesis by interference with GAD67 syn-

thesis followed by the reduction in GABA release triggers an increase

in GnRH release accompanied with increase in glutamate release,

suggesting the contribution of glutamate for the pubertal increase in

F IGURE 3 Schematic illustration summarizing developmental changes in the neuroendocrine pathways involved in the mechanism of puberty
onset. Possible interactions between kisspeptin (red), neurokinin B (NKB) (blue), opioid (gray), and gonatotropin-releasing hormone (GnRH) (black)
neurons in the hypothalamus in prepubertal and pubertal male (A) and female (B) monkeys are shown. Although, in this schema kisspeptin, NKB,
opioid neurons are all clustered in the arcuate nucleus (ARC), interaction between them takes place at the GnRH cell body levels as well as GnRH

neuroterminals in the median eminence (ME). The number of colored dots at the neuroterminals reflects the estimated amount of neuropeptide
release, based on the results from a series of experiments in this lab.53,54,84,85,101,102,104,105,116 A black X indicates signaling pathways are not
operative. Note that major remodeling of kisspeptin and NKB signaling pathways takes place during puberty, such that their regulation of the
GnRH neurosecretory system is most effective in adult reproductive function. Specifically, in prepubertal males, there is a reciprocal interaction
between kisspeptin and NKB signaling (kisspeptin neurons mediate NKB signaling and NKB neurons mediate kisspeptin signaling) and both
kisspeptin and NKB signaling modify the activity of GnRH neurons directly and independently. Perhaps the high activity of GnRH neurons during
the neonatal period in males reflects the presence of reciprocal pathways in prepubertal males, although subsequent central inhibition during the
prepubertal/juvenile keeps GnRH release low (top left). When males reach puberty, direct NKB signaling to GnRH neurons is lost, kisspeptin
signaling through NKB neurons is no longer available, and NKB signaling to GnRH neurons needs to be mediated through kisspeptin neurons (top
right). It is speculated that a simple NKB upstream signaling mechanism mediated through kisspeptin neurons is sufficient in the regulation of
GnRH release in adult male reproductive function. By contrast, in prepubertal females, although both kisspeptin and NKB signaling can directly
and independently influence activity of GnRH neurons, there is no reciprocal interaction between kisspeptin and NKB signaling (bottom left). In
pubertal females, however, kisspeptin and NKB signaling not only influence GnRH neurons directly and independently, but also new reciprocal
interactions between kisspeptin and NKB signaling are established (bottom right). These reciprocal and cooperative kisspeptin and NKB signaling
pathways would provide more power and flexibility to regulate GnRH neurons in adult females, such that cyclic ovulations and pregnancy can be
achieved. The role of opioid neurons is rather hypothetical at this point. Adapted54,103,109 and reproduced from Terasawa.102 GABA, gamma
aminobutyric acid; ME, median eminence; MKRN3, the gene encoding makorin RING-finger protein 3; MM, mammillary body; OC, optic chiasm
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GnRH release.86 A similar prepubertal GABA dominant inhibitory

mechanism appears to exist in male macaques because a recent study

indicates that the tonic GABA inhibition over release of kisspeptin

and NKB in the ME was observed in prepubertal, not pubertal, male

rhesus monkeys.85 Collectively, it appears that GABA and glutamate

neurons located up-stream of the kisspeptin and NKB neurons are a

part of neuronal circuits involved in central inhibition.

Because the direct action of GABA is stimulatory for the GnRH

neuron,87 clarification may be needed regarding the consistent find-

ings on the inhibitory role of GABA in pubertal GnRH neurons.

Although the stimulatory action of GABA on GnRH neurons is shown

by recording from single cell studies with anatomically identified

GnRH neurons,87 in our studies,80-85 inhibitory action of GABA is

derived from the direct measurement of GnRH release in the hypo-

thalamus under the presence of GABA or GABA receptor agonists

and antagonists in prepubertal macaques. As such, GABA action on

GnRH release that we described is involved in multiple neural path-

ways. Importantly, the inhibitory role of GABA is seen in prepubertal

but not pubertal monkeys,80–82 whereas excitatory action of GABA

on mouse GnRH neurons occurs throughout the developmental

stages,88 clearly suggesting that the neural pathway can be changed

across puberty, but direct action of GABA is consistently stimulatory.

Therefore, the difference between “inhibitory” versus “excitatory”
role of GABA in GnRH neurons in the context stems from differences

in experimental approaches.

In 2013, a striking report indicative of the mechanism of central

inhibition was published. In their paper, Abreu et al.89 reported that

human patients with frame shift mutations of MKRN3, the gene

encoding makorin RING-finger protein 3, exhibit central precocious

puberty and that MKRN3 mRNA expression in the ARC of male and

female mice was higher on postnatal day (P)10 (P10) than P20.

Importantly, the mutation in MKRN3 occurs at the zinc-finger

domain, consistent with reports of gene-wide genome association

studies regarding gene associated with the age of puberty.89-91

Involvement of zinc-finger protein-mediated transcriptional repres-

sion of GnRH neurons as the central inhibition has also been

reported in prepubertal monkeys.92 A more recent study by Abreu

et al.93 further indicates that MKRN3 mRNA expression in the

female rhesus monkey hypothalamus at less than 6 months of age

were highest and gradually decreased at 6–12 months reaching the

lowest at 12–30 months of age, and MKRN3 mRNA expression in

the hypothalamus of both male and female mice was gonadal steroid

independent because the hpg mouse that lacks active gonads

exhibits a similar developmental decrease in MKRN3 mRNA expres-

sions in the whole hypothalamus. It was further shown that the

developmental decrease in MKRN3 mRNA also occurs in the ARC

and AVPV of mice in both sexes and that MKRN3 mRNA is col-

ocalized in mice kisspeptin neurons in the ARC and AVPV. Finally,

the it was shown that MKRN3 inhibited Kiss1 and Tac3 promoter

activity by repressing KISS1 and TAC3 transcription. Together, it

was proposed the hypothesis that MKRN3 represses activity of

kisspeptin and NKB neurons through an MKRN3-directed

ubiquitination-mediated mechanism and developmental decrease in

MKRN3 activity results in disinhibition of GnRH neurons, resulting

in the pubertal increase in the GnRH peptide.93

The study by Abreu et al.93 is one of the most impressive works

in recent years. However, because the assessment of changes in

MKRN3 mRNA in the monkey study was conducted with ill-defined

developmental stages in females and Abreu et al.93 did not confirm

changes in MKRN3 mRNA with developmental changes in hormones

(LH, FSH, and gonadal steroids), it is difficult to apply the concept to

monkey puberty at this time. For example, grouping monkeys at 0–

6 months of age when the highest MKRN3 mRNA level seen means

that this group includes the brains from monkeys at “neonatal mini-

puberty” and the beginning of the prepubertal period. Similarly,

grouping female monkeys at 12–30 months of age means females at

prepubertal and early pubertal period are grouped together. An addi-

tional study with more precise age groups in both sexes indepen-

dently with monitoring gonadotropin levels is clearly needed. This

fundamental flaw aside, however, many questions arise. First, it is

unclear whether the mechanism observed in mice is applicable to pri-

mate puberty, including humans: (1) the time course between birth

and puberty onset in primates is much longer than in mice and (2) con-

vincing evidence for central inhibition in the mouse has not been

reported, and in the mouse, gonadal steroid sensitive GnRH suppres-

sion dominates prior to puberty onset94; there is also a species differ-

ence issue.95 Second, as discussed earlier, at the neonatal period

GnRH release and gonadotropin secretion in primates are elevated,

resulting in “mini-puberty”. If MKRN3 mRNA levels are maximally ele-

vated in animals at the neonatal period, how can high activity of

GnRH neurons be achieved? Third, assuming a similar mechanism to

that seen in mice can take place in primates, it is still unclear what trig-

gers a decrease in MKRN3 mRNA in neurons of the ARC and AVPV?

Fourth, does decrease in MKRN3 mRNA in the ARC and AVPV play a

similar role in both sexes? Unlike that seen in rodents, there is little

sex difference in the function of AVPV kisspeptin neurons in

primates,96,97 although it is known that male puberty occurs much

later than in female puberty in both species. Fifth, as discussed above,

a series of studies80-85 consistently indicate that the GABA neuron is

a part of neuronal circuits for central inhibition in non-human pri-

mates. Then, how do changes in GABA neurons at the onset of

puberty relate to the developmental changes in the ubiquitin ligase

MKRN3 in kisspeptin and NKB neurons? Presently, we have more

questions than answers.

Note that there are consistent reports showing that neuropeptide

Y (NPY) also plays a role in central inhibition in male monkeys.98,99

Because GABA and NPY are colocalized in ARC neurons,100 there is a

possible common mechanism between GABA and NPY in central inhi-

bition. This hypothesis needs to be tested in a series of future studies.

4.2 | Activity of kisspeptin and NKB neurons
increases at puberty onset

After the reduction of central inhibition, activity of kisspeptin and

NKB signaling over GnRH neurons increases. We have systematically
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examined the manner in which kisspeptin and NKB signaling stimu-

lates the pubertal increase in GnRH release in non-human primates.

As described below, kisspeptin and NKB signaling accelerates the

pubertal increase in GnRH release through two mechanisms:

(1) kisspeptin and NKB neurons release a higher amount of respective

peptides and (2) an increased sensitivity of KISS1R on GnRH neurons.

4.2.1 | Kisspeptin release

Kisspeptin release in the ME is pulsatile and the pulse frequency is

similar to that in GnRH release. Indeed, kisspeptin pulses are highly

correlated to GnRH pulses.101 There is a clear developmental change

in kisspeptin release: Although, in prepubertal female monkeys, the

mean release, pulse frequency, and pulse amplitude of kisspeptin

release are all low, in pubertal females, all components of kisspeptin

release significantly increase53 (Figure 2). Importantly, in an early

phase after puberty onset, the pubertal increase in kisspeptin release

is gonadal steroid independent because an increase in kisspeptin

release also occurs in gonadectomized animals,53 but the later phase

of the kisspeptin increase is partly a result of the pubertal increase in

circulating gonadal steroid hormones.53,102 In males, kisspeptin

release also gradually increases after puberty onset.103

4.2.2 | NKB release

NKB release in the ME of prepubertal males is low and it increases at

puberty onset. Again, the pubertal increase in NKB release in males is

gonadal steroid independent (JP Garcia and E Terasawa, unpublished

observations). Whether the pubertal increase in NKB release occurs in

females has not been examined. As seen in kisspeptin release, we

assume that NKB release is pulsatile, although we have not confirmed

this systematically yet.

4.3 | Changes in the sensitivity of GnRH neurons
to kisspeptin and NKB signaling

In female monkeys GnRH neurons respond to both kisspeptin

(kisspeptin10) and NKB (senktide) signaling in a dose-responsive man-

ner.53,104 Because the GnRH response to the same dose of

kisspeptin10 in pubertal females is larger than in prepubertal females,

the sensitivity of GnRH neurons to kisspeptin signaling clearly

increases after puberty onset. Importantly, the pubertal increase in

responsiveness of GnRH neurons to kisspeptin signaling is a result of

the pubertal increase in circulating gonadal steroids.104 By contrast, in

males, although both kisspeptin and NKB are stimulatory to GnRH

release and the response of GnRH neurons to kisspeptin

(kisspeptin10) signaling is dose-dependent, the GnRH response to

NKB signaling is not dose-dependent.54,102,103 Moreover, in male

monkeys, developmental amplification of the GnRH response to

kisspeptin10 is seen only at a higher dose.103 Interestingly, GnRH

neurons in females are more sensitive to kisspeptin signaling than in

males because a 1/100-fold smaller dose of kisspeptin induces a

larger response in females than in males at both the prepubertal and

pubertal stages.102,103 The underlying mechanism of the sex differ-

ence in GnRH response to kisspeptin signaling is currently unknown.

4.4 | Kisspeptin and NKB signaling pathways to
GnRH neurons undergo pubertal change

Although it is well documented that GnRH neurons express kisspeptin

receptors105,106 and kisspeptin directly modulates GnRH release, the

direct action of NKB on GnRH release remains controversial. NKB

neurons, however, can modulate GnRH neurons directly through den-

drones because GnRH neuroterminal fibers in the ME express

NK3R,107 and a study using fast scan cyclic voltammetry with a

carbon-fiber microelectrode indicates that the direct action of the

NK3R agonist senktide on GnRH neurons occurs in the neuroterminal

region, but not in the POA.108 Therefore, microdialysis experiments

examining interactions between kisspeptin and NKB signaling to

GnRH release conducted in the ME in our laboratory are physiologi-

cally relevant.

To clarify the hierarchy between kisspeptin and NKB signaling

that influences activity of GnRH neurons, we have conducted a series

of experiments using agonists and antagonists for KISS1R and NK3R.

Through such experiments, we have observed quite surprising results:

Kisspeptin and NKB signaling pathways to GnRH neurons undergo

pubertal change in both males and females, and the direction of the

pathway changes in the two sexes is almost opposite. Because

detailed experimental designs and results have been published

previously,103,104,109 in this review, we just summarize the results and

interpretations. In prepubertal males, there is a reciprocal interaction

between kisspeptin and NKB signaling (kisspeptin neurons mediate

NKB signaling and NKB neurons mediate kisspeptin signaling) and

both kisspeptin and NKB signaling modify the activity of GnRH neu-

rons directly and independently. We speculate that the powerful

reciprocal pathways in prepubertal males might reflect the high activ-

ity of GnRH neurons during the neonatal period in males but subse-

quent Central Inhibition during the prepubertal/juvenile keeps GnRH

release low (Figure 3, top left). When males reach puberty (i.e., in

pubertal males), direct NKB signaling to GnRH neurons is lost,

kisspeptin signaling through NKB neurons is no longer available, and

NKB signaling to GnRH neurons needs to be mediated through

kisspeptin neurons (Figure 3, top right). The upstream regulation of

NKB signaling through kisspeptin neurons has also been reported in

male monkeys.110 Perhaps a simple mechanism underlying NKB sig-

naling mediated through kisspeptin neurons is sufficient in the regula-

tion of GnRH release, and hence male reproductive function in

adulthood. By contrast, in prepubertal females, although both

kisspeptin and NKB signaling can directly and independently influence

activity of GnRH neurons, there is no reciprocal interaction between

kisspeptin and NKB signaling (Figure 3, bottom left). In pubertal

females, however, kisspeptin and NKB signaling not only influences
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GnRH neurons directly and independently, but also new reciprocal

interactions between kisspeptin and NKB signaling are established

(Figure 3, bottom right). These reciprocal and cooperative kisspeptin

and NKB signaling pathways would provide more power and flexibility

to regulate GnRH neurons in adult females, such that cyclic ovulations

and pregnancy can be achieved.

In summary, we now know that during the postnatal develop-

ment, a sustained elevation of pulsatile GnRH release results in

puberty in both males and female primates. Indeed, transient eleva-

tion of the GnRH release does not lead to puberty. As described ear-

lier, the GnRH neurosecretory system in males shortly after birth is

fully active, similar to that observed in adulthood, but, at the late neo-

natal period, central inhibition comes in, suppressing the elevated

GnRH neurosecretory activity. In females as well, a similar, but smaller

degree of the transient GnRH elevation is seen during the early neo-

natal period, and central inhibition comes in, suppressing the GnRH

neurosecretory system. Although the neural substrates responsible

for central inhibition remain unclear, the suppression of GnRH release

continues throughout the prepubertal period. It is considered that

central inhibition for reproductive function provides the time for mat-

uration of higher brain function, including intellectual, judgement,

memory function, and sensory-motor function.

Recent studies54,85,103 investigating the role of the KNDy neu-

rons forming the GnRH neurosecretory system further suggest that

the reduction in central inhibition comes first. During the early stage

of the pubertal period, active interaction is observed between

kisspeptin and NKB signaling to GnRH neurons, which is reminiscent

of the very active GnRH neurosecretory system during the neonatal

period in males, whereas, during the late pubertal period, a

simple NKB dominant pathway to GnRH neurons (i.e., NKB

signaling ! kisspeptin signaling ! GnRH neurons) is established, such

that male adult reproductive function does not require complex neu-

roendocrine mechanisms. By contrast, whereas, during the early stage

of pubertal period in females, there is no cooperative interaction

between kisspeptin and NKB signaling to GnRH neurons, during the

late pubertal period to adulthood, a flexible and cooperative relation-

ship between kisspeptin and NKB signaling is established to be suit-

able for adult female reproductive function. Therefore, the pubertal

period can be redefined as the time when the GnRH neurosecretory

system is reorganized/remodeled to tailor the need for adult repro-

ductive function.

Finally, brief comments on the role of opioid neurons including

dynorphin neurons in the pubertal increase in pulsatile GnRH. We

already know that opioid neurons are not involved in central

inhibition,111 whereas the preliminary data indicate that release of

β-endorphin increases after puberty onset.112 Therefore, we speculate

that opioid peptides play an important role for the pubertal increase

in pulsatile GnRH release, as a part of the break. Indeed, a recent

report showed that tonic infusion of the opioid antagonist naloxone

increased the LH pulse frequency in patients with deficiency of NKB

signaling genes,113 indicating the role of opioid neurons in GnRH

pulse generation. Future studies warrant clarification of the role of

opioid neurons in the pubertal increase in GnRH release.

5 | CONCLUSIONS AND FUTURE
PERSPECTIVES

Since the discovery of the GnRH molecule in 1971,7,8 great advance-

ments have been made in neuroendocrine research. Specifically, the

isolation and molecular identification of the GnRH molecule from the

hypothalamus, followed by the discovery of many other small pep-

tides including kisspeptin, NKB, and several opioids in the brain, have

played a great role. Although, in this article the author did not discuss

non-peptidergic neurotransmitters, such as acetylcholine, serotonin,

dopamine, epinephrine, norepinephrine, and nitric oxide, they are also

known to modulate GnRH neuronal activity directly or indirectly. Nev-

ertheless, the concept that an increase in pulsatile GnRH release initi-

ates puberty, and the pubertal increase in GnRH release is

accompanied by the increased activity of kisspeptin and NKB neurons,

is firmly established. We now know that the presence and proper con-

nections between GnRH, kisspeptin and NKB neurons in the hypo-

thalamus are all necessary for puberty onset and subsequent

maintenance of normal reproduction functions. Neural substrates and

mechanisms of central inhibition remain to be investigated, but the

availability of various in vivo and in vitro models including GnRH neu-

rons derived from human stem cells114 would provide a bright future

for research in GnRH neurobiology.
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