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Information gathering comprises actions whose (sensory) consequences resolve uncertainty (i.e.,

are salient). In other words, actions that solicit salient information cause the greatest shift in beliefs
(i.e., information gain) about the causes of our sensations. However, not all information is relevant
to the task at hand: this is especially the case in complex, naturalistic scenes. This paper introduces a
formal model of selective attention based on active inference and contextual epistemic foraging. We
consider a visual search task with a special emphasis on goal-directed and task-relevant exploration.
In this scheme, attention modulates the expected fidelity (precision) of the mapping between
observations and hidden states in a state-dependent or context-sensitive manner. This ensures task-
irrelevant observations have little expected information gain, and so the agent — driven to reduce
expected surprise (i.e., uncertainty) — does not actively seek them out. Instead, it selectively samples
task-relevant observations, which inform (task-relevant) hidden states. We further show, through
simulations, that the atypical exploratory behaviours in conditions such as autism and anxiety may be
due to a failure to appropriately modulate sensory precision in a context-specific way.

Our aim is to provide a ‘first principle’ account of endogenous attention that emphasises the intimate relationships
between overt attention and saccadic searches, and covert attention and salience. Imagine that you are at your
desk and looking around for your red pen. How could one account for the ensuing saccadic eye movements from
first principles. The basic idea pursued below is that every action — overt or covert - is in the game of resolving
uncertainty by sampling the sensorium to reduce expected surprise (or a variational bound on surprise called free
energy). This is known as active inference and requires us to commit to actions that have the greatest epistemic
affordance or information gain. So how does this explain how we look for a ‘red pen’?

Put simply, if we are compelled to sample the most salient, uncertainty reducing part of the visual scene, then
it is sufficient to increase the precision or informativeness of the visual features that a ‘red pen’ possesses — and
decrease the precision of all other features. More colloquially, it is sufficient to render ‘redness’ and ‘pen-ness’
more salient. Notice that there is a fundamental distinction between making some attributes more salient - by
biasing their contribution to epistemic affordance — and simply adjusting the attentional gain (i.e., precision) of
different sensory streams. In this model of selective (i.e., endogenous) attention, the selection is proactive: it is
mediated by making certain sensations more attractive to sample, before they are actually sampled. In this sense,
selective attention becomes part of planning a saccadic eye movement, not simply attending to the sensory con-
sequences of that movement. This reading of selective attention is closely related to premotor theories of atten-
tion' - that emphasise the enactive aspect of both overt and covert (active) vision, which (from a computational
perspective) renders endogenous attention an important part of ‘planning as inference’. In what follows, we try
to unpick the intimate relationship between attention, precision, salience and epistemic affordance’>.
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We live an age that offers an overwhelming access to information. However, our survival does not depend
on obtaining all possible information but on seeking out that which is relevant. The relevance of information
depends on one’s situation, goals or context. This means that the ‘correct’ recognition of context is essential for
seeking the ‘correct’ information.

Context underwrites visual attention: in his classic study - investigating exploratory eye movements - Yarbus®
asked his participants to look at the same painting of a family while changing task instructions (i.e., the rule).
These instructions were to either evaluate the material circumstances of the people in the picture or to guess their
ages. Under the first instruction, the participants paid more attention to clothing and furniture; whereas under
the second, they paid the most attention to faces. Yarbus concluded that what attracts human visual attention is
information that matters®. This context-dependence - in visual exploration - is now a well-established phenom-
enon’. The scene context can be a background that is consistent or inconsistent with a foreground object®’, or
it can be defined in terms of the spatial layout of the objects'~'*. Visual search performance has been shown to
benefit from this contextual cueing as, in each case, some parts of a scene become task-relevant and contain more
task-related information.

This raises the question: What is information? Shannon'* proposed that an outcome contains more informa-
tion if it is less predictable. Itti and Baldi'® argue that regardless of how unexpected an outcome is, only the obser-
vations that cause a significant shift in prior beliefs (to posterior beliefs) that yield information gain. This notion,
known as Bayesian surprise, conceptualises a unit of surprise — a “wow” — in terms of the difference between the
prior and posterior beliefs about the world. This allows us to formulate epistemic foraging in terms of the mutual
information between an observation, and the unobservable (hidden) states of the world that give rise to it. A new
observation is presumed to be informative if the posterior distribution (about hidden states) diverges from the
prior distribution. In short, observations with high Bayesian surprise attract human visual attention, but also note
that, “The same data may carry different amounts of surprise for different observers, or even for the same observer
taken at different times”'*. It has also not been shown how Bayesian surprise can orient attention to different
observations under different contexts. Here, we show, using active inference, how contextual exploration can
occur - using Bayesian surprise - if beliefs about context influence beliefs about the mutual information between
certain kinds of hidden state and sensory data.

Active inference is a framework that describes Bayes optimal behaviour. This framework relies upon the
notion that we have an internal (generative) model encoding beliefs about how hidden states of affairs in the
world ‘out there’ cause our sensations. Under active inference, exploratory and exploitative behaviours arise as a
result of free energy minimisation. Variational free energy is an upper bound on the negative log Bayesian model
evidence (or self-information also known as surprise). Minimising variational free energy means maximising
the evidence for an internal generative model'®. In active inference, perception and action both minimise varia-
tional free energy'’. On this view, perception optimises beliefs about the hidden causes of sensory information,
while, actions fulfil prior preferences (goals) and resolve uncertainty about the world. These actions are sampled
from beliefs about policies (sequences of actions). Crucially, the agent’s beliefs about the policies it pursues are
expressed in terms of the expected free energy in the future, which the agent also believes (a priori) it will min-
imize. Expected free energy comprises instrumental and epistemic value and a novelty term. Instrumental or
extrinsic value is essentially the utility of a policy (i.e., the degree to which expected observations conform to
prior preferences). Epistemic value is the information the agent expects to acquire about the hidden states of the
environment*'®, Novelty is the information that can be acquired about the parameters of the generative model".
Formally, epistemic value is the expected Bayesian surprise or information gain afforded by a particular policy or
action. It has been shown in monkeys that parietal neurons encode the expected information gain of a planned
saccade, distinct from any expected reward (i.e. extrinsic value)?’. We emphasise epistemic value in this work and
show that in different contexts there may be different hidden states the agent should acquire information about.

In previous work, we have suggested that perception corresponds to inference about hidden states and atten-
tion corresponds to optimisation of the precision (i.e., confidence) afforded sensory evidence*?!. In this work,
we consider a generative model that can adjust the precision of different sensory signals, depending on the states
of the world. Active inference implies that we weight sensory inputs from different sensory channels in pro-
portion to their precision, given our goals. In the context of rule-based or contextual exploration, this entails
down-weighting the sensory precision of stimuli that are irrelevant to the context. In this way, epistemic explo-
ration guides our sensory epithelia to relevant stimuli. Our objective here is to introduce a computational model
that can selectively attend to task-relevant stimuli and acquire useful information under a particular context.

This paper comprises four sections. In the first, we describe active inference for Markov Decision pro-
cesses (MDP). In the second, we introduce a selective attention task and illustrate the responses of an agent in
a contextual exploration task, using an MDP formulation of active inference. We show qualitatively how selec-
tive attention and contextual exploration emerge under this scheme, where selective attention - mediated by
a context-dependent sensory or likelihood precision - contextualises expected information gain. The result is
behaviour that has all the hallmarks of active vision, driven by feature-based attention. This behaviour is illus-
trated using a minimal (colour versus shape) model that is repurposed to simulate the results reported by Yarbus.
In this section, we also introduce an MDP model of a face identification task, which is used in the simulations of
pathology in the subsequent section. In the third section, we apply the same principles to simulate the cardinal
deficits of selective (feature-based) attention that have been reported in various conditions. Here, we focus on
autism and anxiety. We conclude with a general discussion of results.
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Materials and Methods

Active inference. A characteristic attribute of biological systems is their adaptive exchange with changing
environments*. This adaptive exchange requires i) the change in the environment to be recognised (perception),
and ii) action to be taken; in order to retain a biological system in states conducive to existence®. For example,
living creatures can only exist in a narrow range of all possible temperatures. Another way to put this is that they
must maintain a low entropy, or surprise (averaged over time). Active inference describes how an agent’s adaptive
exchange with its environment can be described as Bayesian inference; i.e., by minimising variational free energy.
Variational free energy is an upper bound on surprise —In P(6|m). Minimising free energy therefore minimises
surprise. Here 0 represents the sequence of observations over time § = [0;, 0,, ..., oT]T and m represents the
model under which surprise is evaluated. An agent’s perception of its environment and the actions it takes both
suppress variational free energy:

For an agent to infer (perceive) the state of its environment, it requires a generative model that describes how
observed outcomes are generated by the environment?»*, Variational free energy F is a functional of two things:
the generative model P(G, x), and an approximate posterior distribution over the hidden causes Q(x) (Eq. 1).
Rearranging this equation reveals that the variational free energy is an upper bound on surprise because the KL
divergence in Eq. 2 can never be less than zero.

F = Eo[-InP(3, x)] — HIQW)] ()

—InP(6|m) + Dy, [Q(x)||P(x]0)] )

Dy [Q(x)[|P(x)] — Eqy)[P(6]x)]
Complexity W 3)

Here, x represents hidden causes. The KL divergence is a measure of how dissimilar two probability distribu-
tions are??¢. More formally, it is the expected (average) log ratio of the two distributions: Dy; [Q(x)||P(x|5)]

=>",Q(x)ln P((Q(T)N)) . Two distributions are more similar if this term is small, and identical when zero.
X |0

Minimising variational free energy minimises the divergence between the approximate and true posterior distri-
butions over the hidden causes, making the former an approximation to the true distribution Q(x) & P(x|5). This
minimises the complexity and maximises the accuracy of the observed outcomes (Eq. 3).

The process that generates the outcomes observed by the agent is called the generative process. The generative
model is the agent’s internal model, used to infer the likely hidden causes of observed data - and to form beliefs
about the appropriate policy (i.e., sequence of actions) to pursue. An agent who engages in active inference makes
use of a prior belief that the most probable policies are those that lead to the lowest expected free energy. At
each time step, the generative model is used to infer the most likely hidden states by minimising variational free
energy with respect to the hidden states. This is followed by sampling an action from the beliefs about the policies.
Without action selection, the agent is nothing more than an inference machine that recognises the most likely
hidden states of the world. Action selection allows the agent to choose the actions that fulfil its prior preferences
about the outcomes it will experience (thus minimising variational free energy), and to perform motor experi-
ments to test perceptual hypotheses.

Markov decision processes. Markov decision process (MDP) models use a discrete state space to describe
how events evolve through time, giving rise to categorical outcomes at each (discrete) time point*”. The MDP
generative model comprises several matrices and vectors that define the probabilistic structure of the world. The
likelihood matrix A is a mapping from hidden states to outcomes, indicating which outcomes are more likely
under different hidden states. The transition matrix B defines the transition probabilities between different hidden
states. The initial state probability vector D indicates which states the agent believes are more likely initially. The
generative model also embodies an agent’s prior beliefs about outcomes in the prior preference matrix C, which
defines how much one outcome is preferred compared to another (see Fig. 1A for the MDP generative model).

Crucially, in active inference the agent has some control over parts of the environment. This means that
the agent can control the transitions between some of the hidden states, through actions sampled from beliefs
about policies 7. This means that the observed sensory input depends on the hidden states that can be controlled
through actions. Prior beliefs about policies (or sequences of actions) are defined in terms of an expected free
energy of future outcomes. This way the agent plans future actions such that they minimise the expected free
energy in the future. The expected free energy is expressed as:

G(r) = Y G(m, 7)

G(m, 7) = EQ[an(A, s;|m) — InP(A, s, 0|0, )]
= EgllnQ(A) + InQ(s,|m) — InP(Als,, o,, 0, m) — InP(s,|o,, 0, ) — InP(0,)]
~ EgllnQ(A) + InQ(s,|m) — InQ(Als,, o,, ) — InQ(s,|o,, 7) — InP(o,)]
= —EgllnQ(Als,, o,, M) — InQ(A)] — EgllnQ(s,|o,, ) — InQ(s,|m)] — EgllnP(o,)]

novelty epistemicvalue extrinsicvalue (4)

whereQ = Q(o,, s.|7) = P(0,|s,)Q(s,|7) ~ P(o,, s.|6, ).
Expected free energy comprises three terms; namely, novelty, epistemic and extrinsic value (see Eq. 4).
Extrinsic value is the expected utility defined in terms of prior preferences over the outcomes®. Epistemic value
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Figure 1. Markovian generative model (A) The joint probability distribution of outcomes and their hidden
causes defines the generative model. Here, & corresponds to the sequence of observations 6 = [0, 0,, ..., 07]"
over time. Similarly, § represents the sequence of hidden states§ = [s}, s,, ..., s;]" over time. The generative
model comprises a mapping from the hidden states to outcomes (expressed in terms of the likelihood matrix A)
and a mapping from the previous hidden state to the next (expressed in terms of the transition matrix B). The
notation C at denotes categorical distributions. The transition matrix B is a function of action (a) where action
is sampled from the beliefs about the policies (7) for the time step 7. The precision term () mediates the
confidence placed in policy selection. The expected free energy (G) expresses how likely a policy is. The prior
preference matrix (C) mediates how much one outcome is preferred relative to other outcomes. The initial state
probability vector (D) encodes the probability of states at the initial time step P(s,). (B) The belief update
equations shown in this panel summarise the variational message passing. Belief updates occur through three
phases, namely perception, policy evaluation and action selection. In the perception phase a gradient descent on
the state prediction errors e = —dF/ds_ is used to infer the most likely hidden states that generated the
observed outcomes. Here s corresponds to the optimal solution to the state estimation problem, whereas s”
corresponds to the current beliefs about states. The updates over the beliefs about states are iterated, using
gradient descent, until the state prediction errors are minimised £ ~ 0. A softmax function is applied to

v" = Ins to obtain a probability distribution over the states. In the first equation, the precision of the
likelihood matrix ¢ mediates how much the observed outcomes influence the updates over the states (e.g. none
when ¢(=0). In the policy evaluation phase, policies 7 are evaluated in terms of their expected free energy G
weighted by its precision - — and in terms of the free energy based upon previous observations F (please see the
text for a more detailed discussion of G and F). Finally, in the action selection phase an action is sampled from
the most likely policy = (i.e. policy with the highest posterior probability). The subsequent equation shows that
the beliefs about the states s_are obtained by taking the expectation of beliefs about the states expected under
policies s” with respect to the beliefs about the policies 7. The final equation shows that the outcomes expected
under a policy o] at time step 7 are obtained by taking the expectation of the likelihood matrix A with respect to
the beliefs about the hidden states under policies s.

is the information that can be acquired by reducing uncertainty about the hidden causes in the environment*.
Novelty is the information that can be gained about the parameters of the generative model™. A policy carries a
high novelty value if it affords the opportunity to reduce uncertainty about contingencies (encoded in the like-
lihood matrix, transition matrix and initial state probabilities) that underwrite how outcomes are generated. A
policy has epistemic value (i.e., has epistemic affordance), if the outcomes o, expected under that policy resolve
uncertainty about hidden states s, - this is sometimes referred to as salience. Novelty and salience drive explo-
ration, whereas the extrinsic component of the expected free energy drive exploitation. The resolution of the
exploration-exploitation dilemma thus rests upon the balance between the novelty, epistemic and extrinsic value
of a policy. Crucially, these components are all expressed in same units (log-probabilities) and therefore share a
€OmMmMON currency or metric.

Belief updates and message passing. Under active inference, perception arises from minimising vari-
ational free energy with respect to beliefs about hidden variables. Mathematically, this is implemented via a gra-
dient descent on the variational free energy for each hidden variable. The resulting belief update equations show
how message passing occurs under this scheme (see Fig. 1B).

Taking the gradient of variational free energy, with respect to the hidden states, after observing a new outcome
gives the optimal solution to state estimation denoted by s* (state estimation: first equation). The difference
between s” and the current beliefs about the hidden states s generates a state prediction error ¢ (second equa-
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tion). A gradient descent on state prediction errors is used to infer the most likely hidden states (third equation).
Here, 7 represents the time steps from 1 to £+ 1. When 7<t, the term in brackets (first equation) returns 1 and
otherwise it returns 0. This means that the inference about the hidden states at the current time step ¢ depends on
the observed outcomes from time step 1 to t, which allows for evidence accumulation over time. When 7> ¢
beliefs about the hidden states do not depend on the outcomes as the outcomes have not been observed yet. This
means that beliefs about the hidden states at 7>t depend only upon beliefs about hidden states in the previous
s/_jand next s | time steps.

Beliefs about the inferred hidden states are projected into the future to form expectations about the most likely
observations in the future under different policies. These expectations are used to compute the probability distri-
bution over policies 7 (policy evaluation: first equation) such that the most likely policy has the smallest free
energy F (second equation) and expected free energy G (third equation). F and G are vectors with elements cor-
responding to each policy. The free energy F, under a policy is a function of the state prediction errors under that
policy and the beliefs about states under that policy. The expected free energy G, is expressed in terms of risk and
ambiguity. Risk is the expected divergence from preferred outcomes and expressed as the (expected) difference
between (log) expected outcomes Ino] and preferred (log) outcomes C, expected under beliefs about future out-
comes o] - (Ino, — C,). Ambiguity is the expected uncertainty in the mapping from hidden states to observa-
tions expected under beliefs about the hidden states H - s”, where H is the entropy of outcomes under all possible
combinations of hidden states.

Action selection involves sampling an action g, from the most likely policies (action selection: first equation),
where 7 corresponds to the beliefs about the policies. The expected states and outcomes are acquired by taking
Bayesian model averages of the states (second equation) and outcomes (third equation) expected under each pol-
icy. Once an action is selected, the environment will generate a new outcome that can be fed back to the generative
model and thus the perception and action cycle begins again.

Visual Attention Tasks

Colour/Shape task. The colour/shape task is performed on a two-by-two grid scene, whose quadrants are
initially masked. Attending to a quadrant unmasks the object in that quadrant (see Fig. 2B). In this task, certain
objects are associated with certain contexts. These contexts can be seen as rules that state what information should
be sought, very much like the instructions in Yarbus’ experiment®. The goal in this task is to categorise the scene
that is being explored.

A scene can be categorised either in terms of its colour or its shape. These attributes constitute the hidden states
that the agent must infer. The agent knows the categorisation rule before performing the task: the colour category
is determined by the colour in the top right quadrant (the top right can be red, green or blue). The category of the
scene is red, green or blue if the object in the top right quadrant is red, green or blue, respectively; given that the
rule is categorise colour. The shape category of the scene is square, circle or triangle, if the object in the bottom
left quadrant is a square, circle or triangle, respectively; given that the rule is categorise shape (see Fig. 2A). Beliefs
about the category of the scene (i.e., hidden states) are reported by looking at one of three choice locations at the
bottom of the scene. These choice locations either correspond to colour or shape categories depending on the
rule (see the rightmost panels in Fig. 2B). Upon declaring a categorisation, the agent receives feedback of right or
wrong.

MDP model. In this MDP model, we considered four sets of hidden states, namely Rule, Where, Category:
colours and Category: shapes. The first set of hidden states Rule defines the context in which the scene is catego-
rised. A scene can be categorised in two ways, either in terms of its colour or its shape, depending upon the rule.
The second set of hidden states Where corresponds to the locations in the scene. There are eight locations in this
task: central fixation (location 1), the four quadrants (locations 2-5) and three choice locations (locations 6-8) at
the bottom. The choice locations are associated with the categories red, green and blue when the rule is categorise
colour, and square, circle and triangle when the rule is categorise shape. The third set of hidden states Category:
colours controls what colours will appear on the top right quadrant under the colour categories red, green and
blue; e.g., if the colour category is blue then the colour blue will be in this location. The fourth set of hidden states
Category: shapes determines which shape will be in the bottom left quadrant under the shape categories square,
circle and triangle.

We considered four outcome modalities, namely Rule, Where, What: colours and What: shapes. The first out-
come modality Rule unambiguously cues the context, either categorise in terms of colour or shape. The second
outcome modality Where signals the sampled location in the scene (one of eight locations). This can be thought
of as a proprioceptive signal. The third outcome modality What: colours signals which colour is observed in the
sampled location. It can be red, green, blue or null (no colour). The fourth outcome modality What: shapes signals
which shape is observed in the sampled location. It can be square, circle, triangle or null (no shape). Under both
What: colours and What: shapes modalities there are two additional feedback outcomes, right and wrong (see the
green tick and red cross in Fig. 3). An agent can report its beliefs about the category of the scene by choosing one
of the three choice locations associated with the categories under the rules categorise colour or categorise shape
and obtain feedback about whether its choice was right or wrong. See Fig. 3 for the hidden states and outcome
modalities.

In this setup, the Rule and Where hidden states directly map to the Rule and Where outcomes. The Rule out-
come is used to update the agent’s beliefs about the Rule hidden state. In this sense, the Rule hidden state may be
considered as an explanatory variable, used to account for the sensory data cueing the rule. Crucially, this expla-
nation has consequences for the interpretation of the other sensory outcomes: precise beliefs about the Rule allow
the agent to increase the precision of objects that are task relevant, while decreasing the precision of those that
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Figure 2. Contextual exploration task (A) A scene can be categorised in two ways, either by its colour or its
shape. The categories are shown on the left and on top when the rule (context) is to categorise the scene in terms
of its colour and shape, respectively. (B) The sequence of observations illustrates exploration of an exemplar
scene. In the beginning, each quadrant is greyed out (t=1). Attending to (i.e. looking at) each quadrant reveals
its content. In this case, the order of explored locations is top left (t=2), bottom left (t=3) and top right
quadrants (t=4).

are not. This enables the agent to attend selectively to objects in the scene. The hidden states Category: colours and
Category: shapes map onto What: colours and What: shapes objects as a function of Where and Rule hidden states;
e.g., sampling location 8 when the rule is categorise colours would generate a right feedback, if the scene category
is blue. All the transition matrices are identity matrices except for the action dependent Where transition matrix.
The identity matrices indicate that the rule and the scene category do not change during the course of a trial.
The action dependent where transition matrix specifies that the agent would look at the location indicated by the
action, e.g. if the sampled action is 4 then the agent would go to the top right location. In this setup, we defined
prior preferences over right (utility or relative log probability of 2 nats) and wrong (utility of —4) outcomes under
both What: colours and What: shapes modalities. With these utilities the agent avoids categorising the scene pre-
maturely and categorises only once it has accumulated sufficient evidence. See Fig. 4 for the likelihood, transition
and prior preference matrices.

Simulations. In active inference, exploration of a scene would usually continue until all uncertainty about
the hidden states of the world (here, colour and shape categories) is resolved. However, rule-based explora-
tion requires one to resolve uncertainty only about the relevant hidden states. There is no imperative to resolve
uncertainty about the shape category when the rule is categorise colour. Here, we show how this selective,
context-sensitive epistemic foraging can arise as a function of selective attention.

Technically, the information gained from observing a stimulus depends on the precision ( of the likelihood
mapping between that stimulus and an unknown hidden state; e.g., the degree to which seeing ‘blue’ means the
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Figure 3. Structure of the generative model - colour/shape task (A) This panel shows the graphical
representation of the MDP model and the conditional dependencies among the terms in the model. The
structure of the environment is expressed in terms of the transition and likelihood matrices. The likelihood
matrix (A) is a mapping from the hidden states (s;) to the outcomes (o,). The state transitions are mediated

by the transition matrix (B) which expresses how likely the current state (s;) is given the previous state (s;_;).
Crucially, the transition matrix is a function of action which can be sampled from the beliefs about the policies.
The beliefs about the policies (7) depend on the expected free energy (G) and the precision of policy selection
(). The expected free energy comprises extrinsic and epistemic values. Extrinsic value is a function of the prior
preference matrix (C) which encodes how much one outcome is expected relative to another. Precision of policy
selection (7) is a function of the temperature term (3). The smaller the temperature the more deterministic

the policy selection becomes. (B) This panel shows the four sets of hidden states and outcome modalities in

the colour/shape task. There are four sets of hidden states, namely Rule, Where, Category: colours and Category:
shapes. There are four outcome modalities, namely Rule, Where, What: colours and What: shapes.

scene must be a ‘blue’ category. By reducing the precision of the task-irrelevant likelihood, an agent can reduce the
expected information gained from observing task-irrelevant objects, and thus ignore or ‘attend away’ from them.

An example is provided in Fig. 5, where the rule is to categorise the scene in terms of its colour. Under this
rule, colour objects are task-relevant and shape objects are task-irrelevant. Thus, when performing the categori-
sation task, an agent would only attend to the colour objects if (" is maximised (Fig. 5A, left panel) and ¢"%* is
minimised, i.e. "¢ =0 (Fig. 5A, right panel). If Chape precision is maximised (i.e., e — 00, see Fig. 5A, middle
panel), the agent becomes more likely to attend to task-irrelevant objects.

Note that the agent’s beliefs about the likelihood mapping and the mapping in the real world may not be the
same: i.e., the generative model (internal beliefs) and generative (real-world) process may be different. In the
right panel of Fig. 5A, the agent believes that there is an imprecise mapping between shape categories and objects
(generative model) but this mapping is very precise in the process that generates outcomes (generative process).
In fact, the middle and right panels of Fig. 5A illustrate cases when the generative model and generative process
are identical and different, respectively. These panels show how varying ¢***¢ changes the mapping between the
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Figure 4. ABC of generative model. This figure shows the likelihood, transition and prior preference matrices
used in the colour/shape task. (A) The colour category of the scenes shown on the left is determined purely

by the colour in location 4 (top right quadrant). The panels on the right show the likelihood (A) matrices for
location k = 4. The likelihood matrices encode the probability of outcomes (o,) given the hidden states (s;). The
first likelihood matrix A' (Rule) signals what the rule is, either categorise colour or shape. The second likelihood
matrix A2 (Where) signals the sampled location on the scene, one of eight locations. The third likelihood matrix
A’ (What: colours) encode the probability of colours red, green and blue under different colour categories red,
green and blue. The final likelihood matrix A* (What: shapes) encode the probability of shapes square, circle and
triangle under different shape categories square, circle and triangle. Because the colour and shape are separate
modalities, the probability of colour and shape objects are encoded by separate likelihood matrices A* and

A*. The likelihood matrix under the colour modality for location 4 A%(k=4) shows that the colour category

of a scene is purely determined by the colours in this location; however, under the shape modality A*(k=4)
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the object in this location does not provide any information about the shape category, i.e. null. (B) This panel
shows the transition matrices. All the transition matrices are identity matrices except for the action dependent
transition matrix B?, which encodes the most likely location to be sampled as a function of action, e.g. B*(k=4)
shows that under action 4, the top right quadrant is the most likely location to be sampled at the next time step.
The identity transition matrices B! (Rule), B* (Category: colours) and B* (Category: shapes) express the fact that
the rule and the colour and shape objects do not change in the course of a trial. C) The prior preference matrices
are shown in this panel. The prior preference matrices encode how much one outcome is preferred relative to
other outcomes as a function of time. The only definitive preferences are defined over the columns of C* (What:
colours) and C* (What: shapes). Under both C* and C* the utility of making a right categorisation and wrong
categorisation is +2 and —4 natural units, respectively. With these utilities (i.e. log odds) the agent expects to
categorise a scene correctly, while avoiding an incorrect categorisation.

task-irrelevant shape category and objects when the rule is categorise colour. The mapping between colour cate-
gory and objects are changed in the same way using (" when the rule is categorise shape.

The upper and lower left panels of Fig. 5B show the quadrants that the agent attended to in the course of a
trial under high ("¢ — co and low ("¢ =0 levels of task-irrelevant precision, while keeping the task-relevant
precision high (%" — o0 for both trials. The heat maps in the right panels show how likely the agent is to attend
to a particular location in the scene, expressed in terms of a softmax function of expected free energy under eight
policies (i.e. visiting one of the eight locations in the scene). On the trials shown in Fig. 5B, the rule is to categorise
the scene in terms of its colour. When the agent believes that it can acquire information about the task-irrelevant
shape category (i.e. (%P — co; upper panel), it finds that it is equally likely to attend to the top right (colour) and
bottom left (shape) quadrants at t = 1, even though the only object that can resolve uncertainty about the colour
category is in the top right quadrant. The agent chooses between the two randomly - in this case, the bottom left
(shape) quadrant — and only then attends to the top right (colour) quadrant at =2, successfully categorising
the scene as blue at t=3. Conversely, when the agent does not believe that it can resolve uncertainty about the
task-irrelevant shape category ("¢ =0 (lower panel), it ignores the bottom left (shape) quadrant and categorises
the scene as blue one timestep earlier.

Epistemic exploration seeks out the information that can be acquired about an environment. However more
often than not, the information out there is not useful to the task at hand. In the next section we show that
attentional mechanisms need to be in play for contextual exploration to occur and how information that is
task-relevant can be acquired.

Contextualising epistemic exploration. In the model described above, the uncertainty that can be
resolved through exploration is about the scene category in terms of its colour and shape. Epistemic exploration
favours saccades to the locations that offer information about colour and shape categories of the scene regardless
of what the Rule is. Rule-based (contextual) exploration requires an agent’s attention to be directed such that only
relevant information under a context matters. The most salient actions are then those that yield observations
(in this case colour and shape modalities) that are generated by hidden states (objects under colour and shape
categories) with a high fidelity (precision). Here, we show that beliefs about the uncertainty in the mapping from
the hidden states of the world s, to sensory observations o, can modulate the salience associated with saccades to
each location®.

In the colour/shape task, the precision of the sensory signals is modulated as a function of the Rule hidden
state dimension in the generative model. This works such that when the Rule hidden state is categorise: colour the
sensory precision of the shape objects becomes low while the sensory precision of the colour objects becomes very
high, and vice versa for hidden state categorise: shape. This can be expressed formally as follows:

Anig = P0" = ns'=i st =j =k st = l) 5)
PE" = nlst =it =5 = ks = ) = o(¢" Ay ©)

i
Categorise  Categorise

colours shapes
Rule 00 0
C=m Where 0 00
What: Colour| ©° z
What: Shape ! e (7)

Equation 5 expresses the likelihood of the outcome 0™ = in the generative process given the hidden states
sl=i¢?=j,s=kands*=IwithmeM,neN,i€l,j€], k€K, € L where M is the number of different outcome
modalities (Rule, Where, What: colours and What: shapes), N is the number of outcomes in an outcome modality
(e.g. under the What: colours modality red, green and blue colours) and,

I = {categorise colour, categorise shapes},
J = {location1, ..., location 8},
K = {red, green, blue}and L = {square, circle, triangle}
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Figure 5. Contextual exploration In this figure, the rule is to categorise a scene in terms of its colour. The
objects that resolve uncertainty about the colour category are task-relevant, and the objects that resolve
uncertainty about the shape category are task-irrelevant. (A) The likelihood matrix on the left shows the
mapping between the task-relevant objects and categories (in this case colour objects and categories), under
high precision (“**" — co. The likelihood matrices in the middle and right panels show how the mapping
between the task-irrelevant objects and the categories (in this case shape objects and categories) change under
two levels of precision ¢"***. Under a high precision ("%¢ — oo this mapping is very precise, however under a
low precision "¢ =0 it becomes very ambiguous. When this mapping is imprecise the agent no longer acts
to resolve uncertainty about the task-irrelevant category. The task-relevant and irrelevant likelihood matrices
are illustrated for locations 3 and 4, because these are the only locations that hold the objects that resolve
uncertainty about the shape and colour categories, respectively. The precision term (“?*" is used to change the
mapping between colour objects and categories in the same way when the rule is categorise shape. (B) The upper
and lower left panels show how the exploratory behaviour changes under two levels of task-irrelevant precisions
¢hare — o0 and ¢MP¢ = 0, while keeping task-relevant precision high (“?*" — co. The subsequent panels show
how likely an agent is to sample a location during the course of a trial, expressed in terms of prior probabilities
for each policy. At the beginning of each trial, the agent fixates at the centre of the screen (location 1). Under
high task-irrelevant ¢"#¢ — oo and task-relevant (“°" — oo precisions, the agent finds that it is equally likely
to attend to the task-relevant colour objects in location 4 as the task-irrelevant shape objects in location 3, in
the beginning. The agent first attends to location 3 where it finds a circle and then attends to location 4, where
it finds the colour blue. Subsequently the scene is categorised as blue. Under a low task-irrelevant precision
¢are =0 and high task-relevant precision (" — oo the agent infers that the only location that matters is
location 4, which holds the task-relevant colour objects. In the next time step it attends to location 4 and finds
the colour blue and subsequently categorises the scene as blue.

are the number of states under different hidden state dimensions (e.g. under the first hidden state dimension
s, Rule states categorise: colours and categorise: shapes).
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Equation 6 expresses the likelihood of the same outcome in Eq. 5 but this time for the generative model. This
likelihood mapping is subject to the precision terms (. The precision term ¢/ is applied to the logarithm of the
likelihood matrix for the m-th outcome modality A™ given the i-th level of the first hidden state s'= . Finally, a
softmax function is applied to the resulting term to normalise the columns of the likelihood matrix to the range
of probabilities.

The matrix in Eq. 7 is a precision matrix, which shows the values of the precision terms ¢, for different out-
come modalities m and different levels of the first hidden state dimension s' =i which specifies what the rule is
(categorise: colour or categorise: shape). This matrix shows that the precision term ¢, is infinitely large under the
modalities Rule and Where for Vi, which means that there is a deterministic mapping to the outcomes under these
two modalities. The crucial manipulation is implemented under What: colours and What: shapes modalities.
When the first hidden state dimension s' is on the i = categorise: colours level (see the first column of the preci-
sion matrix) there is a very precise mapping to the colour objects (¢, = oo) under the What: colours modality.
With this precise mapping, the agent thinks that it can resolve uncertainty about the Category: colours hidden
state (see the left panel of Fig. 5A). The precision of the mapping from i = categorise: colours to shape objects
under What: shapes modality is expressed as a function of z. When z=0 the mapping to the shape objects become
very imprecise, which means the agent believes it cannot resolve uncertainty about Category: shapes hidden state.
Therefore, the agent’s attention is directed only to task-relevant objects; namely, colour objects (see the right panel
of Fig. 5A). When z — oo the mapping to the shape objects are very precise which means that the agent’s attention
would be divided between two different outcome modalities, namely What: colours and What: shapes, that could
resolve uncertainty about the two hidden states, namely Category: colours (task-relevant) and Category: shapes
(task-irrelevant) categories (see the middle panel of Fig. 5A). A similar formulation is shown in the second col-
umn of the precision matrix when the rule is categorise: shapes.

State prediction errors are used to infer the most likely hidden states of the world in the perception phase of
the variational updates (see Fig. 1B). Notice that the precision term ¢ multiplies the logarithm of the likelihood
matrix In A, in the first equation under perception. This shows that when sensory precision is very low (=0 the
observation o, does not contribute to state prediction errors in the second equation and does not influence infer-
ence implicit in the variational updates.

Yarbus' Task

The same principles and model can be applied to Yarbus’ paradigm by extending and renaming the hidden
states. In what follows, we describe how the above formulation reproduces both the visual exploration during
free searches — and the selective attention to informative cues elicited in the original Yarbus paradigm: as in the
colour/shape model, the scene can be explored in two distinct ways, depending on task instructions. When the
instruction is estimate the family’s material circumstances, the only objects that matter are the furniture and peo-
ple’s clothing, whereas when the instruction is give the ages of the people, faces hold the most information.

The subjects in Yarbus’ study knew where to expect certain objects in the painting because they were asked to
explore the scene freely, before exploring the same scene under different instructions. In this setting, one expects
some objects to appear in certain locations?: for example, furniture and faces tend to be located at different
heights, and different positions relative to other objects. In our model, these locations are highlighted with num-
bers between 1 and 13, where location 1 corresponds to the centre of the scene (see the right panel of Fig. 6A). The
furniture and clothes appear in locations 2, 4, 6, 9, 10, 11, whereas the faces appear in locations 3, 5, 7, 8, 12, 13.

We considered that each of these locations could hold a number of objects: i.e., faces of different ages at the
higher locations (e.g. location 3, Fig. 6A), and a variety of furniture or clothes (objects) at the lower locations
(e.g. location 6, Fig. 6A). The presence of an antique, a modest or a common chair at location 6 cues the material
circumstances of the family: wealthy, middle class or poor. The presence of different faces cues the average age of
the people in the picture: young, middle aged or old.

The agent did not know the locations of the features in the scene. Initially, the agent held uniform beliefs over
the features in each location and learned which feature is where by pursuing novel policies; see Eq. 4. These pol-
icies enable the agent to learn the (likelihood) mapping from locations in the scene to different features (objects
and faces). Figure 6C shows how the agent learns the locations of the objects and faces (i.e., What: object A> and
What: face A*, see MDP model in the next section and Fig. 7) on an exemplar scene, described in Fig. 6B.

MDP model. The hidden state and outcome spaces used in Yarbus’ task is formally similar to the Colour/
Shape model described above. The hidden state space consists of five dimensions, namely Instruction, Where,
Category: wealth, Category: age, and Scene type. Instruction is either estimate material circumstances or give the
ages of the people. Where encodes one of thirteen locations in the scene. Category: wealth encodes the material
circumstances, which could be wealthy, middle class and poor. Category: age encodes the average age of the people
in the scene and these are young, middle aged or old. Scene type consists of a number of different scenes that map
onto the same states in Category: wealth and Category: age state dimensions. Essentially young, middle aged and
old faces can appear under different age categories. A scene whose category is young contains predominantly
young faces. Each scene under the category young can contain other type of faces, e.g. middle aged and old. Scene
type encodes the number and locations of these faces. Scene type encourages exploration of the scene. There are
four outcome modalities, namely Instruction, Where, What: object and What: face. Instruction and Where states
directly map onto Instruction and Where outcomes. What: object outcome contains antique, modest and common
chairs, whereas What: age outcome contains young, middle aged and old faces. See Fig. 7 for the generative model.

Simulations. In this setting, a very low precision would induce imprecise likelihood matrices for the
task-irrelevant objects and categories: e.g., when the instruction is to estimate material circumstances of the family,
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Figure 6. Learning the locations of the features in Yarbus’ task. (A) The painting An Unexpected Visitor by Ilya
Repin is shown on the left. The right panel highlights 13 locations that can furnish information about either
material circumstances of the family or the ages of the people in the painting. The first location is the centre of
the scene. Furniture and clothing appear at locations 2, 4, 6, 9, 10 and 11. Faces appear at locations 3, 5, 7, 8, 12
and 13. For illustrative purposes, location 3 has been chosen to show that one can see young, middle aged or old
faces in locations a face can appear. Location 6 has been chosen to show that one can see an antique, a modest or
a common chair in locations a piece of furniture (or man’s/woman’s clothing) can appear. (B) This panel shows a
scene in which locations 2 and 4 hold a modest and a common chair, respectively, whereas locations 6, 9, 10 and
11 locate antique chairs. Similarly, locations 3 and 5 hold a middle aged and an old face, respectively, whereas
locations 7, 8, 12 and 13 locate young faces. (C) Agents learn the locations of the features shown in panel B by
accumulating counts for each state-outcome pair, where the novelty term (see Eq. 4.) drives behaviour such
that exposure to these novel combinations is assured. This enables the agent to learn the (likelihood) mapping
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from locations to objects A* and faces A* in the course of free visual exploration. The likelihood matrices — on
the top — show that the agent initially has no knowledge of which features are located where. The matrices in the
middle show that the agent starts to learn the locations of the objects and faces after an initial scan of the scene.
The matrices at the bottom show that after a thorough exploration of the scene, the agent has precise knowledge
of the object locations. The painting Unexpected Visitors by Ilya Repin has been downloaded from https://
commons.wikimedia.org/w/index.php?title=File:Ilya_Repin_Unexpected_visitors.jpg’*. The cartoon faces and
the pictures of the chairs in this figure have been downloaded from https://pixabay.com/.

the likelihood matrix for the faces becomes very imprecise and the likelihood matrix for the objects becomes very
precise (Cfuces: 0, Cobjects*) OO)

The left panels of Fig. 8A-C show the saccadic scan paths recorded in Yarbus’ experiment, superimposed on
the painting. The right panels show the simulated saccadic patterns generated using the principle above, illus-
trated for the colour/shape task. The agent was first allowed to explore the painting freely (Fig. 8A), then to
estimate the material circumstances of the people (Fig. 8B), or their ages (Fig. 8C). Like Yarbus’ participants,
the agent attends to all the faces and most of the furniture (and clothing) in the scene during free exploration
(Fig. 8A); i.e., when the agent is unaware of the instructions, but when the instructions are estimate the material
circumstances of the family or give the ages of the people the agent selectively attends to the furniture and clothing
(Fig. 8B) or faces (Fig. 8C) respectively.

Here, we have offered a computational account that enables contextual modulation of visual exploration.
There are a number of clinical conditions associated with atypical visual scanning, such as generalised anxiety
disorder, schizophrenia and autism. These atypical exploratory behaviours have been illustrated in visual search
paradigms, where top-down guidance of attention is crucial to perform visual tasks. In the section ‘simulating
pathology’, we show that the relative precisions associated with context-relevant and irrelevant signals may
account for the exploratory behaviours under anxiety and autism.

Selective attention inYarbus’ task. In Yarbus’ task, the precision of the sensory signals is modulated as
a function of the Instruction hidden state dimension in the generative model. When the Instruction is estimate
material circumstances the sensory precision of What: face outcomes becomes low, while the sensory precision
of What: object outcomes becomes high, and vice versa for the hidden state give the ages of the people (or estimate
how long the unexpected visitor has been away in the simulations of ASD, see the section ‘simulating pathology’).
We can formulate a precision matrix similar to the matrix in Eq. 7,
i
Estimate  Estimate

wealth age
Instruction 00
_ Where 00 00
C=M ywhar. object| o0 z
What: face z o (8)

When z=0 the agent’s attention would be focused on only task-relevant visual stimuli, however when z— oo the
agent’s attention would be focused on both task-relevant and irrelevant stimuli. For the simulated scanpaths (see
the right panels of Fig. 8) under free exploration and exploration under instructions (estimate wealth or age), we
chose z— 0o and z=0, respectively. For the simulated behavioural responses of typically developing (TD) and
autism spectrum disorder (ASD), we chose z= 0 and z— o0, respectively, see the section ‘simulating pathology’.

Face Identification Task

In a visual task, people were asked to identify the emotion of a face presented on a computer screen as either
happy or fearful. This task was performed under two conditions, namely threat of shock (threat or anxiety) and
free from threat of shock (safe). Under the former, the participants anticipate a single electrical shock to their foot
but are not told when this will be. The threat of shock induces anxiety. The two conditions instantiate threat and
safe contexts. In the next section we will use this task to simulate the kind of behaviour observed in studies about
anxiety.

MDP model. The hidden state space consists of three dimensions, namely Context, Face type and Where (also
see Fig. 9). Under the Context dimension the hidden states are threat of shock (threat or anxiety) or free from threat
of shock (safe). Face type consists of two hidden states, namely happy or fearful face. Under the Where hidden state
dimension there are five hidden states that correspond to different face areas, namely forehead, eyebrows, eyelids,
cheeks and teeth. There are three outcome modalities, namely Context, Facial expressions and Where. The Context
and Where hidden states map directly onto Context and Where outcomes, respectively. Happy and fearful faces
are each associated with five facial attributes: fearful faces are associated with wide eyelids, a wrinkled forehead,
etc, whereas happy faces are associated with exposed teeth, narrow eyelids, etc. The Facial expressions outcome
modality is mediated by the Face type and Where hidden state dimensions (i.e. what type of face it is and where in
the face one is looking). The full structure of the generative model used to simulate the results in the right panel
of Fig. 10B is shown in Fig. 9.

Enhanced perception in face identification task. For the simulated results about anxiety under ‘sim-
ulating pathology’ section, we used the following approach. In this task, the precision associated with facial
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Figure 7. Structure of the generative model - Yarbus’ task. The structure of the generative model is shown on
the left - see Fig. 3A for a detailed description. On the right are the five sets of hidden states and four outcome
modalities in our MDP version of Yarbus’ task. There are five sets of hidden states, namely Instruction, Where,
Category: wealth, Category: age and Scene type. There are four outcome modalities, namely Instruction, Where,
What: object and What: face. See the main text for details. The cartoon faces and the pictures of the chairs in this
figure have been downloaded from https://pixabay.com/.

expressions in fearful faces is modulated as a function of the Context hidden state dimension in the genera-
tive model. This works such that the precision associated with facial expressions in fearful faces increases in the
threat context relative to the safe context, while leaving the precision of the facial expressions in the happy faces
unchanged between contexts. We used the below precision matrices for the simulated responses in the right panel
of Fig. 10B:

SCIENTIFICREPORTS| (2079)9:13915 | https://doi.org/10.1038/s41598-019-50138-8


https://doi.org/10.1038/s41598-019-50138-8
https://pixabay.com/

www.nature.com/scientificreports/

A Free exploration

Figure 8. Yarbus’ free exploration task and simulations (A) The panel on the left shows how real subjects
explored the painting freely in Yarbus’ experiment, whereas the right panel shows the simulated exploratory
behaviour of a context naive agent (unaware of the instructions and thus exploring the scene freely). The agent
starts exploring from the centre of the scene (location 1) (B) The panels on the left and right show how the real
subjects and the agent explore the painting under the instructions estimate material circumstances of the family.
(C) The panels on the left and right show responses when exploring the painting under the instructions give the
ages of the people. The painting Unexpected Visitors by Ilya Repin has been downloaded from https://commons.
wikimedia.org/w/index.php?title=File:Ilya_Repin_Unexpected_visitors.jpg”*. The panels on the left show the
scanpaths of the subjects that explored this painting in Yarbus® work (see Yarbus’ work® for the originals of the
scanpaths). The scan-paths available on the below link are superimposed on the painting itself to produce the
panels on the right: https://commons.wikimedia.org/w/index.php?title=File:Yarbus_The_Visitor.jpg”>

Face type: fearful Face type: happy
i i
Safe Threat Safe Threat
Context 00 00 Context 00 00
Cf = m Facial Expressions|0.1 0.9(C;, = m Facial Expressions|0.25 0.25
Where o0 o0 Where 00 o0

Here, Face type refers to the second hidden state dimension in the generative model (see Fig. 9). The precision
matrices (;and ¢, show how the precision of the facial expressions change between safe and threat contexts in
fearful and happy faces, respectively. The precision of facial expressions change from 0.1 (low precision) to 0.9
(high precision) from safe to threat context for the fearful faces. The precision of facial expressions in happy faces
do not change between safe and threat contexts, and have a precision of 0.25 (medium precision).

Here, we described the precision manipulations used to simulate the behavioural responses of ASD and anxi-
ety using Yarbus’ task and face identification task, respectively.

Simulating pathology. Autism. Prominent theoretical accounts of autism spectrum disorder (ASD) call
upon a failure to use prior beliefs to contextualise sensory data®. This is sometimes expressed as an enhancement
of ‘bottom-up’ perception® - i.e., elevated or unattenuated sensory precision®? — and sometimes in terms of weak
(imprecise) priors that preclude top-down modulation of sensory signals®*. Manifestations of these computational
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Figure 9. Structure of the generative model - Facial expression identification task. The structure of the
generative model is shown on the left - see Fig. 3A for a detailed description. The right panel shows that there
are three hidden states, namely Context, Face type and Where. There are three outcome modalities, namely
Context, Facial expressions and Where. See the main text for details.

deficits include resistance to visual illusions, attenuated pupillary responses to a priori surprising stimuli** and,
crucially, abnormalities of visual search behaviour.

Here, we show that the exploratory saccadic behaviour of people with ASD is consistent with a failure to
down-modulate (or attenuate) the precision of task-irrelevant sensory signals. This is motivated by an empirical
study in which people with ASD and typically developing (TD) adults were asked to explore the same painting
from Yarbus’ paradigm (Fig. 6A), under the instructions estimate the family’s material circumstances and esti-
mate how long the unexpected visitor has been away*. Note that the only cues one can use to estimate how long
the unexpected visitor has been away are the expressions on people’s faces in the painting (see the left panel of
Fig. 6A).

In this task, the proportion of fixations on the objects were higher when the instruction was estimate the
family’s material circumstances than when the instruction was estimate how long the unexpected visitor has been
away for the TD adults (see the top left panel of Fig. 10A). Similarly, the proportion of fixations on the people’s
heads were higher when the subjects were asked to estimate how long the unexpected visitor has been away than
when the instruction was estimate the family’s material circumstances for the TD adults (see the bottom left panel
of Fig. 10A). However, the proportion of fixations on objects and people’s faces did not change under these two
instructions for the people with ASD (see the left panels of Fig. 10A). In our simulations, the responses of TD
adults are reproduced by equipping the agent with the ability to attend away from task-irrelevant stimuli by atten-
uating the precision associated with these stimuli: e.g., the ability to attenuate the precision of objects when the
instruction is estimate how long the unexpected visitor has been away. The simulated responses of the people with
ASD were generated by an agent that is unable to attenuate the precision of task-irrelevant objects, which induces
an inability to ignore task-irrelevant stimuli.

By modulating the capacity to attend away from irrelevant stimuli, we were able to simulate different patterns
of visual search. The proportion of fixations on objects and faces during these searches are shown in the right
panels of Fig. 10A). Although there are considerable differences between the simulated and empirical proportion
of fixations on objects and faces (an artefact of our model only being able to fixate a small number of discrete
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Figure 10. Empirical results and simulations (A) The left panels report the proportion of fixations on objects
and heads when Yarbus’ visual search task is performed by typically developing (TD) adults and people with

a diagnosis of autism spectrum disorder (ASD) under the instructions estimate the material circumstances

of the family (Task A) and estimate how long the unexpected visitor has been away (Task B). The panels on the
right show the simulated proportion of fixations using the MDP model. (B) Healthy people performed a face
identification task under different conditions, namely threat of shock (threat) and free from threat of shock (safe).
In this task, either a happy or a fearful face is shown on a computer screen. The participants are asked to identify
the face as either happy or fearful as quickly as they can. The left panel shows the empirical reaction times (i.e.,
time it took to identify the facial emotion), whereas the right panel shows the simulated decision times using the
MDP model (i.e., the number of facial features the agent attended before identifying the face). See the main text
for details. See Benson et al.** and Robinson ef al.*” for the originals of the figures on the left panels of A and B in
this figure, respectively. These figures were reproduced with permission from Elsevier and the rights to use these
materials have been obtained through Copyright Clearance Centre.
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locations in the scene), the main observation here is that TD and simulated TD adults are able to shift their atten-
tion to task-relevant objects, whereas people with ASD and simulated ASD are not. Although the second instruc-
tion used in the MDP model (give the ages of the people) differs from the second instruction in the empirical study
(estimate how long the unexpected visitor has been away), both instructions require one to look at people’s faces
in the painting and thus we made no changes in the MDP model to simulate these results (see Fig. 7 for more
details).

Anxiety. Similar sorts of explanations have been leveraged to explain some of the perceptual features of
states of anxiety. It has been suggested that there may be an enhanced sensory perception of anxiogenic stimuli
(e.g., pictures of fearful faces) in anxiety. The evidence for this comes from studies employing ‘threat of shock’
conditions®*?’.

In these studies, people identify fearful faces faster in the threat context than in the safe context (see Fig. 10B
left panel). This suggests that the facial expressions in a fearful face may be perceived as delivering more informa-
tion about the emotion of the face under the threat of shock than when there is no threat. This would explain why
fearful faces are identified quicker under the threat context.

We can use the same approach used to simulate the saccadic patterns on the Yarbus task to produce similar
behavioural responses — as illustrated in the left panel of Fig. 10B. The visual stimuli in this case could either be a
fearful or a happy face and the agent’s task is to find out what type of face it is looking at. In this task, the context
could either be threat or safe. Having an enhanced perception of anxiogenic stimuli translates to the ability to
increase the precision associated with the facial expressions in fearful faces (wide eyelids, raised eyebrows etc.)
under the threat context relative to the safe context in the MDP model. This means that the agent would need to
observe only a few facial components before identifying the face as a fearful face. The empirical reaction times are
approximated in simulations with the decision times, which are the number of locations looked at before identi-
fying the face. The key observations from the simulations are: (i) the fearful faces are identified faster in the threat
context than the fearful faces in the safe context, and (ii) identification of happy faces was the same under both
threat and safe contexts (see the right panel of Fig. 10B). This is because only the precision of the fearful-threat
mapping is adjusted between contexts (see Fig. 9 and the face identification task in the previous section). One
might query why the precision associated with the facial expressions in happy faces and safe contexts does not
appear to be modulated between contexts. It seems plausible that a threat context induces two effects: (i) an
increase of the precision associated with the facial expressions in fearful faces and a decrease of the precision
associated with the facial expressions in happy faces, and (ii) a generalised increase in sensory precision of all such
mappings. This would produce the pattern we see in Fig. 10B.

Discussion

Selective attention is often divided into two categories: overt attention (i.e. performing a motor act to orient to a
stimulus), and covert attention (where no action is performed). Our focus has been on the role of context in influ-
encing overt saccadic behaviour. However, there is an important covert element to this. The process of ascribing
more or less precision to different locations does not require a movement and could be thought of as the deploy-
ment of covert attention. In this sense, the behaviour illustrated in this paper may be thought of as showcasing
how covert attention drives overt attentional sampling.

In this work, we have provided proof of principle that an agent can selectively attend to information that is
useful - under a particular context — by inferring the appropriate attentional targets. Computationally, this cor-
responds to modulating the precision of the mapping (encoded by the likelihood matrix) between task-irrelevant
sensory inputs (stimuli that are not informative in a certain context) and their hidden causes. When the precision
of the task-irrelevant likelihood is low, an agent only attends to task-relevant stimuli. This model reproduces the
saccadic patterns in empirical studies of context-dependent human exploratory behaviour®.

The exploratory behaviour of the agent described in this work is driven by epistemic value®, a.k.a. (expected)
Bayesian surprise. Bayesian surprise attracts human attention': in other words, a stimulus attracts attention if it
changes an observer’s beliefs significantly. Clearly, this depends upon what beliefs an observer currently holds.
We have demonstrated a capacity to revaluate beliefs about context, given a cue, such that the same stimulus can
carry different levels of surprise in different contexts.

Most computational models of visual search are bottom-up models of visual attention that do not consider
the contextual information inherent in visual scenes. These models usually create a ‘saliency map’ based on the
features of the objects in the scene. These features include orientation, intensity, colour information®-*!, lumi-
nance®?, contrast*> and motion*:. Typically, the locations in these saliency maps are attended in order of decreas-
ing salience - often requiring an inhibition-of-return rule to make simulations work plausibly. Although these
models provide relatively good predictions of where visual attention will be deployed in pop-out visual search
tasks, they do not incorporate contextual information. There is no reason why a bottom-up visual search model
would find the faces more salient when an instruction such as ‘give the ages of the people in the scene’ is given.
Only models with a top-down aspect have the potential to make use of such instructions.

There are a number of visual attention models that can incorporate top-down knowledge during visual search.
Top-down instructions in these models are usually given in the form of prior knowledge about the features of
an object of interest. While some top-down models evaluate the similarity (or dissimilarity) of the features of
the object of interest, with the features in the scene that is being explored®, there are other models that either
modulate or select feature outputs - such that the features of the object of interest become more salient*>*. A
noteworthy model in this setting defines image categories in terms of visual patterns and approaches the scene
categorisation problem by maximising the mutual information between scene categories and pixel values at pos-
sible fixation locations*. A similar approach maximises the pointwise mutual information between a target object
and visual features®. There are also other top-down models that either use iconic scene representations - to
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predict the location that holds the object of interest*® - or models that equate salience to discrimination and con-
sider the features that best distinguish the object of interest from the other objects as salient®'.

The model we have presented illustrates a computational link between attentional control and the efficient
sampling of information. As with some of the models above, our model is equipped with an information acquir-
ing imperative; namely, epistemic value. Epistemic value resolves uncertainty about the hidden states of the world
and corresponds to the mutual information between hidden states and observations. Our model distinguishes
itself from the above formulations in a number of ways. In our formulation of selective attention, task-relevant
exploration arises by entertaining imprecise beliefs about context-irrelevant objects. This precludes information
gain about task-irrelevant hidden states (e.g., scene categories). To our knowledge, this is the first attempt to
model selective attention in terms of context-sensitive epistemic affordance. Furthermore, our model can suc-
cessfully report its beliefs about the scene category by exploiting extrinsic value (e.g., expected utility). Finally,
our formulation emphasises top-down inferential processes that use relatively abstract (e.g., semantic) representa-
tions. This contrasts with the lower level representations used in other models to describe features of visual scenes.
In other words, the epistemic value is an expected Bayesian surprise that pertains to beliefs about hidden states of
the world - as opposed to visual features.

While we have not addressed the contributions of early visual pathways here, we could interpret our sensory
outcomes as alternative hypotheses about continuous attributes of visual objects. Active inference calls on an
explicit generative model that depends upon prior beliefs. This is important, as a number of clinical conditions
have been associated with aberrant prior beliefs, and this paradigm might afford an opportunity to investigate
these conditions quantitatively. People with a diagnosis of autism spectrum disorder (ASD) are known to explore
visual scenes (especially faces) differently than neurotypicals. In free visual search tasks — that contain pictures
of faces — people with ASD attend less to the core features of faces (e.g., eye, nose and mouth) and more to other
parts of the face®® and are slower at discriminating faces in face discrimination tasks®*. In contrast, people with
ASD have been shown to be superior to controls on visual search tasks that involve visual illusions™ and faster on
tasks that involve spotting a target object that shares certain features with distractors®.

The visual foraging of people with ASD may be due to one or more perturbations under our model: altered
model structure (e.g., not knowing the mapping from gaze to mental states), reduced recognition of context (e.g.,
not realising that a given situation warrants information gathering about mental states); where context can be
defined as the global configuration of features and objects, or a difficulty in down-modulating the precision of
task-irrelevant object mappings. Our simulations suggest that the last perturbation could account for the epis-
temic behaviour of people with ASD, on free viewing visual search tasks under different instructions (although
carefully designed experiments are required to disambiguate the three perturbations above). Interestingly, a diffi-
culty in down-modulating precision would also imply a more accurate generative model - consistent with supe-
rior (pop-out) visual search performance in autism®’.

Autism is not the only condition that has been associated with abnormal precision weighting. The aberrant
salience hypothesis of schizophrenia proposes that altered attribution of salience to sensory stimuli may under-
write perceptual and attentional changes in psychosis®®. Aberrant attribution of salience may be exacerbated by
deficits in context processing™, but there is thought to be a predominant impairment in the control of attention
(i.e., feature selection) in schizophrenia than in the subsequent inference using those features®. Indeed, whilst
subjects with schizophrenia may be unimpaired - or even show enhanced performance - in simple attentional
cueing tasks®!, in more complex tasks, such as viewing natural images, they consistently fixate less on informative
areas®?. Thus, it may be that problems with context recognition and control of precision modulation contribute
most to schizophrenia, whereas in ASD a lack of key model structure (about the mental states of others) may be
more important.

In studies where anxiety is induced by threat of shock, people identify fearful faces faster when anxious. It has
been suggested that anxiety could have adaptive value in dangerous situations®. Enhanced sensory perception
of stimuli that predict imminent danger could certainly be adaptive, as this would allow one to react quickly to
dangerous situations. We can interpret this in terms of a (possibly evolutionary derived) prior belief about how to
contextualise visual perception in relation to such situations. Here, we have shown that the threat context mod-
ulates the precision of threat-related stimuli (fearful faces), which leads to faster identification of these stimuli.

Our focus in this paper was on providing a proof of principle that selective attention can be modelled in terms
of active inference - in a way that highlights its close relationship to constructs in psychology, psychophysics
and computational neuroscience. We did not compare the performance of this model to normative (i.e., descrip-
tive) models of related phenomena because in this work we were concerned with understanding selective atten-
tion from first principles. Because these principles encompass Bayes optimality, the performance of the model
described in this paper is, by definition, optimal. Clearly, this does not address the issue of whether this is a good
model of human behaviour (or electrophysiological responses). Although we addressed this issue anecdotally by
appealing to classical results in the literature, this paper restricted itself to simulations and proof of concept. In
subsequent papers we will fit the model to empirical (e.g., eye tracking) data. The question in this setting reduces
to what priors does any particular subject bring to the table - that best explains their responses — under the gen-
erative model described in this work.

Here we considered the problem of using contextual information to drive a form of selective attention where
we have knowledge of the scene under question. The prior knowledge about the scene is acquired through initial
scan of the scene as shown in Fig. 6C.

The model that we describe here uses purely foveal visual outcomes rather than incorporating a larger recep-
tive field. While this was sufficient to address the sort of context-driven selective attention we sought to under-
stand, it is clearly an oversimplification. The limitations of this choice are exposed if we consider the kind of
attentional processes required in a visual search paradigm that involves locating specific stimuli in an array, with
no prior exposure to this array. In this setting, people are able to locate the target in a few eye movements!®6*-6,
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and show electrophysiological responses to these stimuli within hundreds of milliseconds®”. Clearly this is a much
faster time-course than that of the initial exposure to (and learning of) the stimulus that we used and implies the
use of peripheral retinal input to draw inferences about where to look.

For an example of how multiscale and multiresolution sensory input may be incorporated into a generative
model of the sort used here, please see?”%%. These approaches include high resolution foveal and low-resolution
peripheral vision.

To model visual search tasks that mandate finding a stimulus in an array would require a generative model
with ‘location’ hidden states for each object, and that predicts both central and peripheral visual outcomes based
upon the fixation location and object locations. This could in principle accommodate ‘straight to the target’
behaviour in visual search tasks without the need for learning. An alternative would be to infer only the second
order statistics associated with different peripheral spatial locations, without having to make explicit predictions
about the content®. This sort of inference, thought to underwrite phenomena like figure-ground segregation,
implicitly estimates the ambiguity of each location in space, an important component of salience. This has the
potential to drive saccades to locations in peripheral vision through an apparently exogenous attentional process.

This work has some limitations. The visual search tasks that we have considered are fairly simple tasks. More
complicated tasks — that involve viewing of natural scenes — may have many more rules (or instructions) to con-
sider than the contingencies considered in our tasks. We have not attempted to distinguish the potential causes
of aberrant exploratory behaviours in ASD and schizophrenia. Nevertheless, this MDP model of active inference
has the potential to differentiate between abnormal behaviours with distinct causes”.

Conclusion

This theoretical work has illustrated the computational mechanisms that may underwrite selective attention that
contextualises visual exploration and expected information gain. Contextual exploration requires attentional
mechanisms that highlight relevant sources of information. Under active inference, attention can be thought of as
the precision of sensory signals given their hidden causes. We appealed to this aspect of active inference by mak-
ing the precision of the likelihood mapping between sensory signals and their hidden causes context-dependent.
This allowed us to show that context-driven exploration arises as a result of down-weighting the precision of the
context-irrelevant sensory signals, while maintaining the precision of the context-relevant sensory signals.

Data Availability
The simulation results shown in this paper were produced using a standard software routine, spm_MDP_VB_X-
.m. This matlab code is available in the SPM software: http://www.fil.ion.ucl.ac.uk/spm/
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