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Whole-genome DNA methylation status associated with
clinical PTSD measures of OIF/OEF veterans
R Hammamieh1,11, N Chakraborty2,11, A Gautam1,11, S Muhie2,11, R Yang3,11, D Donohue2, R Kumar3, BJ Daigle Jr4, Y Zhang5, DA Amara6,
S-A Miller2, S Srinivasan2, J Flory7, R Yehuda7, L Petzold5, OM Wolkowitz8, SH Mellon9, L Hood10, FJ Doyle III5, C Marmar6 and M Jett1

Emerging knowledge suggests that post-traumatic stress disorder (PTSD) pathophysiology is linked to the patients’ epigenetic
changes, but comprehensive studies examining genome-wide methylation have not been performed. In this study, we examined
genome-wide DNA methylation in peripheral whole blood in combat veterans with and without PTSD to ascertain differentially
methylated probes. Discovery was initially made in a training sample comprising 48 male Operation Enduring Freedom (OEF)/
Operation Iraqi Freedom (OIF) veterans with PTSD and 51 age/ethnicity/gender-matched combat-exposed PTSD-negative controls.
Agilent whole-genome array detected ~ 5600 differentially methylated CpG islands (CpGI) annotated to ~ 2800 differently
methylated genes (DMGs). The majority (84.5%) of these CpGIs were hypermethylated in the PTSD cases. Functional analysis was
performed using the DMGs encoding the promoter-bound CpGIs to identify networks related to PTSD. The identified networks
were further validated by an independent test set comprising 31 PTSD+/29 PTSD− veterans. Targeted bisulfite sequencing was
also used to confirm the methylation status of 20 DMGs shown to be highly perturbed in the training set. To improve the statistical
power and mitigate the assay bias and batch effects, a union set combining both training and test set was assayed using a different
platform from Illumina. The pathways curated from this analysis confirmed 65% of the pool of pathways mined from training and
test sets. The results highlight the importance of assay methodology and use of independent samples for discovery and validation
of differentially methylated genes mined from whole blood. Nonetheless, the current study demonstrates that several important
epigenetically altered networks may distinguish combat-exposed veterans with and without PTSD.
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INTRODUCTION
Adverse life experiences alter the epigenetic profile1–3 in a manner
that is salient for pathophysiology of post-traumatic stress
disorder (PTSD).4–6 Changes in methylation status of the
glucocorticoid receptor gene have been reported previously in
combat veterans with PTSD.7 Methylation changes in these same
genes were also observed in association with parental trauma,
suggesting that such effects may be related to heritable risk
profiles.8 Consistent claims were presented by in vivo studies.9,10

Together, these discoveries drive a strong rationale for screening
the epigenetic profiles of patients’ blood to identify next-
generation strategies for PTSD risk factors, diagnostics and
experimental therapeutics. A growing body of cohort-based
studies has linked the epigenetic changes with PTSD
development,11–13 mostly focusing on pre-determined targets
such as immunity14–16 and neuroendocrinology.7,8,17,18

For the present study, strict inclusion–exclusion criteria were
used19,20 to identify a training set comprising 48 male veterans
with PTSD (PTSD+) and 51 age-/ethnicity-/gender-matched
controls (PTSD− ). Control veterans experienced war trauma
but were negative for current and past PTSD (Supplementary

Table S1). An independent test set comprising 31 PTSD+/29
PTSD− veterans was recruited using the same screening protocol.
Enriched by the differentially methylated genes (DMGs), the

epigenetically altered networks are linked to nervous systems'
development and function, PTSD-associated somatic complica-
tions and endocrine signaling. All of these networks mined from
the training set were validated by the test set (Table 1).
Subsequently, we consolidated the test and training sets to
develop a union set and revaluated the methylation profile using
the improved sample size. The result confirmed 65% of the
pathways mined from the test and training sets. Going forward,
we will consider the methylation profile from this union set as the
discovery set to be confirmed in a new validation set, for which
subjects are currently being recruited.
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(Bronx, NY, USA) approved this study. Study participants gave written and
informed consent to participate. The study was conducted in accordance
with the provisions of the Helsinki Declaration.

Cohort recruitment and analysis
The recruitment process involved several steps detailed in the
Supplementary Table S1 and in previous communications.19,20 The training
set of 48 PTSD+/51 PTSD− and the test set of 31 PTSD+/29 PTSD−
veterans was probed by whole-genome arrays (Agilent, Santa Clara, CA,
USA) containing ~ 27k CpGIs. The outcome was normalized to minimize
the confounding factors attributed to batch processing.21 Functional
analysis was performed using those DMGs, which encoded CpGIs meeting
the cutoff false discovery rateo0.1.
Next, we merged the training and test sets to develop a union set

comprising 79 PTSD+/80 PTSD− veterans, which was probed by whole-
genome arrays (Illumina, San Diego, CA, USA) containing 450 k probes. The
outcome was corrected to minimize heterogeneous cell populations22 and

age effects, and was screened at Po0.05 to find DMGs. Available GEO
databases are as follows: GSE76401 and GSE85399. ClueGo v2.1.2 and
Ingenuity pathway analysis were used for network construction, and
pathways that we report met the cutoff of Po0.05.

RESULTS
The primary purpose of the present communication was to
identify the functional networks associated with combat-related
PTSD, and thereby to provide a better understanding of PTSD
pathophysiology. To meet this goal, we recruited 48 PTSD+/51
PTSD− veterans as a training set and 31 PTSD+/29 PTSD−
veterans as a test set. To increase the statistical power and to
minimize any bias of the Agilent high-throughput array platform,
we took two measures. First, we constructed a union set by
consolidating the training and test sets, following a recently
published strategy.19,20 Second, we retested the methylation
profile, probing the union set using a different array platform
manufactured by Illumina. Furthermore, this union set retains
sufficient statistical power. Taking a moderate estimate of 50% s.
d.'s in probe signals and a relatively conservative estimate for the
mean difference (that is, top 1%), 76 people per group should give
95% power to detect an individual probe with a (Bonferroni-
adjusted) genome-wide significance of Po1.162931e− 07.

Functional analysis of the training set found a host of PTSD-related
networks
In the investigation of the 48 PTSD+/51 PTSD− training set, we
identified 5578 differentially methylated CpGIs annotated to 3662
genes. We collectively defined the 1698 promoter-bound CpGIs
and 157 additional divergent promoter regions as the promoter
regions (Supplementary Figure S4A). Altogether, 4721 CpGIs
annotated 2401 DMGs that displayed a log2 ratio 40.1 and were
defined as hypermethylated. Conversely, 857 CpGIs (672 DMGs)
displaying a log2 ratio o0.1 were defined as hypomethylated .
The remaining DMGs co-enriched by both hyper- and hypo-
methylated CpGIs were excluded from the subsequent functional
analysis. For the functional analysis, we used those DMGs, which
encoded promoter-bound CpGIs, estimated as nearly 60% of total
DMGs. Significantly enriched networks with similar functional
purposes were grouped together, resulting in four network
clusters (Figure 1): nervous system functions (Figure 2a), PTSD-
associated somatic complications (Figure 2b), PTSD-relevant
endocrine signaling networks (Supplementary Figure S6A) and
nervous system development (Supplementary Figure S6B).

Test set validated all the networks identified by the training set
There was a significant (Po0.001) overlap at the DMG level
between the 48 PTSD+/51 PTSD− training set and the 31 PTSD
+/29 PTSD− test set with 779 DMGs in common between the two
sets assayed by the Agilent whole-genome array. Furthermore, a
significant agreement was noted at the functional level as all of
the networks mined from the training set emerged significantly
enriched by DMGs identified from the test set (Table 1).

Union set probed by a different array platform validated a majority
of networks identified by the training and test sets
The union set probed by the Illumina array resulted in 3339 DMG,
74.4% of which encoded hypermethylated CpGIs (Supplementary
Figures S4B and C). One hundred ninety-one DMGs were in
common between the training set and union set, and 107 DMGs
were in common between the test set and union set
(Supplementary Figure S5). There were 852 DMGs encoding
promoter-bound CpGIs enriched in networks linked to addiction,
long-term impact on cerebral functions, social withdrawal,
diabetes, aging, inflammation, circadian rhythm, dopamine-

Table 1. The pathways of interest and their status of validation

Pathway Number of genes

Training set Test set

Nervous system functions
Addiction 25 15
Aggressive behavior 14 8
Fear response

Amygdala fear response
Fear memory consolidation
Fear memory extinction
Fear memory potentiation
Fear-potentiated anxiety
Fear-potentiated startle

48 16

Long-term impact on the brain
Long-term fear memory
Long-term memory
Long-term synaptic depression
Long-term synaptic potentiation

78 18

Depression 10 11
Learning

Associative learning
Learning or memory
Traumatic fear learning

27 9

Social withdrawal 10 3

PTSD-associated somatic complications
Diabetes and insulin signaling 47 19
Premature aging

Metabolic syndrome
Telomere management
Mitochondrial dysfunction

50 38

Inflammation 81 70
Circadian rhythm 40 12
REM sleep 12 2

PTSD-relevant endocrine signaling networks
Corticotrophin-releasing hormone network 30 16
Dopamine and serotonin signaling 27 12
Glucocorticoid signaling 52 36
HPA axis 28 10

Nervous system development
Axon guidance 106 42
Cannabinoid management 28 4
Hippocampus development 7 45
Neurogenesis 60 215
Nerve impulse 42 31
Synaptic plasticity 48 74

Abbreviations: HPA, hypothalamus–pituitary–adrenal; REM: rapid eye
movement; PTSD, post-traumatic stress disorder.
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serotonin signaling, neurogenesis, cannabinoid signaling, nerve
impulse and synaptic plasticity. In addition, 407 DMGs in shelf and
shore regions were enriched in networks associated with REM
sleep, circadian rhythm, inflammation, hypothalamic–pituitary–
adrenal axis and axon guidance. Altogether, the union set
confirmed 15 out of 23 networks mined from the training set
and validated by test set. All of the networks clustered under
PTSD-associated somatic complications and nervous systems'
development were confirmed by the training, test and union sets.

Methylation status of selected DMGs validated by targeted
bisulfite sequencing
Forty-two DMGs were selected from the training set based on
their methylation status and their relevance to PTSD. Their
methylation status was verified by targeted bisulfite sequencing
(Zymo Research, Irvine, CA, USA; Table 2).23,24 Twenty genes out of
forty-two DMGs were confirmed with the Agilent array data.
Table 2 lists these genes and their relevance to PTSD and
associated comorbidities.

DISCUSSION
Clinical measures were in agreement with the epigenetically
altered networks and DMGs
Self-reported clinical measures indicated that veterans with PTSD
were concurrently experiencing higher levels of fear, social
withdrawal, anxiety, hostility, depression and anger than were
controls. Epigenetic investigation of DNA extracted from whole
blood revealed networks relevant to these PTSD-associated
negative emotions. Greater waist size, waist-to-hip ratio and body
mass index19 were found in PTSD cases as compared with controls
and are consistent with the observed pathways associated with

cardiac diseases, diabetes and metabolic syndrome. PTSD-
associated immune dysregulation has been previously reported
in epigenetic studies.14,15,19 Consistent with previous findings,14

our results found a host of innate immunity-associated genes,
consisting of 60% of the entire set of DMGs found altered in PTSD
patients. In extending this knowledge, we functionally linked a
majority of these genes to mobilization of phagocytic macro-
phages and leukocytes.
In addition, we identified epigenetically altered networks linked

to learning and memory that are relevant for PTSD-associated
neurocognitive impairment. Previous epidemiology studies sug-
gested that there was an increased risk of premature aging in
PTSD.34–36 We identified two epigenetically altered networks
relevant to aging. The first network is telomere management and
interaction with pathways of two mediators, wnt/β-catenin37 and
p53.38 The epigenetic profile of these aging markers35 was altered
in PTSD. The second network is mitochondrial dysfunction, also
epigenetically altered in PTSD veterans. Consistent with these
markers of premature aging, we found evidence recently for
decreased mitochondrial DNA copy numbers in PTSD veterans
from this cohort, suggesting a role for energy deprivation in PTSD
that escalates the aging process.39

Premature aging40,41 and other PTSD-associated somatic
complications, such as dysregulation of immunity,42 are known
to be associated with circadian rhythm. Veterans with PTSD
showed epigenetic regulation of some of the key molecular nodes
responsible for setting the circadian clock. We identified DMGs
encoding CREB3 and GRIN2A, which control photoreception,43

and that are involved in signaling to entrain the circadian clock
regulation by CLOCK and PER1 genes.44

Epigenetic changes in neurogenic functional pathways were
captured by the differential methylation of members of the neural
helix–loop–helix family, including NEUROG1 and HES1 and their

Figure 1. Functional enrichment analysis. In all, 352 DMGs encoding promoter-bound differentially methylated CpGIs curated from the
training set were enriched for four functional clusters: PTSD-associated somatic complications, PTSD-relevant endocrine signaling, nervous
system development and nervous system functions. These clusters were designed to group networks with overlapping functionality. All of
these networks were validated by the test set. CRH, corticotrophin-releasing hormone; DMG, differently methylated gene; GC, glucocorticoid;
HPA, hypothalamus–pituitary–adrenal; PTSD, post-traumatic stress disorder; REM, rapid eye movement.
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regulators ATOH-1, Pax6 and NKX2-2.45,46 Epigenetic perturbations
of networks related to the hypothalamic–pituitary–adrenal axis
functions and the synthesis of key feedback regulators, such as
corticotrophin and glucocorticoid, as well as epigenetic changes in
the serotonergic and dopaminergic networks, may serve as targets
for novel therapeutics for PTSD.47

Strengths, limitations and future work
The Diagnostic and Statistical Manual of Mental Disorders-IV
diagnostic criteria48 were used to determine the PTSD status,
an approach to clinical phenotyping, which has limitations.

We attempted to maximize signal detection by employing
stringent selection criteria including a requirement of Clinician-
Administered PTSD scale scores of 40 or greater for PTSD cases
and scores less than 20 for controls.19,20 Our array-based approach
selected two platforms that ensured extensive coverage of the
genome and instilled higher confidence in the outcome. We also
focused primarily on the promoter regions, as the methylation
shifts near transcription start site are most likely to be associated
with long-term gene silencing.49

Given the biological heterogeneity of PTSD, our findings
are limited by the sizes of our discovery, test and union sets.50

Figure 2. (a) Network cluster annotated to nervous system functions significantly enriched by DMGs in the training set. (b) Network cluster
annotated to PTSD-associated somatic complications significantly enriched by DMGs in the training set. (c) Network cluster annotated to
PTSD-relevant endocrine networks significantly enriched by DMGs in the training set. (d) Network cluster annotated to nervous system
development networks significantly enriched by DMGs in the training set. In all the figure, red and green circles are hypermethylated and
hypomethylated genes, respectively. Sizes of the circles labeled by the annotation terms are correlated with their significance of enrichment.
DMG, differently methylated gene; PTSD, post-traumatic stress disorder.
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The selection of the Illumina platform was driven by the following
three factors: (i) this platform offered nearly twice the number of
CpGIs to test in comparison to the Agilent platform; (ii) the
significantly lower amount of input DNA required for the Illumina
assay (500 ng DNA versus 5 μg for the Agilent, assay) satisfied our
need to conserve gradually decreasing DNA stocks; and (iii) the
growing preference for the Illumina assay in the epigenetics
literature11,51 was convincing for its selection. The present study
recruited the largest cohort size used to date to study the PTSD
pathophysiology. The statistical analysis has moderate statistical
power attributed to the sample size, which was further enhanced
by the strict regulations applied by the pathway enrichment
analysis. The epigenetic contributions of many of those genes
discovered have been reported as linked to PTSD via transcrip-
tomic variations. In addition, many novel epigenetic markers

linked to PTSD were presented here. Together, this study revealed
some of the key aspects of PTSD, such as its long-term health
implications, which could be best explained by the epigenetic
model. However, it is challenging to draw robust mechanistic
conclusions due to the non-longitudinal nature of the study;
hence, there is a limited scope for making inferences about
whether these epigenetic alterations are causes of or conse-
quences of PTSD. This study is also lacking in prospective design,
gender balance and systems-wide integration. The findings are
compromised further by the fact that the array platforms are
potentially unable to provide the extensive coverage typical of
deep sequencing.
On the basis of these findings, future work should focus on

those epigenetically altered networks presented herein, which
showed clinical relevance to PTSD pathophysiology. Our study

Table 2. Differentially methylated genes validated by targeted sequencing

Gene symbol CpG location Methylation
Status

Brief recent literature review (human studies)

AKT1 Chr14:
105262368 (TSS− 287)
105262438 (TSS− 357)
105262494 (TSS− 413)

↑ Associated network is vulnerable to stress-induced anxiety and depression,
major comorbidities of PTSD25,26

BDNF Chr11: 27744245 (TSS− 639) ↑ BDNF expression was high in human PTSD serum27 and low in PTSD plasma
samples.28 However, the plasma result was not validated in a subsequent
study29

CNR1 Chr6:
88876636 (TSS− 868)
88876636 (TSS− 1067)

↑ PTSD is significantly associated with SNP haplotype (for C-A and C-G) of
CNR130

CREB1 Chr2: 208394337 (TSS+277) ↑ Altered the gene expressions of CREB family occurred in PTSD patients’
monocytes31

DMRTA2 Chr1: 50890130 (TSS− 1010) ↓ —

EFS Chr14: 23835035 (TSS− 192) ↑ —

ELK1 ChrX: 47510240 (TSS− 236) ↓ —

ETS-2 Chr21:
40177278 (TSS+47)
40177531 (TSS+222)

↑ ETS-2 gene family is responsible for growth control, transformation and
developmental programs that influence telomere shift and premature
aging. Both complications are PTSD-associated32

GATA3 Chr10: 8096093 (TSS+226876) ↓ —

HES4 Chr1:
936030 (TSS− 477)
936301 (TSS− 748)

↑ —

LHX1 Chr17: 35292083 (TSS+2687) ↑ —

MET Chr7:
116311962 (TSS+495)
116312201 (TSS+256)

↑ —

NFATC4 Chr14
24836169 (TSS+24)
24836183 (TSS+38)
24836217 (TSS+72)

↓ This is an immune-associated gene

NR2E1 Chr6:
198486189 (TSS+1024)
198486237 (TSS+976)

↑ NR2E1 deletion produces a highly aggressive phenotype33

PAX5 Chr9: 37036906 (TSS− 2429) ↑ —

PDGFB Chr22:
39638278 (TSS− 1363)
39638353 (TSS− 1438)
39638364 (TSS− 1449)

↑ —

PSD Chr10:
104178908 (TSS− 6)
104178910 (TSS− 8)
104178916 (TSS− 14)
104178930 (TSS− 28)
104178932 (TSS− 30)

↑ —

PTTG1IP Chr21: 46294077 (TSS− 258) ↓ —

TRERF1 Chr6: 42420444 (TSS− 660) ↑ —

Abbreviations: ↑, hypermethylated; ↓, hypomethylated; PTSD, post-traumatic stress disorder; SNP, single-nucleotide polymorphism; TSS, transcription start site.
(i) Whole-genome array from Agilent, probing of the training set (48/51 PTSD+/ − ); (ii) targeted bisulfite-sequencing assay (Zymo Research) probing of the
training set (48/51 PTSD+/− ).
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presented a knowledge-driven data-mining architecture particu-
larly useful to identify potential biomarkers for a multifactorial
disease such as PTSD. In particular, we demonstrated how to use
the clinical and physical dimensions as the successful guiding cue
to mine the molecular markers linked to disease pathophysiology.
This data-mining approach will be practised further in our future
study that will recruit a new validation set to confirm the results
obtained from the union set serving as the better-powered
discovery set. We will also recruit a cohort of female veterans to
minimize gender bias. Additional data from blood counts and
magnetic resonance imaging will be included. System-wide
knowledge integration will be performed to identify PTSD
biomarkers with the highest efficacy.52–57
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