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Bone-in-culture array as a platform to model
early-stage bone metastases and discover
anti-metastasis therapies
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Thomas Welte1,2,3, Stephen T.C. Wong8,9, Zbigniew Gugala10, Fabio Stossi2,3, Chenghang Zong2,6,11,

Zonghai Li4, Michael A. Mancini2,3 & Xiang H.-F. Zhang1,2,3,11

The majority of breast cancer models for drug discovery are based on orthotopic or

subcutaneous tumours. Therapeutic responses of metastases, especially microscopic

metastases, are likely to differ from these tumours due to distinct cancer-microenvironment

crosstalk in distant organs. Here, to recapitulate such differences, we established an ex vivo

bone metastasis model, termed bone-in-culture array or BICA, by fragmenting mouse bones

preloaded with breast cancer cells via intra-iliac artery injection. Cancer cells in BICA

maintain features of in vivo bone micrometastases regarding the microenvironmental niche,

gene expression profile, metastatic growth kinetics and therapeutic responses. Through a

proof-of-principle drug screening using BICA, we found that danusertib, an inhibitor of the

Aurora kinase family, preferentially inhibits bone micrometastases. In contrast, certain

histone methyltransferase inhibitors stimulate metastatic outgrowth of indolent cancer cells,

specifically in the bone. Thus, BICA can be used to investigate mechanisms involved in bone

colonization and to rapidly test drug efficacies on bone micrometastases.
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I
n the clinic, primary breast tumours are usually surgically
removed soon after diagnosis, leaving patients ‘tumour-free’.
However, 20–40% of breast cancer survivors will eventually

suffer metastasis to distant organs, sometimes years after
surgery1,2. Thus, the life-threatening enemy is typically not the
bulk of primary tumours, but the dispersed metastatic seeds,
which have disseminated to distant organs, may be temporarily
dormant, and may resume aggressive outgrowth under certain
yet-to-be-identified conditions. Current adjuvant therapies are
intended to eliminate these cells. However, the therapeutic
decisions and strategies are usually based on pathological
features of primary tumours. Metastases are likely to differ
from their parental primary tumours due to Darwinian selection
and/or adaptation in a different milieu. In either case, the
microenvironment in distant organs plays a critical role in driving
the selection and/or adaptation of cancer cells.

Bone is the organ most frequently affected by breast cancer
metastasis3–7. Its diagnosis relies on skeletal-related events,
including pathological fractures8. Mechanistically, these events
are caused by the vicious cycle between osteoclasts and cancer
cells4,9. Cancer cells can release factors such as parathyroid
hormone-related protein, which will stimulate the production
of Receptor activator of nuclear factor kappa-B ligand (RANKL)
by osteoblasts, leading to the activation of osteoclasts9–11.
Reciprocally, growth factors such as insulin-like growth factor-1
and transforming growth factor-b are released from dissolved
bone matrix to further fuel cancer cell growth9,12.

We have recently provided evidence supporting a pre-
osteolytic phase of bone colonization before the vicious cycle13.
In this phase, breast cancer cells, especially the luminal subtype,
tightly interact with cells in the osteoblast lineage, or osteogenic
cells. Osteoclasts, on the other hand, do not appear to be involved
until the transition from ‘osteogenic’ lesions to ‘osteolytic’ lesions.
Consistent with this finding, cancer cells injected through the iliac
artery soon became tightly embedded in bone tissues and could
only be dissociated with protease digestion, even after bone
fragmentation14. This characteristic led us to establish an ex vivo
model named ‘bone-in-culture array’ or BICA. Here we provide
evidence demonstrating that BICA mimics cancer–bone
interactions in the pre-osteolytic phase, and also recapitulates
transitions to the osteolytic phase. Thus, it represents a preclinical
platform that may fill the gap between in vitro and in vivo models,
and accelerate mechanistic and pharmacological studies of bone
metastasis.

Results
BICA provides a bone-like microenvironment. BICA is based
on a technique that we have previously established, namely intra-
iliac artery (IIA) injection13, which selectively delivers cancer cells
into the hindlimbs of mice through arterial circulation. After
injection, cancer cells usually home to the spongy bone of the
tibia or femur bones. To develop BICA, we extracted and
fragmented epiphysis and metaphysis of hindlimb bones
containing the cancer cells (Fig. 1a and Supplementary Fig. 1a).
The bone fragments (0.5–1.5 mm in diameter and 0.2–0.4 g cm� 3

in mineral density; Supplementary Fig. 1b,c) can be maintained in
tissue culture for up to 6 weeks without significant loss of viability
(Supplementary Fig. 1d). Since the breast cancer cells utilized in
this study are engineered to express luciferase, bioluminescence
imaging can be used to quantify viable cancer cells. Cancer cells
remain confined within fragments during this time, probably due
to the tight interaction between cancer and bone cells (Fig. 1a).
About 20–50 bone fragments can be obtained from one mouse,
thus greatly reducing the number of mice needed for each
experiment and making multiple parallel applications feasible. In

the following paragraphs of this section, we describe several
experiments performed to compare BICA with in vivo bone
lesions (IVBL) introduced by IIA injection. In these comparisons,
we also included orthotopic tumours and cancer cells maintained
in two-dimensional (2D) cultures to represent the non-bone
microenvironment.

To determine whether the microenvironment of cancer cells in
BICA and IVBL are similar, we performed immunofluorescent
staining of alkaline phosphatase (ALP), collagen I (Col-I) and
cathepsin K (CTSK). ALP and Col-I are expressed in the cells of
the osteoblast lineage, whereas CTSK is a marker of activated
osteoclasts. The expression pattern of these molecules is very
similar in the two models (Fig. 1b and Supplementary Fig. 1e),
and consistent with what we have previously found in bone
micrometastases at the pre-osteolytic stage13.

Peri-vascular niche has been increasingly implicated in
regulating cellular fates of disseminated tumour cells. We
examined whether endothelial cells remain in BICA. Indeed,
immunofluorescence staining of CD31þ cells uncovered that at
least some of these cells can persist for up to 3 weeks in BICA
(Supplementary Fig. 1f), providing potential opportunities to
study the interaction between cancer cells and the peri-vascular
niche.

Although activated osteoclasts are absent at early time points,
we noticed that some monocytes, the precursors of osteoclasts,
remain close to bone fragments in BICA (Fig. 1c). To test whether
these monocytes still maintain the potential to differentiate into
osteoclasts, we added macrophage colony-stimulating factor
(M-CSF) and RANKL to the medium and performed staining
of tartrate-resistant acid phosphatase (TRAP) to examine
osteoclastic activities. Indeed, M-CSF/RANKL treatment induced
TRAPþ , multinuclear osteoclasts (Supplementary Fig. 2a)
indicating that monocytes in BICA retain differentiation abilities.
To ask whether monocytes can spontaneously differentiate
into activated osteoclasts in BICA, we applied cancer cell models
that rapidly induce osteolytic vicious cycle in vivo, namely
MDA-MB-231 cells and one of its osteotropic subpopulations,
SCP28 cells15. At relatively late time points (3–5 weeks), we
examined osteoclast differentiation by CTSK or TRAP staining.
As expected, these cancer cells induced spontaneous
osteoclastogenesis in BICA, both to monocytes suspended in
medium (Supplementary Fig. 2b) and to those remaining in bone
fragments (Fig. 1d and Supplementary Fig. 2c). In contrast,
cancer cells that undergo indolent metastatic growth and
prolonged pre-osteolytic stage (MCF-7) did not exhibit the
same activity (Supplementary Fig. 2b,c). The activated osteoclasts
in BICA appear to dissolve bone matrix as evidenced by an
increased surface-to-volume ratio in SCP28-containing bone
fragments (Supplementary Fig. 2d). Moreover, SCP28 cells
showed a similar growth kinetic to in vivo condition and grew
more rapidly as compared to the parental MDA-MB-231 cells in
early time points, confirming that BICA can recapitulate
metastasis bone tropism (Supplementary Fig. 2e). The growth
kinetics of SCP28 cells in BICA closely mimicked the same cells
in IVBL till 4 weeks after injection (Supplementary Fig. 2f), when
tumour-induced osteoclastogenesis had already started. However,
the growth then became retarded, probably because the tumour
burden had saturated the bone surface area in the fragments.
Thus, BICA may not be able to recapitulate full-fledged vicious
cycle. Despite this limitation, our data demonstrated the
suitability of BICA in modelling pre-osteolytic stage and
perhaps also the transition from pre-osteolytic to osteolytic
stages during bone colonization.

To further characterize BICA at a molecular level, we
performed transcriptomic profiling to determine similarities or
differences between BICA and IVBL. Cancer-containing bone
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segments in both BICA and IVBL were subjected to RNA-seq
along with 2D culture samples and orthotopic tumours. Since we
used MCF-7 cells as a proof of principle, the cancer cell and host
transcriptomes are human and mouse, respectively, and can be
separated by mapping them to different reference genomes
(Supplementary Fig. 3). We first applied CIBERSORT16 to
the mouse sequences to deduce cell types constituting the
microenvironments of BICA, IVBL and orthotopic tumours.
The major cellular components are comparable between BICA

and IVBL, both of which differ markedly from those in orthotopic
tumours. Importantly, among the 13 major cell types included
into the analysis, osteoblasts, osteoprogenitors and mesenchymal
stem cells together account for over two-thirds of
microenvironment cells in both BICA and IVBL, but not in
orthotopic tumours (Fig. 1e). These data support our previous
finding that the niche of early-stage bone colonization is
predominantly osteogenic13. Principle component analysis
and t-Distributed Stochastic Neighbor Embedding analysis17 of
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human RNAs indicated that the transcriptomic profiles of cancer
cells in BICA more closely mimic those in IVBL, as compared to
cancer cells in 2D and in orthotopic tumours (Fig. 1f). Taken
together, these results provide additional evidence supporting
BICA as a platform to mimic the bone microenvironment.

BICA provides opportunities to study metastasis dormancy.
Some indolent cancer cells undergo delayed growth after being
introduced into the bone by IIA injection13, suggesting a period
of dormancy. To track cellular fates of cancer cells in different
microenvironment, we used inducible expression of histone
protein 2B (H2B) fused with either firefly luciferase (Fluc) or
green fluorescent protein (GFP). Similar systems were used before
to study quiescent adult stem cells18. When the expression of
H2B-Fluc/GFP was fully induced in all cells, we withdrew
doxycycline and followed GFP or bioluminescence signals. We
expected quiescent cells would maintain the expression of the
fusion proteins in nucleus. Proliferating cells would have the
fusion proteins diluted in each cell, but the overall quantity of the
proteins should maintain the same level. Cell death would cause a
net loss of these proteins. We validated these predictions in 2D
cultures by immunofluorescence staining of GFP in conjunction
with Ki67 or BAX to indicate proliferation and apoptosis,
respectively (Fig. 2a). We chose BAX as an apoptosis marker here
because Cleaved Caspase 3 is absent in MCF-7 (ref. 19). In
parallel, we also used constitutive expression of Fluc/GFP to
simply follow numbers of viable cancer cells (Fig. 2a). The
combination of constitutive and inducible systems allowed us to
delineate cancer cell fates: if a cell population is mainly consists of
proliferating and dying cells, one would expect to see an alteration
of constitutive Fluc/GFP (depending on the balance between
proliferation and cell death), but a net decrease of induced H2B-
Fluc/GFP signals. On the contrary, dormant cell population
would have stable signals in both settings.

When this strategy was applied to MCF-7 cells, we found that
constitutive Fluc/GFP exhibited delayed increase in both IVBL
and BICA samples for about 2 weeks. In contrast, this signal
immediately entered exponential growth in 2D cultures and on
introduction to mammary fat pads (Fig. 2b). Cancer cells cultured
under several other conditions also failed to mimic the growth
kinetics of IVBL, including those growing on plates coated with
specific extracellular proteins, in three-dimensional (3D) suspen-
sion medium, or directly dropped on top of bone fragments
(instead of getting incorporated via IIA injection; Supplementary
Fig. 4a–c). In parallel, the induced H2B-Fluc signal of MCF-7
cells was stable for 2 weeks in BICA before starting to decrease,
whereas the same signal in 2D cultures rapidly decreased
(Fig. 2c). Immunofluorescence staining confirmed that cancer
cells in BICA maintained expression of H2B-GFP and were
negative for both Ki67 and BAX (Fig. 2d). Since endothelial cells
persist in BICA (Supplementary Fig. 1f), we asked whether
dormant cancer cells localize to peri-vascular niche20,21. Indeed,
as reported in the previous literature21, we detected indolent
MDA-MB-231 cells adjacent to CD31þ cells (Supplementary
Fig. 4d), supporting the significance of this niche. Taken together,
these data strongly suggest that some indolent cancer cells
undergo a short period of dormancy in BICA, providing an
opportunity to study the underlying mechanisms.

BICA recapitulates the osteogenic niche. We asked whether the
cancer–niche interaction in BICA mimics that of IVBL. Analyses
of the RNA-seq results revealed that cancer cells in both BICA
and IVBL exhibited increased expression of mTOR target genes
as well as genes involved in cell–cell adhesions (Fig. 3a). This is
consistent with our previous studies showing that luminal breast

cancer cells utilize E-cadherin to form heterotypic adherens
junctions with N-cadherin expressed by osteogenic cells13. This
interaction activates the mTOR pathway in cancer cells and drives
metastatic progression during early-stage bone colonization13

(Fig. 3b). In the following experiments, we asked whether BICA
could recapitulate the cancer–niche interaction observed in whole
animals by pharmacological or genetic perturbations of the
heterotypic adherens junctions–mTOR pathway in both BICA
and IVBL.

First, we conditionally knocked out N-cadherin in osteogenic
cells or endothelial/haematopoietic cells using Osterix-cre or
Tie2-cre alleles in combination with Cdh2flox (encoding
N-Cadherin) alleles, respectively (Fig. 3c and Supplementary
Fig. 5a). Bone colonization of syngeneic AT3 cells was
significantly impaired in Osterix-cre;Cdh2f/f animals, as compared
to control animals and Tie2-cre;Cdh2f/f (Fig. 3d and
Supplementary Fig. 5b). A similar reduction in tumour growth
in BICA was also observed using these mouse strains as sources
for bone fragments (Fig. 3e and Supplementary Fig. 5c),
suggesting that N-cadherin is important for cancer colonization
both in IVBL and in BICA.

Second, we tested the efficacies of an mTOR inhibitor (Torin 1),
a mitogen-activated protein kinase (MAPK) inhibitor (PD98059)
and a neutralizing antibody against E-cadherin on cancer cells
in BICA, IVBL or 2D cultures. Both the mTOR inhibitor and
anti-E-cadherin treatment significantly inhibited the progression
of IVBL (Fig. 3f,g), as expected based on our previous findings
(Fig. 3b)13. On the other hand, the MAPK inhibitor failed to
affect bone colonization (Fig. 3h). When applied to BICA,
both the mTOR inhibitor and anti-E-cadherin treatment could
similarly inhibit cancer cells with high efficiencies (Fig. 3i,j).
Importantly, the efficacy of anti-E-cadherin treatment is higher in
BICA as compared to 2D cultures (Fig. 3j), indicating that BICA
enhances sensitivity of cancer cells to E-cadherin blockade.
In contrast, BICA confers resistance to the MAPK inhibitor,
a phenomenon also seen in IVBL (Fig. 3h) but not in 2D culture
(Fig. 3k).

Thus, BICA, similar to IVBL but different from 2D cultures,
exhibited expected responses to various molecular perturbations
based on our understanding of the osteogenic niche. These
data support the reliability of BICA as a model to recapitulate
cancer–niche interaction in the bone.

Multiple parallel drug tests using BICA. As a proof of principle,
we chose a small library of chemical compounds and tested
their effects on cancer cells in BICA. The library contains 68
small-molecule epigenetic modulators (designated as EG library,
available from Selleckchem, Catalogue # L1900). This was chosen
based on the rationale that adaptation of cancer cells to the bone
microenvironment may involve epigenomic reprogramming,
which might be modulated by some of these compounds.
For comparison, we simultaneously applied these compounds to
the same cancer cells in 2D cultures. We intended to identify
compounds exhibiting differential effects in BICA as compared to
2D cultures.

Two rounds of tests were conducted. In the first round, the EG
library was divided into functionally related groups containing
five to six compounds (Supplementary Table 1). Groups that
exhibited strong effects were then separated and subjected to the
second-round tests (Fig. 4a). In the first round of tests, diverse
effects of different groups were observed in both BICA and 2D
cultures (Fig. 4b). In particular, we noticed that Aurora kinase
inhibitors and histone methyltransferase (HMT) inhibitors
exhibited significant but opposite effects: the former inhibited
and the latter stimulated tumour growth in BICA, as compared
to the same cancer cells in 2D cultures (Fig. 4b). Histone
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deacetylase inhibitors also exhibited strong anti-tumour effects in
both 2D cultures and BICA. However, a toxicity test using
tumour-free bone fragments revealed strong negative impacts of
these compounds on the viability of healthy bone cells
(Supplementary Fig. 6). Therefore, we only focused on the
Aurora kinase inhibitors and HMT inhibitors. The second round
of tests identified danusertib as an individual drug responsible for
the inhibitory effects seen for the Aurora kinase inhibitors
(Fig. 4c), and EPZ-6438 and MM-102 for the stimulatory effects
of the HMT inhibitor group (Fig. 4d). These drugs did not affect
the viability of tumour-free bone segments when used at the same
dosage (Supplementary Fig. 6). Therefore, we chose to focus on
danusertib, EPZ-6438 and MM-102 for further analyses.

Danusertib preferentially eliminated cancer cells in bone.
Aurora kinases play an important role in regulation of mitosis
and cell proliferation22. They have recently been implicated in
epigenetic modification of histones. Danusertib is a pan-Aurora
kinase inhibitor23, and has been tested in phase 2 clinical trials24.
Here our results pointed to an increased efficacy of danusertib on
cancer cells in BICA as compared to those in 2D cultures
(Fig. 5a). Specifically, 100 nM danusertib could achieve over
90% inhibition rate of tumour growth in BICA, but only B60%
in 2D or 3D cultures (Fig. 5a and Supplementary Fig. 7a,b).
This difference is unlikely due to different levels of baseline
proliferation, as the proliferation rate in 3D suspension medium
is much lower than that in 2D or BICA, yet the inhibition rate of
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danusertib in 3D culture is similar to that in 2D culture, but lower
than that in BICA (Supplementary Fig. 7b). Thus, the bone
microenvironment appears to enhance sensitivity of cancer cells
to danusertib.

We sought to validate this increased sensitivity in additional
cancer models. To this end we examined MDA-MB-361, another
cancer cell line that can slowly colonize bone. We also tested a
patient-derived xenograft (PDX) model using BICA. In both
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cases, danusertib exhibited similar inhibitory effects as with
MCF-7 cells (Fig. 5b,c).

We next tested the efficacy of danusertib in vivo. We were
especially interested in examining the effects of danusertib on
early-stage, microscopic bone metastases. Therefore, we chose to
use indolent models with a prolonged pre-osteolytic stage. The
bone colonization kinetics of MCF-7 cells were characterized in
our previous studies. The osteolytic vicious cycle typically occurs
over 5 weeks after IIA injection13, providing a time window to
examine drug effects in the pre-osteolytic stage. Treatment
with danusertib almost completely abolished the progression of
pre-osteolytic bone lesions (Fig. 5d and Supplementary Fig. 7c).

The same dosage of danusertib also reduced orthotopic tumour
growth, although to a lesser degree as compared to the reduction
of bone colonization (Supplementary Fig. 7d).

To further validate the efficacy of danusertib on spontaneous
bone metastases, we used 4T1.2 cell line as a model25. When
transplanted into the mammary glands of syngeneic Balb/c mice,
4T1.2 cells can give rise to orthotopic tumours that spontaneously
disseminate to other organs, including bone. We removed the
orthotopic tumours when they reached 0.5 cm3 and monitored
metastases to various organs. Danusertib treatment was initiated
after orthotopic tumour removal. The ‘adjuvant’ danusertib
treatment significantly reduced spontaneous bone metastases
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(Fig. 5e), but not local recurrences of orthotopic tumours
(Supplementary Fig. 7e).

Finally, we asked whether danusertib inhibits bone
colonization by eliminating dormant cancer cells, which would
be highly desirable in the clinic to permanently decrease risks of

recurrence. Towards this end, we used the inducible
H2B-Fluc/GFP system and found that danusertib decreased the
otherwise stable H2B-Fluc/GFP signals in BICA, a strong
indication of reduction of dormant cancer cells (Fig. 5f and
Supplementary Fig. 7f). This was supported by the BAX
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expression observed in H2B-GFPþ cells in danusertib-treated
bone fragments (Fig. 5g).

Taken together, these data support that danusertib treatment
represents an effective strategy to prevent bone recurrences,
possibly by eliminating dormant disseminated tumour cells in
the bone.

EPZ-6438 and MM-102 stimulate tumour progression in bone.
EPZ-6438 targets EZH2 (ref. 26), and MM-102 is a potent
WDR5/MLL interaction inhibitor27. Both of these compounds
stimulated tumour growth in BICA. Moreover, this stimulatory
effect was BICA-specific (Fig. 4d and Supplementary Fig. 7b). In
2D cultures, these two compounds had modest inhibitory effects
on cancer cell viability at a dosage of 10 mM (35% inhibition for
EPZ-6438 and 13% inhibition for MM-102). However, a clear
dose-dependent increase of tumour burden was seen when
applied to BICA (Fig. 6a). The same effects of these drugs were

also seen using MDA-MB-361 as a second model in BICA
(Fig. 6b). We then examined whether EPZ-6438 (chosen over
MM-102 because it has been tested in vivo28) could also promote
bone colonization in vivo. Towards this end, we performed IIA
injection of MCF-7 cells on animals without oestradiol
supplement, which usually resulted in even more indolent bone
colonization of this ERþ cell line. EPZ-6438 significantly
increased bone colonization even under this oestradiol-deficient
condition (Fig. 6c). Thus, it is likely that histone methylation may
play an important role in cancer–niche interaction and resistance
to oestrogen deprivation therapies. Because EZH2 has been
considered to be a tumour-promoting gene, we hypothesized that
its function could be context-dependent in human metastases.
We used an EZH2 target gene signature29 as an index of EZH2
activities, and applied it to breast cancer metastases in different
organs. Interestingly, a large variation was observed: bone and
brain metastases express significantly lower levels of EZH2 target
genes as compared to metastases in other organs (Fig. 6d). Thus,
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the bone microenvironment may favour reduced EZH2 activities
in cancer cells. These results demonstrate the utility of BICA for
discovery of unexpected effects of compounds and their target
pathways.

Discussion
It has long been recognized that the microenvironment plays
an important role in dictating metastatic progression and
modulating therapeutic responses. Both direct cell–cell crosstalk
and interaction with extracellular matrix can rewire signalling
network inside cancer cells, thereby modulating their behaviours
under specific conditions30,31, probably through inducing
epigenetic changes in cancer cells. Particularly in bone both
osteoblasts and osteoclasts, as well as other resident cells, together
constitute a unique cellular and molecular environment5, which
likely renders metastatic cells resistant to some and vulnerable to
other perturbations as compared to the same cancer cells in other
milieu. A prominent example is anti-osteoclast treatment with
bisphosphonate and denosumab, which have been widely used in
the clinic to limit the progression of osteolytic bone metastases32.
More recently, several pathways have been shown to mediate
cancer–bone crosstalk, including Notch33, transforming growth
factor-b (ref. 34), HIF35,36, Integrin37, Irf7 (ref. 38), VCAM1
(ref. 39) and mTOR13. These clinical and preclinical
investigations highlighted the urgency of considering
microenvironment when treating metastatic cancers. BICA
meets this imperative need by recapitulating cancer–niche
interaction in early-stage bone colonization and revealing
bone-specific therapeutic responses.

Some previous studies also aimed to model cancer–bone
interactions under ex vivo or in vitro settings40. One study added
cancer cells to already-fragmented bone chips41,42. Others
attempted to mimic one or a few aspects of the bone
microenvironment by using extracellular matrix43,44,
hydrogel45, man-made ceramic and composite scaffolds46, or
cell-derived matrices47. BICA differs significantly from these
approaches, in that it delivers cancer cells into natural bone
tissue via circulation, and allows the subsequent seeding and
cancer–niche interaction to occur in vivo. Because of the
tight cancer–bone adherence, several important features
are maintained after fragmentation, including the cellular
components of the metastasis niche, the gene expression of
cancer cells, growth kinetics and the specific mechanisms of
cancer–niche crosstalk (Figs 1–3). This faithfulness has not been
demonstrated in any of the above ex vivo models.

Co-transplantation of human fetus bone fragments and cancer
cells have been demonstrated. Spontaneous bone metastases
occurred preferentially to human bones over mouse bones in this
model. Moreover, the cancer–bone interaction is between human
tissues48. However, restricted availability of fetus bone tissue
limits the wide application of this approach. Moreover, it would
be difficult to apply quantitative and rapid parallel assays with
spontaneous metastasis models. BICA overcomes these barriers
and provides a highly complementary platform to accelerate
therapeutic and mechanistic studies of bone metastasis.

In the current study BICA was primarily used to model pre-
osteolytic micrometastases, although we also demonstrated its
potential to investigate the onset of osteoclast activation. Perhaps
because of limited bone surface area and insufficient monocyte
supply, the ability of BICA to model full-fledged vicious cycle is
limited. The pre-osteolytic stage corresponds to the phase when
adjuvant therapies are applied in the clinic. Although adjuvant
therapies are intended to target micrometastases in distant
organs, the decision and choice of specific treatments has to be
made based on features of primary tumours. In this study we

provided three specific examples of how cancer cells in a different
context may respond differently to certain drugs. While
danusertib exhibited enhanced efficacies on cancer cells interact-
ing with bone, two HMT inhibitors unexpectedly showed the
opposite trend—they promoted tumour growth, specifically in the
bone microenvironment. Several types of mechanisms could
lead to such markedly altered responses. First, cancer–bone
interaction may rewire the signalling network in cancer cells,
thereby altering their responses to certain drugs. Second,
some drugs may act on the microenvironment niche cells,
thereby indirectly affecting cancer cells. Third, biophysical
and biochemical properties of the microenvironment niche
may enrich or deprive certain drugs, thereby changing the
bioavailability of these drugs to cancer cells. Future studies will be
needed to delineate specific mechanisms behind each drug
that exhibits distinct effects on cancer cells in the bone
microenvironment.

We observed that endothelial cells could persist for weeks in
BICA (Supplementary Fig. 1f). Moreover, we detected dormant
cancer cells adjacent to endothelial cells (Supplementary Fig. 4d).
These results support that the peri-vascular niche regulates
metastasis dormancy20,21. Our previous studies demonstrated
that the osteogenic niche promotes cancer cell proliferation13.
Thus, cellular fates of cancer cells may be influenced by their
distribution or migration between different microenvironment
niches. More quantitative and, ideally, real-time imaging will be
needed to further pursue this hypothesis. A limitation of BICA is
the lack of immune cells other than monocytes. Adaptive
immunity was shown to play an important role in bone
metastasis38. This limitation may be partially overcome by
reconstituting some of the immune cell components in the
ex vivo environment of BICA in future studies.

Methods
Cell lines. None of the cell lines used in this study are listed in the database of
commonly misidentified cell lines maintained by ICLAC and NCBI Biosample.
MCF-7, MDA-MB-231 and MDA-MB-361 were purchased from American
Type Culture Collection. S.I. Abrams (National Cancer Institute) generously
provided AT3 cells. For regular maintenance, cells were cultured in DMEM media
supplemented with 10% fetal bovine serum (FBS). As the parallel control for BICA
assay, 500 cells were seeded and then cultured in DMEM/F12 media supplemented
with 2% FBS in 96-well plates. No cell line authentication was performed. Cell lines
were subjected to bi-monthly tests for mycoplasma contamination.

Lentivirus transduction of tumour cells. The Fluc-GFP fusion gene was cloned
into expression vector pwpt-GFP (Addgene #12255) in place of the GFP gene in the
backbone. Using Xtreme Gene HP DNA Transfection Reagent (Version 08,
Roche), the pwpt-Fluc-GFP vector was transfected into 293T cells with pMD2.G
(Addgene #12259) and psPAX2 (Addgene #12260) to package lentivirus. Lentiviral
stocks were filtered by 0.45 mm polyethersulfone membranes (VWR 28145–505).
Cancer cells were incubated with Fluc-GFP lentivirus and 4 mg ml� 1 polybrene for
8 h. After a 72 h culture period, successfully labelled cells were isolated by FACS
sorting of GFP-positive cells.

The inducible H2B-GFP system was reported18 and used in our previous study.
Briefly, the H2B-GFP fusion gene was introduced into pINDUICER22 vector49 in
place of the original GFP gene. Virus generation and transduction were performed
using the same procedures as described above. A unit of 1 mg ml� 1 doxycycline
treatment was performed for 3 days to induce the H2B-GFP protein expression in
cells. The H2B-Fluc vector was modified from H2B-GFP system, which replaced
the GFP gene with the Fluc gene.

PDX model. PDX 4664, gifted by Dr Mike Lewis’ lab at Baylor College of
Medicine, is an established PDX tumour model, which has been granted protocol
exemption by the Institutional Review Board of Baylor College of Medicine for not
involving human subjects.

Immunofluorescent staining. Immunofluorescent staining was performed as
previously described13. Bone or BICA pieces were collected 3 weeks after tumour
cell inoculation. Sample preparation was assisted by the shared Pathology Core
resource of Dan L. Duncan Cancer Center. Staining was performed using
antibodies against ALP (Abcam, ab108337, 1:500), Col-I (GeneTex, GTX41286,
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1:500), CTSK (Abcam, ab19027, 1:100), Osterix (Abcam, ab22552, 1:500), CD31
(Abcam, ab28364, 1:100) and N-cadherin (BD, 610920, 1:250).

Bone seeding model. The assay was performed as previously described42. Femoral
heads were fragmented and aligned into the low-attachment 96-well plates with
100ml DMEM-F12 media with 2% FBS. MCF-7 cells were seeded on top of these
slices at a density of 20,000 cells per well and then incubated and traced by
bioluminescence imaging for 28 days.

Extracellular matrix coating model. The assay was performed as previously
described, with slight modification44. Briefly, 500 cells were plated on top of
solidified Matrigel Membrane Matrix (Corning, 354234) or Col-I (BD 354236) in
each well of a 96-well plate. Cells were fed once every week with DMEM-F12 media
with 2% FBS and traced by bioluminescence imaging for 28 days.

3D suspension culture model. A total of 20,000 luciferase-labelled cancer cells
were cultured in a low-attachment 24-well plate in DMEM/F12 media with either
2% FBS or murine basic fibroblast growth factor (20 ng ml� 1, Life Technologies),
as well as murine epidermal growth factor (20 ng ml� 1, Life Technologies) and B27
supplement (GIBCO). Cell growth was traced by bioluminescence imaging for
24 days.

Animals. Athymic nude mice and Balb/c mice were purchased from Harlan
Sprague Dawley. Osx1-GFP::Cre mice, Tie2-Cre mice and Cdh2flox mice were
purchased from Jackson Laboratories (stock numbers: 006361; 004128; and 007611,
respectively). These strains were intercrossed to produce experimental cohorts
Osx1-GFP::Cre/Cdh2flox and Tie2-Cre/Cdh2flox mice. Mice were genotyped by PCR.
To halt EGFP/Cre fusion protein expression, mice were provided with fresh
drinking water containing 2 mg ml� 1 doxycycline (Sigma). The 5- to 7-week-old
female mice were used in all in vivo/ex vivo experiments. The strain and number of
mice used for each experiment are mentioned in text and legends. All animal
work was done in accordance with a protocol approved by the Baylor College of
Medicine Institutional Animal Care and Use Committee. The investigator was not
blinded to the group allocation during the whole experiment.

Injection and quantification of cancer cells in bone. Intra-iliac injections,
mammary pad injections and IVIS imaging were performed as previously described
while the data normalization was processed with slight modifications13. After
injection, animals were imaged weekly using IVIS Lumina II (Advanced Molecular
Vision), following the manufacturer’s recommended procedures and settings. For
intra-iliac injection, we focused on bioluminescence signals at the epiphysis and
metaphysis of femur and tibia other than the entire hindlimb. The acquired
intensity data were divided over the day 0 signal intensity of the same animal at the
same locus to yield normalized values. The intensity values were first normalized to
day 0 and then subjected to statistical tests.

Spontaneous bone metastasis assay. The spontaneous bone metastasis assay
was performed as previously described, with slight modifications13. Briefly, BALB/c
mice were subjected to mammary fat pad injections of 1� 105 4T1.2 cells
suspended in 50% Growth Factor Reduced Matrigel Matrix. Surgical resection was
used to remove the tumours after 10–11 days. Mice were then randomized into
different treatment groups and closely monitored for another 2 weeks.
Bioluminescence imaging was performed before mice were killed. The Student’s
t-test was used to compute the P value.

Pharmacological treatment. Torin 1 (S2827, Selleckchem), PD98059 (A1663,
ApexBio) and danusertib (A4116, ApexBio) were injected via intraperitoneal (i.p.)
injection, daily, at the dosage of 6.8, 10 and 15 mg kg� 1, respectively. EPZ6438
(A8221, ApexBio) was injected via i.p. injection once every 2 days at 50 mg kg� 1.
For antibody therapy, 4 mg kg� 1 DECMA-1 (U3254; Sigma) or rat immuno-
globulin G (I4131; Sigma) was injected via i.p.injection twice a week. In the
experiments using MCF-7 cells, oestradiol pellets were prepared and transplanted
into nude mice before cancer cell injection, according to a previously published
protocol50, unless otherwise noted.

Set-up of BICA. Bone-in-culture pieces were prepared from the distal epiphysis
and metaphysis of the femurs and the proximal epiphysis and metaphysis of the
tibias collected from mice 30 min after receiving intra-iliac injection (Fig. 1a and
Supplementary Fig. 1a). The bones were crushed with a sterilized bone plier (F.S.T.
16025–14), trimmed with micro dissecting scissor (Roboz RS-5912) and transferred
to low-attachment 96-well plates by micro dissecting forceps (Roboz RS-5135) in a
cell culture hood. Bone fragments derived from multiple animals were randomized
and mixed in each group. Bone pieces bearing tumour cells were arranged in low-
attachment 96-well plates and cultured in media comprises DMEM/F12. The
concentration of FBS varied, with human at 2% and mouse at 0.5%. Medium was
changed every 3–4 days, with medium being removed along the wall of wells

to avoid fragment aspiration. An IVIS Lumina II machine was used for
bioluminescence imaging. The bioluminescence intensity data were divided over
the day 0 signal intensity of the same piece to yield normalized values. Field of
view¼D; Exposure time¼ 1 min; bining¼Medium; F/Stop¼ 1 for luminescent
imaging. The intensity values were first normalized to day 0 and then subjected to
statistical tests.

Drug screening. An epigenetics compound library used for drug screening was
purchased from Selleckchem (Catalogue # L1900, 128cpds, ordered in June 2015).
BICA samples preloaded with MCF-7 cells were aligned in low-attachment 96-well
plates with six replicates per condition. In the first screening, 68 small-molecule
epigenetic modulators were selected and grouped at a concentration of 100 nM for
each compound based on information provided by the vender. In the secondary
screenings, single compounds were tested at 100 nM separately. The names of
selected compounds and group information are provided in Supplementary
Table 1. For parallel experiments in 2D cultures, MCF-7 were plated in cell culture-
treated 96-well plates at a density of 500 cells in 200ml medium per well with six
replicates per condition.

RNA-seq experiment and data analysis. All tumour samples were collected 3
weeks after inoculation. After homogenization, total RNA was extracted using the
Direct-zol RNA miniprep kit. The first and second strands of cDNA were prepared
by SuperScript III First-Strand Synthesis System and NEBNext mRNA Second
Strand Synthesis Module from at least 200 ng total RNA, for each sample.
Sequencing libraries were prepared from 1 ng of purified double-stranded cDNA
with the Illumina Nextera XT DNA Library Prep Kit (Illumina, San Diego, CA,
USA) according to the protocol supplied by the manufacturer. Cluster generation
was performed using the Illumina Nextseq 500/550 high output v2 kit and
sequenced on the Illumina Nextseq 500 equipment.

RNA-seq next-generation sequencing reads derived from xenograft materials
containing a mixture of human and mouse reads were separated using Xenome
(version 1.0.1)51. We used the default k-mer size suggested by Xenome (-k 25).

RNA-seq next-generation sequencing reads were mapped using STAR RNA-seq
aligner (version 2.4.1d)52. To improve mapping accuracy, the gene transfer format
file was supplied at the genome index generation step with the command line
option—sjdbOverhang 79 (ReadLength - 1) together with the genome fasta file. To
make full use of the reads not uniquely mapped we used RSEM53, which applies
estimation maximization to quantify gene and isoform expression. DEseq2
R package54 was used to normalize the gene/isoform expression matrix.

Single sample gene set enrichment analysis (ssGSEA) was performed according
to previous studies55,56, which was used to calculate separate enrichment
scores (ES) for each pairing of a sample and gene set in Molecular Signatures
Database (MSigDB). ssGSEA (v7) analyses were performed using GenePattern
(http://genepattern.broadinstitute.org/). This procedure is similar to GSEA. But
unlike ranking the genes by comparing samples from two groups, the ssGSEA
ranks the genes by their absolute expression in one sample. The ranked gene list is
used to compute the ES with Empirical Cumulative Distribution Functions. And
the ESgene signature¼ESgenes in the signature�ESgenes not in the signature.

The 13 bone marrow reference cells were downloaded from the E-MTAB-2923
data set57. Reads were mapped and quantified using STAR and were subsequently
sorted using Samtools (version 0.1.19)58. HT-seq suite59 was used. The reads count
matrix was normalized using DEseq2. CIBERSORT60 was used to estimate the
relative percent of 13 bone marrow cell compositions. We used 1,000 permutation
and disabled quantile normalization. EZH2 signature was downloaded from
MSigDB http://software.broadinstitute.org/gsea/msigdb/collections.jsp and was
computed as S Upregulated genes�S Downregulated genes.

Statistical methodology. All results are presented in the form of mean±s.e.m.,
unless otherwise specified. Sample sizes for in vivo experiments are noted in the
corresponding figures or figure legends. For in vivo experiments, sample size was
determined by preliminary experiments or previous reports13. Randomization
process was performed by randomly assigning animals into two separate groups
after tumour inoculation, in Fig. 5e. No randomization was used in other
experiments. No specific tests were conducted to test the assumption of normal
distribution. Log-transformation were performed for most dot-plot graphs to
achieve better visualization. Differences among growth curves and IC50 inhibition
curves were assessed using repeated measure analysis of variance tests. In
experiments consisting of more than two groups, the differences between means of
different experimental groups were analysed using one-way analysis of variance
tests, unless otherwise noted in respective legends. F-tests were performed to
compare variations within different groups. Student’s t-tests were performed with
the assumption of equal variation. If the data did not meet the equal variation
assumption, Welch correction or non-parametric analysis was performed.

Code availability. The R (ver 3.3.2) scripts used to generate data in Figs 1 and 3
and Supplementary Figs 1 and 3 are available in GitHub: https://github.com/
lintian0616/bica.
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Data availability. The raw data of RNA-seq results used for Fig. 1 and
Supplementary Fig. 1 have been deposited to NIH Gene Expression Omnibus and
assigned the accession number GSE84114. All other remaining data are available within
the Article and its Supplementary Files, or available from the authors on request.
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