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Few-shot classification aims to enable the network to acquire the ability of feature extraction and label prediction for the target
categories given a few numbers of labeled samples. Current few-shot classification methods focus on the pretraining stage while
fine-tuning by experience or not at all. No fine-tuning or insufficient fine-tuning may get low accuracy for the given tasks, while
excessive fine-tuning will lead to poor generalization for unseen samples. To solve the above problems, this study proposes a
hybrid fine-tuning strategy (HFT), including a few-shot linear discriminant analysis module (FSLDA) and an adaptive fine-tuning
module (AFT). FSLDA constructs the optimal linear classification function under the few-shot conditions to initialize the last fully
connected layer parameters, which fully excavates the professional knowledge of the given tasks and guarantees the lower bound of
the model accuracy. AFT adopts an adaptive fine-tuning termination rule to obtain the optimal training epochs to prevent the
model from overfitting. AFT is also built on FSLDA and outputs the final optimum hybrid fine-tuning strategy for a given sample
size and layer frozen policy. We conducted extensive experiments on mini-ImageNet and tiered-ImageNet to prove the ef-
fectiveness of our proposed method. It achieves consistent performance improvements compared to existing fine-tuning methods
under different sample sizes, layer frozen policies, and few-shot classification frameworks.

1. Introduction

Deep learning has recently attracted attention due to its
outstanding performances in computer vision (e.g., image
classification and object detection), NLP, and reinforcement
learning. In the military domain, unmanned aerial vehicles
(UAVs) play a significate role in jamming and reconnais-
sance. Bai et al. [1] established a 3D UAV air combat model
and a UAV maneuvering decision algorithm based on deep
reinforcement learning to achieve autonomous operation of
UAVs in the future. Saqlain et al. [2] applied deep learning
and computer vision to retail management to boost retail
sales, proposing a hybrid approach that can effectively
monitor retail shelves and satisfy planograms. In face rec-
ognition systems, Yang and Song [3] improved the face
recognition effect in different light intensities combined with
the deep learning algorithm, which is of great practical value.

)e success of deep learning is mainly attributed to the
following three factors, i.e., powerful computing resources,
complex network frameworks, and large-scale datasets.

However, obtaining sufficient labeled data in many appli-
cation scenarios, such as rare diseases, new species, and
defective industrial products, is difficult or even impossible.
When the annotated data are scarce, traditional deep
learning methods generally perform unsatisfactorily. Con-
sidering that humans can rapidly establish cognition to
novel concepts from just a single or a handful of examples,
we hope the network can acquire the ability to recognize
visual objects for novel classes with high accuracy and
generalization by learning from only a few samples.

Towards the goal of shrinking the gap between human
intelligence and artificial intelligence, few-shot learning,
especially few-shot classification (FSC), was proposed. FSC
aims to learn an effective classifier from the target dataset,
which only contains a few labeled images for novel classes.
However, different from general deep learning, it is im-
possible to train an effective classification model from
scratch only using the target dataset due to its limited ca-
pacity. )erefore, current FSC methods usually employ a
base dataset, which contains abundant labeled images for
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base classes and has no category intersection with the target
dataset. )e model is firstly pretrained on the base dataset to
learn a feature extractor and then is transferred to the target
domain for fine-tuning to boost the performance of FSC. At
the pretraining stage, the feature extractor is pretrained
either on the base dataset directly or by meta-learning which
constructs massive few-shot tasks to imitate the target
scenarios. As for the fine-tuning stage, current methods
always choose the fine-tuning settings relying on experience,
e.g., how to set the learning rate, which layers are selected to
be frozen, and how many training epochs to be set. )ey
prefer to set the learning rate as 0.001 [4, 5], usually select
linear probing (updating only the last linear layer) [6] or full
fine-tuning (updating all the model parameters) [7–9], and
rarely mention how many training epochs are set. Since
there are no validation and test images in the target dataset, it
is impossible to evaluate the performance of the fine-tuned
model, so how to set hyperparameters beyond experience
remains a problem. In addition, the classifier parameters will
also be quickly converged to a nonoptimal solution under
few-shot conditions, which further reduces the classification
performance.

To address the problems mentioned above, in this work,
we propose a hybrid fine-tuning strategy (HFT) for FSC, as
shown in Figure 1.We first pretrain on the base dataset to get
the pretrained model and then fine-tune it on the target
dataset according to the acquired hybrid fine-tuning strategy
by HFT.)e proposed HFT includes an FSLDA module and
an AFT module. FSLDA constructs the optimal linear
classifier by fully excavating the professional knowledge of
the target dataset, which provides the last fully connected
layer of the pretrainedmodel a better starting point that fine-
tuning with backpropagation probably cannot reach, thus
guaranteeing the lower bound of the model accuracy. AFT
executes adaptive epoch learning using the validation classes
of the base dataset by designing an adaptive fine-tuning
termination rule to obtain the optimal training epochs.
)erefore, AFT sets hyperparameters by learning instead of
experience and can prevent the model from overfitting. AFT
also implements model performance evaluation to obtain
the hybrid fine-tuning strategy. Finally, we update the
pretrained model with the acquired hybrid fine-tuning
strategy using the target dataset to get the HFT model. In
summary, themain contributions of this study are as follows:

(1) We improve linear discriminant analysis for FSC and
propose the FSLDA module, which can be used to
initialize the last fully connected layer parameters of
the pretrained model and guarantees the lower
bound of the model accuracy. Ablation studies on
mini-ImageNet dataset show that the Meta-Baseline
method [10] with the FSLDA module alone has an
average performance improvement of 3.07% and
2.99% under the layer frozen policy “Last1” and
“All,” respectively.

(2) We introduce adaptive epoch learning to the fine-
tuning stage and propose the AFTmodule, which can
prevent the model from overfitting and output the
hybrid fine-tuning strategy under different sample

sizes and different layer frozen policies. Ablation
results on mini-ImageNet dataset show that the
Meta-Baseline method [10] with AFTunder the layer
frozen policy “All” further brings 0.40%, 0.99%, and
0.79% performance improvements for sample sizes
of 10-shot, 20-shot, and 30-shot, respectively.

(3) )e acquired hybrid fine-tuning strategy is evaluated
under three recently proposed few-shot classification
methods. Comparative experiments show that the
proposed HFT has an average performance im-
provement of 2.30% on the mini-ImageNet dataset
and 2.78% on the tiered-ImageNet dataset over
current experience-based finetuning methods.

2. Related Works

2.1. Few-Shot Classification. Currently, many works have
been proposed to address FSC [11–19], which can be mainly
divided into three categories: initialization-based methods,
metric-based methods, and hallucination-based methods.
Initialization-based methods use the target dataset to fine-
tune the pretrained model with a small number of gradient
backpropagation steps [20, 21]. Metric-based methods ex-
tract features from both the labeled and unlabeled images
and predict the class labels by computing the similarity
metric function, such as cosine similarity [22], Euclidean
distance [23], and relation modules [24]. Hallucination-
based methods [25] focus on data augmentation by learning
a generator from the base dataset and applying it to novel
classes to expand the capacity of the target dataset. Recently,
some works have employed self-supervision [26, 27],
knowledge distillation [28, 29], and distribution calibration
[30, 31] to strengthen the feature extractor or the last
classifier. Our work is built on the metric-based pretraining
methods and improves the initialization-based fine-tuning
methods by introducing a hybrid fine-tuning strategy.

2.2. Fine-Tuning Strategy. Before fine-tuning the model with
the target dataset, key hyperparameters need to be set, such
as the layer frozen policy, the learning rate, and the training
epochs. Due to the scarcity of the target dataset, we cannot
judge whether the model is suboptimal, overfitted, or
underfitted. )us, current methods usually set the above
hyperparameters by experience. )ere are two popular
strategies for the layer frozen policy: running gradient de-
scent on all model parameters [7–9] and fine-tuning the
head but freezing lower layers [32]. Some works [33, 34]
claim that fine-tuning all model parameters leads to better
accuracy than only fine-tuning the head, while most re-
searchers have no consistent conclusions about this. For the
learning rate, the mainstreammethods [35, 36] on FSC select
to set it as 0.001. As for the training epochs, current methods
use fixed settings, and their value is rarely mentioned. Re-
cently, an evolutionary algorithm [37] has been proposed for
searching the best finetuning configuration, focusing on the
learning rate and the layer frozen policy. Our work em-
phasizes learning the best training epochs, which is essential
to prevent the model from overfitting or underfitting and is
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complementary to the work in [37]. In addition, we propose
the FSLDA module to construct the optimal linear classifier
for FSC to avoid suboptimal solutions.

3. Methods

)is section first introduces the preliminary foundations,
including problem definition and model pretraining for
FSC. We then give the technical details for the FSLDA and
AFT modules, respectively.

3.1. Preliminary Foundations

3.1.1. Problem Definition. In the standard FSC task, we
generally have a base dataset Db and a target dataset Dn.
Generally, Db contains abundant labeled samples for base
classes, while Dn has only a few labeled samples for novel
classes (usually 1 to 30 for each class). Denote Cb and Cn as
the category spaces of base classes and novel classes, re-
spectively, which are nonoverlapping, i.e., Cb ∩Cn  � ∅.
Let Nb and Nn denote the number of samples in the base
and the target datasets, respectively. With these definitions,
Db and Dn can be further denoted as
Db � (xi, li)|li ∈ Cb 

Nb

i�1 and Dn � (xj, lj)|lj ∈ Cn 
Nn

j�1,
where x represents the sample in the dataset and l indicates
the label that the sample was annotated with.)e goal of FSC
is to train models withDb andDn for predicting the labels of
samples in the test dataset of novel classes. Specifically,
considering a C-way K-shot metric-based meta-learning
FSC task, massive meta-learning tasks, each of which in-
cludes a support set and a query set, are randomly sampled
from the base dataset to imitate the target task. )e support
set consists of C classes with K labeled samples in each class,
and the corresponding query set has the same classes as the
support set, each of which hasQ unlabeled samples.)e goal
of metric-based meta-learning is to update the model to
predict the labels of the C×Q samples in the query set by

computing their similarities to the support set. )rough
continuous learning from massive meta-learning tasks, the
pretrained model can memorize more scene knowledge and
thus has better generalization ability for FSC tasks.

3.1.2. Model Pretraining. A fundamental step for FSC is
pretraining the model on the base dataset to provide a
suitable feature extractor Gθ. Specifically, the model is firstly
trained with standard cross-entropy loss on the base dataset
for all the classes to get the initialized model. )en, metric-
based meta-learning is performed to continually train the
model by building massive C-way K-shot tasks, finally
outputting the pretrained model. )is scheme can help the
model improve its stability and generalization ability by
imitating the few-shot settings that will be encountered in
the target task. In fact, the proposed fine-tuning method in
this study only uses the parameters of the pretrained model,
which has nothing to do with the pretraining method. )us,
other pretraining methods based on different theories are
also applicable.

3.2. Few-Shot LDA Module. Linear discriminant analysis
(LDA) is a dimensionality reduction technique for super-
vised learning and is mainly used for classification. )e core
idea of LDA is to project high-dimensional data samples into
the best vector space so that interclass distances are larger
and intraclass distances are smaller in the new subspace.
LDA needs to calculate the covariance matrix using the
feature vectors of data samples in the support set or the
target dataset. For FSC tasks, the feature dimension is usually
larger than the number of data samples; thus, the covariance
matrix is irreversible. To address this issue, FSLDA is
proposed to initialize the head of the pretrained model by
constructing the optimal linear classification function under
few-shot conditions. As shown in Figure 2, we introduce the
rank factor α, which is related to the feature dimension d and
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Figure 1: Main idea and flowchart of the proposed HFTmethod for FSC. HFT performs the fine-tuning process based on the pretrained
model. It includes an FSLDA module and an AFTmodule. FSLDA constructs the optimal linear classifier under the few-shot conditions to
get the FSLDA model. AFT executes adaptive epoch learning and model performance evaluation using the validation classes of the base
dataset to obtain the hybrid fine-tuning strategy, which is finally adopted for fine-tuning the pretrained model using the target dataset to get
the HFT model.
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the number of data samples, to illustrate the reliability of the
covariance matrix. Based on the rank factor α, the weighted
mean of the covariance matrix and the identity matrix is
computed instead to obtain the precision matrix so that the
invertible condition can be satisfied. By doing so, we get the
optimal solution of the FSLDA classifier, which fully ex-
cavates the professional knowledge of the given tasks.

Formally, the CNN model we train can be expressed as
yi � F(G(xi)), where xi is the input sample and yi is the
predicted class label. We decompose the network into two
nested functions: the feature extractor denoted as G(·|θG)

and the last fully connected layer denoted as F(·|θF). )e
goal of FSLDA is to initialize the parameters θF of F(·|θF),
which can be formulated as

F G xi( (  � Wv + b, (1)

where v ∈ Rd denotes the output of feature extractor G(·|θG)

for the input sample xi, W ∈ Rc×d and b ∈ Rc are, respec-
tively, the weight matrix and the bias vector of F(·|θF), d is
the output dimension of feature extractor G(·|θG), and c is
the number of classes.

According to the LDA theory (details are shown in the
Appendix section), given a C-way K-shot task, the optimal
linear classifier for class t is given by

ft(v) � μT
t Σ

−1
v −

1
2
μT

t Σ
−1μt,

μt �
1
K



K

i�1
G x

i
t ,

Σ �
1

C · (K − 1)


K

i�1


C

t�1
G x

i
t  − μt  · G x

i
t  − μt 

T
,

(2)

where xi
t denotes the ith sample for the tth class, μt is the

mean feature vector (also called the prototype) for class t,
and Σ is the covariance matrix of the whole dataset. It can be

seen that the rank of the covariance matrix Σ is C · (K − 1)

for nonlinear data samples, which is usually smaller than the
feature dimension d. )us, the covariance matrix is irre-
versible and LDA cannot be directly used for FSC tasks.

To this end, we compute the precision matrix Λ directly
based on the covariance matrix Σ by harmonic weighting,
i.e.,

Λ � [α · Σ +(1 − α) · I]
−1

,

α � 1 − ReLU 1 −
C · (K − 1)

d
 ,

(3)

where I ∈ Rd×d is the identity matrix and α is the rank factor
to measure the reliability of the covariance matrix Σ, making
the precision matrix Λ both reversible and informative.
When K equals 1, α gets the value of 0 and FSLDA de-
generates into prototype initialization. For non-FSC tasks (K
is sufficiently large), α gets the value of 1 and FSLDA de-
generates into LDA. )us, prototype initialization and LDA
are special cases of FSLDA.

Once the precision matrix Λ is available, FSLDA clas-
sifier can be constructed as

ft(v) � μT
t Λv −

1
2
μT

t Λμt. (4)

Finally, we use FSLDA classifier to compute wt, i.e., the
rows of W, and bt, i.e., the individual elements of b, as

wt � μT
t Λ,

bt � −
1
2
μT

t Λμt.

(5)

)e FSLDA enables to initialize the parameters in
F(·|θF) by computing the precision matrix Λ of the
samples in novel classes before fine-tuning, which gives
the model a better initial point than random initializa-
tion. By leveraging the knowledge of samples in novel
classes and optimizing it for the classifier, the FSLDA
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Figure 2: Diagram of the proposed FSLDA module. Given a C-way K-shot support set or target dataset, we first get the feature vector for
each sample, the prototype for each class, and the covariance matrix for all feature vectors sequentially.)en, the rank factor α is introduced
to obtain the precision matrix Λ for FSC tasks based on the weighted mean of the covariance matrix and the identity matrix. Finally, we
obtain the parameter value of the last fully connected layer by Λ and initialize it.
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ensures a lower bound on the model’s performance and
makes the model converge quickly for the fine-tuning
stage.

3.3.AdaptiveFine-TuningModule. Drawing on the experience
of meta-learning-based pretraining methods, we propose the
AFTmodule to obtain the hybrid finetuning strategy. AFT firstly
performs adaptive epoch learning using the idea of “chunk by
chunk” on the validation classes of the base dataset, which
evaluates the model’s performance for each chunk and estab-
lishes an adaptive termination rule to output an adaptive epoch
that needs to be set at the fine-tuning stage.)en, the higher one
between the FSLDAmodel and the adaptive fine-tunedmodel is
retained, and the optimal hybrid epoch is acquired. Finally, the
above procedures are executed on massive pseudofine-tuning
tasks to output the final hybrid fine-tuning strategy, ensuring
that most tasks converge to higher performance.

Specifically, massive pseudofine-tuning tasks, each of
which includes a support set and a query set, are randomly
sampled from the validation classes of the base dataset to
imitate the fine-tuning task. Like metric-based meta-
learning, the support set here is also of the C-way K-shot
style. All the remaining samples in the selected classes are
used as the query set to evaluate the performance of the
model. As shown in Figure 3, we first use the support set to
get the FSLDA model and obtain its accuracy mAP0m using
the query set. During adaptive epoch learning, we divide the
maximum allowable epochs into N chunks, and each chunk
contains c nodes. To improve the learning speed, only the
model at the last epoch in each node is evaluated by the
query set to get its accuracy. We regard the mean of all
nodes’ performance in a chunk as a representation of the
chunk’s performance, so as to get the macrochange trend of
the accuracy curve. For the mth pseudofine-tuning task, we
can get its “chunk by chunk” performance series, denoted as
mAP0m, . . . ,mAPb

m,mAPb+1
m ,mAPn

m, · · · , where b is the
starting evaluation chunk index to avoid disturbances at the
initial fine-tuning stage. )e process terminates if the

accuracy gain is negligible and outputs the adaptive chunk
index:

Iterm � min
n

mAP
n
m − mAP

n−1
m < 0.1% , n ∈ [b, N]. (6)

)en, we combine the advantages of the FSLDA model
and the adaptive epoch learning and set the optimal hybrid
epoch as

epochm �
a · Iterm, mAPIterm

m >mAP0m,

0, otherewise,

⎧⎨

⎩

⎫⎬

⎭, (7)

where a is the number of epochs contained in a chunk.
When the optimal hybrid epochs for M pseudofine-

tuning tasks are ready, the optimal hybrid finetuning
strategy can be finally acquired by

epoch �

Quantile epochm , 0.9( , M′ >
M

2
,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where M′ � 
M
m�1 1(epochm) indicates the number of tasks

needing to be fine-tuned, and 1 is the indicator function.
When most pseudofine-tuning tasks do not need the fine-
tuning stage (epoch � 0), the optimal hybrid fine-tuning
strategy adopts FSLDA as the final strategy. Otherwise, it
uses the 0.9 quantile of the optimal hybrid epochs to ensure
that most tasks can be converged. In the latter case, the
optimal hybrid fine-tuning strategy performs both FSLDA
and AFT.

)e pipeline for AFT is summarized as Algorithm 1.

4. Experiments

In this section, we first briefly describe the experimental
setup. )en, HFT experiments are carried out to give the
hands-on hybrid fine-tuning strategy under different sample
sizes and layer frozen policies. Finally, extensive comparison
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Figure 3: Illustration of adaptive epoch learning. Once the FSLDA model is available, we fine-tune it with the support set using the idea of
“chunk by chunk” and get the corresponding sequential mAP with the query set. )e fine-tuning process terminates if the accuracy gain is
negligible. Note that adaptive epoch learning runs on the validation classes of the base dataset.
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and ablation experiments on the benchmark datasets are
conducted to demonstrate the effectiveness of our strategy.

4.1. Experimental Setup

4.1.1. Dataset. We employ mini-ImageNet [22] and tiered-
ImageNet [38] datasets. Mini-ImageNet is a subset of
ImageNet. It consists of 100 classes, and each class has 600
images with a size of 84× 84. We follow the setting proposed
by [39] to split the datasets into 64, 16, and 20 classes as the
training, validation, and testing sets, respectively. Tiered-
ImageNet is a larger subset of ImageNet than mini-
ImageNet. It has 608 classes, and each class contains 1,281
images on average. In the experiment, 351, 97, and 160
classes are selected as the training, validation, and test set
stemming from 20, 6, and 8 superclasses, respectively.

4.1.2. Implementation Details. Following the settings in [10],
for the pretraining stage, we first train 100 epochs with batch
size 128 on mini-ImageNet, and the learning rate decays at
epoch 90. We use SGD optimizer with momentum 0.9, the
learning rate 0.1, the decay factor 0.1, and the weight decay
0.0005. For the meta-learning stage, we use SGD optimizer
with the weight decay 0.0005 and the learning rate 0.001. For
the fine-tuning stage, we set up two kinds of layer frozen
policies following [40], namely, fine-tuning all layers (“All,”
updating all parameters of the model) and fine-tuning the
last layer (“Last1,” allowing to update only the last fully
connected layer of the model). We use the SGD optimizer

with momentum 0.9, the weight decay 0.0005, and the
learning rate 0.001. We use ResNet-18 as the backbone
network and apply standard data augmentation, including
random resized crop and random horizontal flip.

For the hyperparameter M, we refer to related work [37]
and follow the general meta-learning configurations, setting
the total number of pseudofine-tuning tasks M � 100. As for
the maximum number of epochs Emax, we find that the
maximum value of the optimal epoch does not exceed 2000.
)erefore, we set Emax � 2000 to save computing resources.
As per Figure 4(a), the accuracy curve has short-term vi-
bration at the beginning and returns to normal before the
epoch around 200. So, we set the number of epochs con-
tained in a chunk a � 200 and the starting chunk number
b � 2 to make the adaptive algorithm avoid the influence of
short-term vibration during the initial fine-tuning stage.
According to Figure 4(b), we see a slight variation in ac-
curacy within a chunk. In order to get the balance between
estimation accuracy and calculation efficiency, we set the
number of nodes contained in a chunk c � 10, only eval-
uating the model 10 times for each chunk.

4.2. HFT Experiments. Following Algorithm 1, we perform
experiments on mini-ImageNet to give the hands-on hybrid
fine-tuning strategy under different sample sizes (1, 5, 10, 20,
30) and different layer frozen policies (“Last1,” “All”).

)e main results are shown in Table 1. For the layer
frozen policy “Last1,” the optimal adaptive epoch is always 0
under different sample sizes, which means the FSLDA has

Input: the validation dataset: val dl, the pretrained model model0

Output: hybrid fine-tuning strategy represented by adaptive epoch: epoch
Hyper-parameters: the total number of pseudofine-tuning tasks M, the maximum number of epochs Emax, the number of epochs

contained in a chunk a, the number of nodes contained in a chunk c, and the starting chunk number b.
for� 1: M do

dl trainm, dl testm �RandomTaskSample (val dl); #get train and test sets for task m

model0m � FSLDA (dl trainm,model0); #initialize the model by FSLDA
mAP0m �Evaluate (model0m, dl testm);
N � Emax/a; #number of chunks
modelb−1

m �Backpropagation (dl trainm, (b − 1)∗ a); #train the model by (b − 1)∗ a epochs
for each chunk n � b: N do
for each node j � 1: c do
modeln,j

m �Backpropagation (dl trainm, a/c);
mAPn,j

m �Evaluate (modeln,j
m , dl testm);

end for
mAPn

m � 1/c 
c
j�1 mAPn,j

m ; #the average accuracy of chunk n

ifmAPn
m − mAPn−1

m < 0.1% or n � N then
epochm � n · a; #adaptive epochs
if mAP0m >mAPn

m thenepochm � 0; #optimal hybrid epoch
break;

end if
end for

end for
Set s � epochm|m � 1, 2, · · · M , M′ � 1(s). #number of tasks needing finetuning
if M′ >M/2 then epoch � Quantile(s, p � 0.9); #get the p quantile of s

else epoch � 0.

ALGORITHM 1: Pseudocode for the AFT module.
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initialized the head of the pretrained model so well that only
fine-tuning the last layer cannot make the model achieve
better performance. )us, the hands-on hybrid fine-tuning
strategy under the layer frozen policy “Last1” is only FSLDA
that has constructed the optimal solution for the classifier. In
this case, further fine-tuning may lead to suboptimal so-
lutions. In contrast, the hands-on hybrid fine-tuning
strategy is inconsistent for the layer frozen policy “All” under
different sample sizes. For sample sizes of 1-shot and 5-shot,
the hands-on hybrid fine-tuning strategy is also only FSLDA.
A common assumption is that too few samples in the
support set are not enough to update all the model pa-
rameters for better performance. While for sample sizes of
10-shot, 20-shot, and 30-shot, the optimal adaptive epoch is
no longer 0. Moreover, as the sample size increases, the
optimal adaptive epoch increases, but it is always smaller
than the maximum number of epochs. )us, the hands-on
hybrid fine-tuning strategy for sample sizes of 10-shot, 20-
shot, and 30-shot contains both FSLDA and AFT. )is
indicates that adaptive fine-tuning can achieve better per-
formance under the layer frozen policy “All” as the sample
size increases.

Furthermore, Figure 5 shows typical convergence curves
of testing accuracy during adaptive epoch learning on mini-
ImageNet under different layer frozen policies and sample
sizes. Here, FT-All and FT-Last1, respectively, refer to
updating all parameters of the model and updating only the
head, where the head is initialized randomly and the fixed

epoch is set by experience. HFT-All and HFT-Last1 refer to
performing fine-tuning under the corresponding layer
frozen policies “All” and “Last1,” where the head is ini-
tialized by FSLDA and the epoch is set according to the
acquired hands-on hybrid fine-tuning strategy. FSLDA re-
fers to testing accuracy of the FSLDA model without fine-
tuning. Note that we show the full curves for HFT-All and
HFT-Last1 in Figure 5 for better comparison. We can see
that, for sample sizes of 1-shot and 5-shot, the performance
of the FSLDAmodel (purple dotted horizontal line) is always
better than those of other methods, indicating that FSLDA is
enough when the sample size is no more than 5. While for
sample sizes of 10-shot, 20-shot, and 30-shot, the FSLDA
model outperforms FT-Last1 (blue lines) and HFT-Last1
(green lines) but is not as good as FT-All (black lines) and
HFT-All (red lines) and the latter one is slightly better.)ese
all indicate the reasonableness of the acquired hands-on
hybrid fine-tuning strategy.

4.3. Comparative Experiments. Based on the hands-on hy-
brid fine-tuning strategy obtained in Section 4.2, we now
compare the performance of the hybrid fine-tuning strategy
(HFT-Last1/HFT-All) with that of the traditional fine-
tuning strategy (FT-Last1/FT-All) under different pre-
training methods including RFS-simple [29], SKD-GEN0
[41], and R2D2 [42]. For the sake of fairness, the training
epoch for FT-Last1/FT-All is set as Emax, i.e., the hyper-
parameter in Algorithm 1, and other parameter settings are
consistent with those of HFT-Last1/HFT-All.

Table 2 shows the comparison results onmini-ImageNet.
We can see that the accuracy of HFT-Last1/HFT-All is
consistently higher than its corresponding accuracy of FT-
Last1/FT-All under all sample sizes, layer frozen policies,
and pretraining methods. Compared with FT-Last1/FT-All,
HFT-Last1/HFT-All has an average performance im-
provement of 2.30% on the whole, which proves the ef-
fectiveness of combining the advantages of FSLDA and AFT.
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Figure 4: Typical accuracy curve to illustrate the hyperparameter settings for AFT.

Table 1: )e hands-on hybrid fine-tuning strategy acquired by the
proposed method under different sample sizes and layer frozen
policies.

Layer frozen policy 1-Shot 5-Shot 10-Shot 20-Shot 30-Shot
Last1 0 0 0 0 0
All 0 0 1400 1600 1800
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Figure 5: Typical convergence curves of testing accuracy during adaptive epoch learning on mini-ImageNet for sample sizes of 1-shot (a),
5-shot (b), 10-shot (c), 20-shot (d), and 30-shot (e).

8 Computational Intelligence and Neuroscience



In addition, the results show that the average performance
gains of the layer frozen policy “Last1” are higher than those
of the layer frozen policy “All” (3.83% vs. 1.90%, 2.36% vs.
1.19%, and 1.38% vs. 0.86%). Since HFT-Last1 is indeed
FSLDA, this phenomenon validates that the linear classifier
constructed by FSLDA is much better than that acquired by
fine-tuning. )irdly, for sample size from 1-shot to 30-shot,
HFT-Last1/HFT-All achieves an average performance im-
provement of 1.78% ∼ 2.85% over FT-Last1/FT-All, and the
gains are relatively close, indicating that the proposed al-
gorithm has good generalization ability for different sample
sizes. Lastly, we can see that the accuracy of the layer frozen
policy “All” is always higher or not less than its corre-
sponding accuracy of the layer frozen policy “Last1,” which
is consistent with the conclusions of [33, 34].

For tiered-ImageNet dataset, the category correlations
between the training set and the test set are weak, and thus, it
is more suitable for testing the generalization ability to novel
few-shot classification tasks. )e comparison results are
shown in Table 3. Overall, we can see an average performance
improvement of 2.78% for HFT-Last1/HFT-All, surpassing
the average gain of 2.30% on mini-ImageNet. )is shows that
the proposed algorithm has strong generalization ability and
can better adapt to novel few-shot classification scenarios. For
layer frozen policies “Last1” and “All”, HFT-Last1/HFT-All
achieves an average performance improvement of 2.66% ∼
3.58% and 1.45% ∼ 1.77%, respectively, which is slightly
larger than that onmini-ImageNet. For different sample sizes,
HFT-Last1/HFT-All achieves an average performance im-
provement of 2.13% ∼ 3.37%. )e average gains in 1-shot
and 5-shot are larger than those in 10-shot, 20-shot, and 30-
shot, which further illustrates that FSLDA plays an essential
role when the sample size is less than 5. As for the comparison
of different fine-tuning policies under the same pretraining
method and the same finetuning strategy, the policy “All” is
always better or not less than the policy “Last1,” which is the
same as the conclusion on mini-ImageNet.

4.4. Ablation Experiments. In this section, we analyze the
effects of FSLDA and AFTmodules in our HFT, respectively.
)e experiments are carried out on mini-ImageNet under

the two layer frozen policies “Last1” and “All,” employing
the Meta-Baseline pretraining method [10]. )e results are
shown in Table 4. For the layer frozen policy “Last1,” HFT is
indeed FSLDA; thus, AFT is useless (✓/×) when FSLDA is
employed (✓). For the layer frozen policy “All,” the acquired
hands-on hybrid fine-tuning strategy is built on FSLDA;
thus, AFT cannot be run separately.

We can see that using FSLDA alone can perform con-
sistently better than traditional fine-tuning methods under
different sample sizes and layer frozen policies. For the layer
frozen policy “Last1,” FSLDA alone achieves 2.26%, 4.35%,
4.03%, 2.82%, and 1.88% gains under the sample sizes of 1-
shot, 5-shot, 10-shot, 20-shot, and 30-shot, respectively.
Overall, it has an average performance improvement of
3.07%. For the layer frozen policy “All,” FSLDA also achieves
gains of 3.34%, 5.47%, 4.13%, 1.54%, and 0.45% under the
corresponding sample sizes though FSLDA is only designed
for the last layer. Moreover, it obtains an average increase of
2.99% on the whole, which is close to that under the layer
frozen policy “Last1.” A common explanation for this is that
fine-tuning the classifier of the model using few-shot
samples in the support set usually converges to a suboptimal
solution, leading to the fine-tuned model’s poor perfor-
mance. FSLDA gives the classifier an optimal solution by
fully excavating the professional knowledge of the novel
classes, which means the FSLDA model outperforms the
model with the experience-based fine-tuning method, even
without fine-tuning. For the layer frozen policy “All,” AFT
brings 0.40%, 0.99%, and 0.79% performance improvements
over individual FSLDA under the sample sizes of 10-shot,
20-shot, and 30-shot, respectively, and the average gain
reaches 0.72%. )is is because the adaptive epoch obtained
by AFT can predictably help the FSLDA model update
parameters through backpropagation while preventing the
model from underfitting and overfitting, which enables the
model to achieve better performance than the FSLDAmodel
alone. One interesting thing is that the accuracies of the
policy “All” under sample sizes of 1-shot, 5-shot, and 10-shot
are lower than those of the policy “Last1” for the traditional
fine-tuning method, which is not consistent with the con-
clusions of [33, 34] and brings uncertainty to the choice of
the layer frozen policy.

Table 2: Comparison results under different pretraining methods on mini-ImageNet. “Pre-tra” and “Lay-fro” are short for the pretraining
method and the layer frozen policy, respectively. We report the mean accuracy of 600 episodes and the 95% confidence intervals.

Pre-tra Lay-fro 1-Shot 5-Shot 10-Shot 20-Shot 30-Shot Average gain

R2D2

FT-Last1 50.58 ± 0.74 66.15 ± 0.36 71.07 ± 0.71 75.63 ± 0.87 76.56 ± 0.96 3.83↑HFT-Last1 53.47 ± 0.61 70.13 ± 0.50 74.72 ± 0.45 79.67 ± 0.45 81.16 ± 0.47
FT-all 51.39 ± 0.81 68.63 ± 0.40 73.38 ± 0.61 79.43 ± 0.66 80.84 ± 0.99 1.90↑HFT-all 53.47 ± 0.61 70.13 ± 0.50 75.49 ± 0.59 81.41 ± 0.70 82.66 ± 0.38

SKD-GEN0

FT-Last1 57.83 ± 0.53 73.91 ± 0.53 78.19 ± 1.03 85.03 ± 0.76 87.01 ± 0.45 2.36↑HFT-Last1 60.74 ± 0.68 77.45 ± 0.49 81.30 ± 0.38 86.31 ± 0.42 87.96 ± 0.39
FT-all 59.94 ± 0.77 74.34 ± 0.56 81.69 ± 1.09 86.96 ± 0.32 87.43 ± 0.74 1.19↑HFT-all 60.74 ± 0.68 77.45 ± 0.49 82.34 ± 1.01 87.15 ± 0.38 88.63 ± 0.52

RFS-simple

FT-Last1 56.99 ± 0.60 72.43 ± 0.32 76.27 ± 0.29 82.97 ± 1.29 84.02 ± 0.94 1.38↑HFT-Last1 58.41 ± 0.71 73.66 ± 0.51 78.85 ± 0.45 83.58 ± 0.56 85.10 ± 0.55
FT-all 57.10 ± 0.21 72.79 ± 0.59 79.31 ± 0.28 83.01 ± 0.51 85.23 ± 0.91 0.86↑HFT-all 58.41 ± 0.71 73.66 ± 0.51 79.69 ± 0.75 83.81 ± 0.73 86.16 ± 0.42

Average gain 2.29↑ 2.85↑ 2.50↑ 1.78↑ 2.12↑ 2.30↑
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5. Conclusion

In this study, we have introduced a hybrid fine-tuning
strategy (HFT) for FSC, including the FSLDA and AFT
modules. FSLDA constructs the optimal linear classifier, and
AFT outputs the hybrid fine-tuning strategy based on the
FSLDA model. HFT solves the problem that the linear
classifier is suboptimal under few-shot conditions and
prevents the model from overfitting and underfitting by
using the acquired hands-on hybrid finetuning strategy. By
conducting extensive experiments, we find HFT achieves
consistent performance improvements compared to tradi-
tional finetuning methods under different sample sizes, layer
frozen policies, and few-shot classification frameworks.
Intuitively, our HFT has enormous potential for FSC and
even for few-shot learning. In the future, we will try to
explore automatic learning methods of more hyper-
parameters for the fine-tuning stage.

Appendix

LDA classifier: LDA is a classical optimal linear classifier
using Bayes’ theorem. For a C-way K-shot classification task,
let X and Y be the random variables for data samples and
labels, respectively. )e posterior probability of an obser-
vation x that belongs to the cth class can be written as

P(Y � c|X � x) �
πcfc(x)


C
i�1 πcfi(x)

, (A.1)

where πc is the prior probability which can be easily cal-
culated by simply computing the fraction of the training
observations that belong to cth class, fc(x) is the conditional
probability that an observation x belongs to cth class, and


C
i�1 πcfi(x) is a normalization constant.
To simplify the problem, LDA assumes that fc(x) obeys

multivariate Gaussian distribution and the covariance ma-
trix Σ of all classes is the same:

fc(x) �
1

2πp/2
|Σ|0.5e

− 1/2 x− μc( )
TΣ−1 x− μc( ), (A.2)

Σ �
1

C(K − 1)


C

c�1


K

i�1
x

i
c − μc  x

i
c − μc 

T
, (A.3)

μc �
1
K



K

i�1
x

i
c. (A.4)

)us, the posterior probability can be written as

P(Y � c|X � x) � A · πce
− 1/2 x− μc( )

TΣ−1 x− μc( ), (A.5)

where A � 1/
C
i�1 πcfi(x) · 1/2p/2|Σ|0.5 is a constant.

)en, LDA takes the logarithm of the posterior proba-
bility (ignores the constant item):

Table 3: Comparison results under different pretraining methods on tiered-ImageNet. “Pre-tra” and “Lay-fro” are short for the pretraining
method and the layer frozen policy, respectively. We report the mean accuracy of 600 episodes and the 95% confidence intervals.

Pre-tra Lay-fro 1-Shot 5-Shot 10-Shot 20-Shot 30-Shot Average gain

R2D2

FT-Last1 52.10 ± 0.70 68.99 ± 0.70 73.21 ± 0.30 76.82 ± 0.89 80.38 ± 1.24 2.66↑HFT-Last1 55.18 ± 0.72 72.26 ± 0.66 75.19 ± 0.62 80.35 ± 0.63 81.82 ± 0.62
FT-all 52.90 ± 0.78 70.87 ± 0.69 75.02 ± 0.28 80.04 ± 0.72 84.69 ± 0.96 1.45↑HFT-all 55.18 ± 0.72 72.26 ± 0.66 76.57 ± 0.24 81.50 ± 0.91 85.24 ± 0.22

SKD-GEN0

FT-Last1 60.51 ± 0.75 76.28 ± 0.80 80.54 ± 0.71 83.84 ± 0.67 86.10 ± 0.61 3.58↑HFT-Last1 64.17 ± 0.82 79.42 ± 0.61 83.75 ± 0.53 87.60 ± 0.42 90.25 ± 0.34
FT-all 61.05 ± 0.76 76.37 ± 0.79 83.46 ± 0.50 87.01 ± 1.35 90.45 ± 1.26 1.58↑HFT-all 64.17 ± 0.82 79.42 ± 0.61 83.79 ± 0.89 87.76 ± 0.98 91.09 ± 0.93

RFS-simple

FT-Last1 60.45 ± 0.98 74.09 ± 0.79 78.86 ± 0.58 83.36 ± 0.61 83.51 ± 1.52 2.86↑HFT-Last1 63.76 ± 0.88 77.74 ± 0.57 81.27 ± 0.53 85.35 ± 0.50 86.45 ± 0.57
FT-all 60.56 ± 0.97 75.39 ± 0.80 80.18 ± 0.43 83.90 ± 0.47 88.04 ± 1.35 1.77↑HFT-all 63.76 ± 0.88 77.74 ± 0.57 81.42 ± 0.81 84.98 ± 0.65 89.01 ± 0.81

Average gain 3.37↑ 3.37↑ 2.41↑ 2.51↑ 2.13↑ 2.78↑

Table 4: Ablation experiments on mini-ImageNet employing the meta-baseline pretraining method. We report the mean accuracy of 600
episodes and the 95% confidence intervals.

FSLDA AFT 1-Shot 5-Shot 10-Shot 20-Shot 30-Shot

Last1 × × 48.14 ± 0.95 69.32 ± 0.75 74.02 ± 0.81 81.66 ± 0.40 86.39 ± 0.91
✓ ✓/× 50.40 ± 0.35 73.67 ± 0.64 78.05 ± 0.31 84.48 ± 0.89 88.27 ± 0.77

All
× × 47.06 ± 0.96 68.20 ± 0.75 73.92 ± 0.73 82.94 ± 0.11 87.82 ± 0.94
✓ × 50.40 ± 0.35 73.67 ± 0.64 78.05 ± 0.31 84.48 ± 0.89 88.27 ± 0.77
✓ ✓ — — 78.45 ± 0.92 85.47 ± 1.05 89.06 ± 0.88
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P(Y � c|X � x)

� logπc −
1
2

x
TΣ− 1

x − x
TΣ− 1μc

−μT
c Σ

− 1
x + μT

c Σ
− 1μc,

� logπc −
1
2

x
TΣ− 1

x − 2μT
c Σ

− 1
x + μT

c Σ
− 1μc ,

(A.6)

where xTΣ−1x is independent of the category of x. )erefore,
the linear score function can be represented as

P(Y � c|X � x) � logπc + μT
c Σ

− 1
x −

1
2
μT

c Σ
− 1μc. (A.7)

For a C-way K-shot classification task, πc is also an ir-
relevant item and the final linear classifier function becomes

P(Y � c|X � x) � μT
c Σ

− 1
x −

1
2
μT

c Σ
− 1μc. (A.8)

Equations (A.3), (A.4), and (A.8) form the LDA classifier
as used in Section 3.2.
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