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Prognostic impact of high levels 
of circulating plasmacytoid dendritic cells 
in breast cancer
Jithendra Kini Bailur1,4*, Brigitte Gueckel2 and Graham Pawelec1,3,5,6

Abstract 

Background:  Identifying immune markers in blood that are informative for breast cancer patient survival would not 
only be useful for prognosis but might also provide mechanistic insights into processes facilitating survival.

Methods:  We phenotyped circulating plasmacytoid dendritic cells (pDCs), myeloid-derived suppressor cells (MDSCs) 
and regulatory T-cells in relation to T-cell responses to Her-2 in vitro in 75 untreated breast cancer patients 28–87 years 
of age at diagnosis.

Results:  Patients with later stage tumors had lower levels of circulating pDCs (p = 0.008). There was a positive 
association between 5-year survival and higher than median levels of circulating pDCs (p = 0.03). We confirmed that 
5-year survival correlated with CD8+ but not CD4+ T-cell responsiveness to Her-2 peptides in this cohort of younger 
and older patients (p = 0.04). Including pDCs in the analysis of previously-established parameters revealed that 
patients who had a CD8+ T-cell response to Her-2 together with a low ratio of MDSCs:pDCs had 100 % 5-year survival. 
High levels of pDCs and the presence of a CD8+ T-cell response to Her-2 were independent positive survival indica-
tors according to multivariate Cox analysis.

Conclusions:  Our new results suggest that circulating pDCs could be a positive prognostic indicator in breast cancer 
patients of all ages, together with the previously established CD8+ T-cell reactivity to Her-2 antigens in older patients 
only. These two prognostic indicators were independent and emphasize the important role of immunity in ensuring 
breast cancer patient survival, even in those not undergoing immunotherapy.
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Background
Dendritic cells (DCs) play an important role in the pres-
entation of antigens to T-cells, but also exert immunoreg-
ulatory activity [1]. There are two main subsets of DCs, 
monocytic DCs (mDCs) that are generally CD11c+, and 
plasmacytoid DCs (pDCs), also known as natural inter-
feron-producing cells (IPCs), that are CD123+ (IL-α3R) 
[1, 2]. mDCs produce IL-12 and express Toll-like recep-
tor (TLR)-1, -2, -3, -4, -5, -6, -7 and 8, whereas pDCs 

produce interferon-α and express TLR-7, -9 and 10 [3–6]. 
Many studies have used DCs to target cancer therapeu-
tically [7, 8] but work on pDCs in the context of cancer 
immunity has focused more on their role in the tumor 
microenvironment than on whether their presence in the 
peripheral blood has any prognostic relevance. Increased 
levels of pDCs in breast cancer bone metastases and key 
roles in tumor growth have been reported in mice [9], 
and tumor-infiltrating pDCs have been negatively cor-
related with survival in some human cancers [10, 11] 
including breast cancer [12]. In melanoma, patients with 
smaller tumors have higher levels of blood pDCs [10] 
and numbers of circulating pDCs are reduced in cancer 
patients [13], suggesting that recruitment into the tumor 
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may deplete these cells from peripheral blood. In mela-
noma, low levels of circulating pDCs have a negative cor-
relation with survival [14]. On the other hand, high levels 
of circulating myeloid-derived suppressor cells (MDSCs), 
heterogeneous populations of immature dendritic cells, 
macrophages and granulocytes [15–17], have a negative 
impact on survival in different cancers [18, 19]. Together 
with regulatory T-cells (Tregs), these suppressive cells 
can form a formidable barrier preventing immune anti-
tumor activity in cancer [20].

We have previously reported that peripheral T-cell reac-
tivity to certain tumor-associated antigens (TAAs) in mel-
anoma correlates with a survival benefit [21, 22]. Similarly, 
in breast cancer, the presence or absence of peripheral 
CD8+ T-cell responses to Her-2 peptides in  vitro influ-
ences survival as shown in a cohort of elderly patients, 
whereas this was not the case for CD4+ T cell responses 
because these were present in almost all patients [23]. 
Compared to antibody therapy which is dependent on 
surface antigen expression, vaccination might induce 
better protection through the induction of T-cells rec-
ognizing cancer cells even with levels of surface Her-2 
expression too low for antibody targeting and which are 
often designated “Her2-negative” in biopsy immuno-
chemistry analyses [24]. An effective way to induce both 
TAA-reactive CD4+ and CD8+ T-cell responses is by 
using synthetic long peptides (SLPs) [25, 26]. Antigen 
presentation by pDCs could contribute to the induction of 
specific CD4+ and CD8+ T-cell responses [27, 28], but 
this would be contrary to the findings discussed above 
implying that high levels of pDCs in the tumor and low 
levels in the blood have a negative prognostic impact. 
Thus, the present study focuses on investigating the prog-
nostic relevance of circulating antigen-presenting cells 
including total DCs, mDCs and pDCs separately, together 
with functional Her-2-reactive T-cells assayed in  vitro, 
and an assessment of the impact of immunosuppressive 
cells on 5-year survival of breast cancer patients. This 
study goes beyond our previous work not only in examin-
ing pDCs but in extending the age range of the patients to 
include younger as well as elderly subjects.

Methods
Patients
Blood from 75 patients (28–87  years) from the Univer-
sity Hospital Tübingen was drawn between March and 
November 2009. Peripheral blood mononuclear cells 
(PBMCs) were isolated using standard Ficoll–Hypaque 
gradient centrifugation and cryopreserved because they 
were also intended to be used in multi-center studies 
requiring cell shipment. Patients were recruited at first 
diagnosis, prior to any treatment, and this was one of 

the main inclusion criteria. Also, in this study patients 
diagnosed with breast cancer from all age groups with 
any stage of the disease were included and no exclusion 
criteria were considered. Clinico-pathological data were 
available for almost all patients. Approval for the study 
was obtained from the Institutional Ethics Committee of 
University Clinic Tübingen (71/2009BO2) and a waiver of 
informed consent was granted.

Phenotypic analysis of DCs, MDSCs and Tregs
PBMCs were thawed, washed and incubated with 
Gamunex and EMA, then stained with a cocktail of lin-
eage (Lin) markers (CD3, CD19, CD56)-Brilliant Vio-
let 605 (BioLegend, BD-Biosciences), CD14-Brilliant 
Violet711, CD11c-PE-Cy7 (BioLegend), CD45-V500, 
CD123-BV421, HLA-DR-PerCP-Cy5.5, CD15-FITC, 
CD11b-APC-Cy7, CD33-Alexa Fluor 700 (BD-Bio-
sciences), and CD124-APC (R&D Systems) using EMA to 
identify dead cells.

To characterize Tregs, we used the same panel as 
before [23], staining PBMCs forCD3 (OKT3 superna-
tant) with Pacific Orange-conjugated secondary antibody 
(Invitrogen) followed by staining for CD4-Pacific Blue, 
CD45RA-Alexa Fluor-700, CD8-Peridinin-chlorophyll 
protein (PerCP), CD279-PerCP-Cy5.5, CD127-Alexa 
Fluor-647 (Bio legend), CD25-APC-Cy7 (BD Biosciences) 
and intracellular staining for FoxP3-PE (Bio legend). 
All samples were measured using a BD LSRII (BD Bio-
sciences) immediately after staining.

Detection of TAA‑reactive T‑Cells
PBMCs were thawed, washed, counted and re-suspended 
in X-Vivo 15 medium supplemented with IL-4 (5  ng/
ml) and IL-7 (5 ng/ml) on day 0. On d1, pooled 15-mer 
Her-2 peptides (PepMix, JPT Technologies, Berlin) were 
added at 1 µg/ml to 1 × 106 cells per culture. IL-2 (40U/
ml) was added on d3. T-cells were harvested on d12 and 
re-stimulated (0.4–0.5  ×  106 cells/well) with 1  µg/ml 
Her2 peptides or left un-stimulated as a negative control 
for 12 h. Pepmixes of influenza nucleoprotein and matrix 
protein were used as positive controls. Golgi-plug (BD-
Biosciences) was added at 1  µl/ml to prevent cytokine 
secretion. The cells were harvested, washed, incubated 
with Gamunex and EMA, fixed and permeabilized 
with Cytofix/Cytoperm (BD-Biosciences) before stain-
ing with CD3-Pacific Orange (Invitrogen), CD4-Pacific 
Blue, TNF-FITC, IL-2-Alexa-Fluor-700, IL-5-PE (BioLe-
gend), CD8-APC-Cy7, IFN-γ-PE-Cy7 (BD-Biosciences), 
IL-10-APC (Miltenyi-Biotec) and IL-17-PerCP-Cy5.5 
(eBioscience). After washing, the cells were immediately 
measured using a BD-LSR-II flow cytometer with FACS-
Diva software (BD-Biosciences).
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Data analysis
Data were analyzed using FlowJo software (Tree-Star Inc.) 
after exclusion of duplicates using an FSC-area-versus-
FSC-height/width plot for all flow cytometry datasets. To 
analyze DCs, CD45+ cells were gated on live cells, fol-
lowed by gating the Lin(−) and CD14(−) cells. DCs were 
gated as HLA-DR(+) and then plasmacytoid [CD45(+)
CD14(−)Lin(−)HLA-DR(+)CD123(+)] and myeloid 
[CD45(+)CD14(−)Lin(-)HLA-DR(+)CD11c (+)] DCs 
were gated from the HLA-DR(+) population. Further, 
MDSC populations were defined as Lin(−)CD14(+)
HLA-DR(−) (MDSC-1) and Lin(−)CD14(+)CD124(+) 
(MDSC-2) as before [23]. CD45(+) cells were considered 
as the parental population for calculating the percentage 
of different subsets (see FACS plots and gating strategy in 
Additional file  1: Figure  S1). Her-2-reactive T-cells pro-
ducing cytokines in un-stimulated (negative control) sam-
ples compared to the stimulated samples were also gated 
as before using the same response criteria [23].

Statistics
Chi square and Mann–Whitney U tests were performed 
to compare independent groups and Kaplan–Meier anal-
ysis (log-rank test) for survival, using GraphPad Prism 
6. SPSS software was used to perform multivariate Cox 
analysis. A value of p  <  0.05 was taken as statistically 
significant.

Results
Patients’ characteristics
The study comprised 75 (28–87  year-old) patients with 
a median age of 69 years at the time of blood draw. The 
clinico-pathological characteristics of the patients are 
summarized in Additional file 2: Table S1.

DCs, MDSCs, Tregs and tumor characteristics
Neither the frequencies of total DCs nor mDCs in the 
peripheral blood were found to differ between patients at 
tumor stage 0, 1-versus-2, 3, 4 (data not shown). In con-
trast, patients at tumor stage 0 and 1 had significantly 
higher frequencies of pDCs than later stage patients 
(Fig. 1a, p = 0.008). Furthermore, the ratio of cells with 
the MDSC-1 phenotype to pDCs (Fig. 1b, p = 0.03), and 
the ratio of MDSC-2:pDCs (Fig. 1c, p =  0.02) were sig-
nificantly higher in tumor stage 2, 3, 4. The other MDSC 
phenotypes were not informative (data not shown). 
The ratios of Tregs:pDCs (Fig.  1d, p =  0.02), activated 
Tregs:pDCs (Fig.  1e, p  =  0.01) and FoxP3+ CD4+ 
T-cells:pDCs (Fig. 1f, p = 0.01) were also higher in tumor 
stage 2, 3, 4. Importantly, whether tumors were oestrogen 
receptor-positive or -negative, progesterone receptor-
positive or -negative, or triple-negative did not influence 

the distribution of DCs or immunosuppressive cell types 
(data not shown).

Level of DCs, immunosuppressive subsets and overall 
survival
Kaplan–Meier analysis performed after stratifying 
patients according to their median frequencies of total 
DCs, mDCs or pDCs indicated significant differences in 
5-year survival. For non-metastatic patients, there were 
no significant correlations between higher than median 
levels of total DCs or mDCs at baseline and survival 
(data not shown), butpatients with higher levels of pDCs 
did have significantly better survival (Fig.  2a, p =  0.03). 
Overall 5-year survival was as high as 97 % for patients 
with high levels of pDCs, whereas it was only 77  % for 
those with low levels. This survival advantage was also 
observed when all patients (metastatic and non-met-
astatic) were considered together, although no longer 
reaching significance (Fig. 2b, p = 0.07).

Although we did not observe any survival differences 
individually for the different immunosuppressive cells, 
there was some survival benefit when they were analysed 
together with the DCs. Thus, patients with a low ratio of 
MDSC-1:pDCs showed a trend towards better survival 
than those with a high ratio (p = 0.06) (Additional file 1: 
Figure S2A). This trend was also observed for the ratio of 
Tregs:DCs, where patients with low ratios of activated 
Tregs:total DCs (p = 0.07) (data not shown)and activated 
Tregs:mDCs (p = 0.07) (data not shown) tended to have 
better survival.

Survival advantage of patients with a CD8+ T‑cell response 
to Her‑2
The great majority of patients possessed T-cells respond-
ing to Her-2 peptides in  vitro (97  %). Memory CD4+ 
T-cell responses to Her-2 were detected in 89 % (65/73), 
whereas CD8+ T-cell responses were detected in only 
39/73 (53 %) of patients. Patients were stratified accord-
ing to whether they mounted a CD8+ T-cell response to 
Her-2 (irrespective of whether they had a CD4+ T-cell 
response) for survival analysis. Patients with a CD8+ 
T-cell response to Her-2had significantly better survival 
(p = 0.04) (data not shown) validating our earlier data in 
a smaller cohort [23].

T‑cell responses and tumor stage
We determined whether the proportion of patients pos-
sessing CD8+ T-cells responding to Her-2 differed 
depending on tumor stage. A significant decrease in the 
percentage of CD8+ T-cell responders to Her-2 was 
observed with increasing tumor stage, by Chi square test-
ing (p = 0.02 for trend, Additional file 1: Figure S2B).
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Survival advantage of patients with a CD8+ T‑cell response 
to Her‑2, according to their frequency of DCs
Patients were grouped according to their T-cell responses 
to Her-2 and their level of DCs. Kaplan–Meier analysis 
showed that there was no longer a significant survival 
benefit for those with a CD8+ T-cell response to Her-2 if 
they also had high levels of total DCs, both in the case of 
metastatic and non-metastatic patients (data not shown). 
Taking mDCs separately, however, non-metastatic 

patients with a CD8+ T-cell response to Her-2 tended 
to have better survival even when they also had high lev-
els of these cells (Additional file 1: Figure S2C, p = 0.06), 
whereas those with a high level of mDCs but no CD8+ 
T-cell response to Her-2 had the worst survival. This dif-
ference was significant when all patients were included 
in the survival analysis (p =  0.02). For pDCs, there was 
a tendency for non-metastatic patients with high lev-
els of pDCs together with a CD8+ T-cell response to 

Fig. 1  Distribution of DCs and ratio of DCs to immunosuppressive cells according to tumor stage. p values by Mann–Whitney U testfor (a) pDCs (b) 
MDSC/pDC (c) MDSC-2/pDCs (d) Treg/pDCs (e) aTreg/pDCs (f) FoxP3+ CD4+/pDCs
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Her-2 to have better survival than those with no CD8+ 
T-cell response to Her-2 and low levels of pDCs (Fig. 2c, 
p = 0.09). The survival rate was 93 % in patients with a 
high level of pDCs together with a CD8+ T-cell response 
to Her-2 compared to 70  % in patients with no CD8+ 
T-cell response to Her-2 and low levels of pDCs. This sur-
vival advantage was also observed when all patients, both 
metastatic and non-metastatic, were considered together 
(Fig.  2d, p =  0.01), where patients with high pDCs and 
CD8+ T-cell responses to Her-2 had a 94 % 5-year sur-
vival compared to only 61 % for patients with no CD8+ 
T-cell response to Her-2 and low levels of pDCs. Further, 
similar advantages were observed for non-metastatic 
(Additional file 1: Figure S3A, p = 0.07) and all patients 
(Additional file 1: Figure S3B, p = 0.03) for the low ratio 
of mDC:pDC together with a CD8+ T-cell response to 
Her-2.

Kaplan–Meier analysis showed that metastatic patients 
had poorer survival, as did those not receiving radio-
therapy and chemotherapy, as expected (Table  1). Mul-
tivariate Cox analysis showed that lack of CD8+ T-cell 
response to Her-2 had an independent impact on sur-
vival, in addition to no radiotherapy (Table 2, Model-1). 
As shown earlier, non-metastatic patients with high lev-
els of pDCs had significantly better survival than those 
with low levels, in Model-2 (Table  2). When metastatic 

patients were not included in the multivariate Cox analy-
sis and only four factors (T-cell response to Her-2, pDCs, 
chemotherapy and radiotherapy) were considered, there 
was an independent impact on survival for patients 
with high levels of pDCs in addition to a CD8+ T-cell 
response to Her-2. 

DCs, immunosuppressive subsets and cellular responses 
to Her‑2
To investigate the influence of the presence of cells 
with a suppressive phenotype on the ability of patients’ 
PBMCs to mount a CD8+ T-cell response to Her-2, the 
frequencies of DCs, MDSCs and Tregs were grouped 
according to the presence or absence of the T-cell 
response. Patients without CD8+ T-cell responses 
to Her-2 had significantly higher levels of MDSC-1 
(p  =  0.01), activated Tregs (p  =  0.03) and FoxP3+/
CD4+ T-cells (p = 0.03) as well as a trend for MDSC-2 
(p  =  0.08) (data not shown). Patients with no CD8+ 
T-cell response to Her-2 had significantly higher ratios 
of MDSC-1:DCs (Fig. 3a, p = 0.02) and MDSC-1:mDCs 
(Fig. 3b, p = 0.02) again with a trend for MDSC-2:mDCs 
(Fig.  3c, p  =  0.05). No differences were observed for 
ratios of MDSC-1:pDCs and MDSC-2:pDCs (Fig. 3d, e). 
Similar trends were observed for the ratio of Tregs:DCs 
(data not shown).

Fig. 2  Kaplan–Meier survival analysis of non-metastatic (left) and all (right) patients according to the level of pDCs and for patients according to 
CD8+ T-cell response to Her-2 and level of DC subsets. Analysis of non-metastatic (a) and all patients (b) with low (≤median) versus high (>median) 
levels of DCs. Patients with CD8+ T-cell responses to Her-2 and high levels of pDCs compared to low levels of pDCs with no CD8+ T-cell response 
to Her-2, in c non-metastatic and d all patients
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Prognostic relevance of DCs together with MDSCs, 
regulatory T‑cells and CD8+ T‑cell responses to Her‑2
Because pDCs emerged in this analysis as having a sig-
nificant impact on survival, we next analyzed associa-
tions between DCs and different immunosuppressive 
cells, in relation to T-cell responses to Her-2 peptides. 
After calculating the ratio of MDSCs:pDCs, we grouped 
the patients according to whether or not they mounted 
a CD8+ T-cell response to Her-2. Kaplan–Meier analy-
sis showed that patients with a CD8+ T-cell response to 
Her-2 together with a low ratio of MDSC-1:pDCs had a 
very significantly better survival (Fig.  4a, log rank test: 
p = 0.009) and that there was an early impact on survival 
(Breslow test: p = 0.009) with 100 % survival compared to 
those with a high ratio of MDSC-1:pDCs and no CD8+ 
T-cell responses to Her-2. This strong survival advantage 
was still present when only non-metastatic patients were 

considered (Fig.  4b, p =  0.04). In contrast, no survival 
association was observed for levels of MDSC-2 and total 
DCs. Finally, all patients with a CD8+ T-cell response 
to Her-2 and with a low ratio of Tregs:pDCs (Additional 
file 1: Figure S4A, p = 0.03), activated Tregs:pDCs (Addi-
tional file  1: Figure  S4B, p  =  0.03) or FoxP3+ CD4+ 
T-cells:pDCs (Additional file  1: Figure  S4C, p  =  0.03) 
survived for the 5  year follow-up. Similar survival ben-
efits were observed for total DCs and mDCs as well.

Discussion
DCs are recognized as important players in cancer immu-
notherapy and pDCs have emerged as potential vectors for 
immunotherapy [27, 29]. So far, to the best of our knowl-
edge, there have been no studies correlating the levels of 
circulating DCs with clinical outcome in breast cancer. 
In addition, no study has investigated the relationships 
between DCs and immunosuppressive cell subsets and 
their influence on T-cell responses to TAA in breast can-
cer. We previously showed that older patients having low 
levels of MDSCs and CD8+ T-cell responses to Her-2 sur-
vived longer than those with high levels of MDSCs and no 
CD8+ T-cell responses to Her-2. Here, we extend and vali-
date these results in a larger cohort also including younger 
patients and for the first time report a leading role of circu-
lating pDCs in survival correlates.

Recent studies in mice have shown that pDCs can effec-
tively induce anti-tumor CD8+ T-cell responses [30], and 
that pDCs efficiently cross-present TAA to trigger T-cell 
responses [28]. In the present study, we asked if there 
was any correlation between survival, patients’ in  vitro 
T-cell responses to Her-2 peptides, and frequencies of 
circulating DCs. We found that 97 % of patients mounted 
CD4+ T-cell responses to Her-2, but only half had CD8+ 
responses, which associated positively with 5-year overall 
survival. Here, we sought clinicopathological parameters 
distinguishing those patients with CD8+ T-cell responses 
from those without, as well as correlates with the impact 
of DCs. Increasing tumor stage was identified as nega-
tively associating with the frequency of anti-Her-2 CD8+ 
T-cell responses. Although no differences were observed 
in the levels of total DCs and mDCs between tumor stage 
0, 1 and 2, 3, 4, the frequencies of peripheral pDCs were 
lower in patients with larger tumors. This may suggest 
sequestration of pDCs at the tumor site. Similar findings 
have been reported by others in an earlier study on mela-
noma, where the migratory profile of pDCs together with 
their frequency suggested their capture at the tumor site 
and draining lymph node, resulting in depletion of cir-
culating pDCs [10]. We found that the ratios of different 
immunosuppressive subsets to pDCs were higher in tumor 
stage 2, 3, 4 patients, reflecting low pDC frequencies at 
larger tumor stage and indicating a possible indirect role 

Table 1  Kaplan–Meier analysis

Model 1 & 2 show the two different Multivariate analysis considering different 
significant factors, with and without metastasis

Factor N % Dead (5 years) p

Triple negative 0.57

 Yes 13 23

 No 60 17

Her-2 status 0.7

 Neg 63 17

 Pos 9 22

Metastasis <0.0001

 Yes 7 57

 No 67 15

Radiotherapy <0.0001

 Yes 57 11

 No 17 47

Hormonal therapy 0.08

 Yes 60 17

 No 12 33

Chemotherapy 0.0006

 Yes 30 3

 No 42 31

CD8 responseto Her-2 0.04

 Yes 39 13

 No 34 26

DCs 0.2

 <Median 36 22

 ≥Median 35 11

mDCs 0.8

 <Median 36 17

 ≥Median 35 17

pDCs 0.07

 <Median 36 25

 ≥Median 35 9
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played by the immunosuppressive cell subsets on DCs. 
Kaplan–Meir analysis showed that there was a survival 
advantage for patients with high levels of pDCs and CD8+ 
T-cell responses to Her-2 compared to patients with low 
levels of pDCs and no CD8+ T-cell response to Her-2 pep-
tides. Similar results were observed for patients with a low 
ratio of mDCs:pDCs and a CD8+ T-cell response to Her-
2. From the multivariate Cox analysis, it was concluded 
that high levels of pDCs and the presence of CD8+ T-cell 
responses to Her-2 had an independent effect on survival.

Although there are many studies showing the impact of 
Tregs and MDSCs in cancer, their relationship with total 
DCs, pDCs and mDCs, TAA-specific T-cell responses, 

and clinical outcome has been largely unexplored. In our 
study, a trend towards better survival was observed in 
patients with a low ratio of immunosuppressive cells to 
DC. Previous studies have shown that Tregs can suppress 
pDCs by forming aggregates [31] and that mDCs are also 
sensitive to Tregs [32]. In the present study, consistent 
with this notion, patients with CD8+ T-cell responses 
to Her-2 and low Tregs:pDCs ratios had better sur-
vival compared to those with no CD8+ T-cell response 
to Her-2 and a higher ratio of Tregs:pDCs, suggesting 
a clinically relevant suppressive role of Tregs. Also, we 
observed that patients with no CD8+ T-cell response 
to Her-2 had significantly higher ratios of MDSC-1:total 
DCs, MDSC-1:mDCs and MDSC-2:mDCs, indicat-
ing that those with no in  vitro CD8+ T-cell response 
to Her-2 probably had low levels of APCs. Importantly, 
every patient exhibiting a CD8+ T-cell response to Her-2 
together with low ratios of MDSC-1:pDCs was still alive 
at 5  years. Furthermore, we observed a high ratio of 
MDSCs:pDCs in patients with larger tumor burden, also 
indicating a possible negative impact on the maturation 
of myeloid cells with increasing disease stage. MDSCs 
not only impair T-cell and NK cell function, but also DC-
vaccine quality as reported in one study, where it was 
shown that high levels of MDSCs in DC cultures could 
affect the co-stimulatory molecules CD80 and CD86, 
and important molecules like CD1a and DC-sign [33]. In 
another study by other investigators, patients with a high 
ratio of DCs:MDSCs responded more favorably to high-
dose IL-2 [34], indicating the potential general impor-
tance of high levels of DCs and low levels of MDSCs.

Few studies have focused on the importance of pDCs 
and their influence on mDCs and vice versa [35–37]. We 
observed that patients with low ratios of mDCs:pDCs, 
who also had a CD8+ T-cell response to Her-2, had 
better survival compared to those with high ratios of 
mDCs:pDCs and no CD8+ T-cell response to Her-2, 
again indicating the importance of pDCs. In our study, 
patients with high levels of mDCs and a CD8+ T-cell 
response to Her-2 had better survival compared to those 
with high levels of mDCs and no CD8+ T-cell response 
to Her-2. This might be due to defective mDCs lack-
ing efficient antigen presentation capacity, which might 
in turn be due to the lack of sufficient pDCs in these 
patients that produce type I IFNs indirectly affecting 
the activation of mDCs. It is known that activated pDCs 
can stimulate adjacent mDCs by the production of type 
I IFNs that could enhance their ability to cross-prime 
CD8+ T-cells. This notion is supported by mouse stud-
ies showing that type I IFNs play an important role in the 
induction of anti-tumor responses [4, 38].

A previous clinical study on metastatic melanoma 
showed that activated pDCs injected into lymph nodes 

Table 2  Multivariate Cox analysis

Model 1 & 2 show the two different Multivariate analysis considering different 
significant factors, with and without metastasis

Prognostic factor N Dead over  
5 years (%)

Hazard ratio  
(95 % CI)

p

Model-1

CD8 response to 
Her-2

0.198 (0.05–1.17) 0.018

 Yes 37 11

 No 33 24

Metastasis 3.647 (0.89–14.88) 0.071

 No 32 15

 Yes 42 57

pDCs 0.292 (0.07–1.17) 0.083

 ≤Median 36 25

 >Median 34 9

Radiotherapy 0.107 (0.027–0.41) 0.001

 Yes 57 11

 No 18 44

Chemotherapy <0.001 (<0.001–
1.67e+130)

0.941

 Yes 30 3

 No 42 31

Model-2

CD8 response to 
Her-2

0.145 (0.02–0.81) 0.029

 Yes 34 12

 No 28 21

pDCs 0.093 (0.011– 
0.809)

0.031

 ≤Median 31 23

 >Median 31 3

Radiotherapy 0.091 (0.017– 
0.492)

0.005

 Yes 53 9

 No 13 38

Chemotherapy <0.001 (<0.001–
1.9e+157)

0.949

 Yes 30 3

 No 34 26
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resulted in the induction of TAA-specific CD8+ T-cells, 
some of which had high functional activity. From the 
retrospective analysis in that study, it was observed that 
patients treated with autologous TLR-activated and 
tumor antigen-loaded pDCs had increased survival com-
pared to patients treated with chemotherapy [27]. Also, 
I-IFNs derived from pDCs are known to regulate T cell 
function, which includes long term T-cell survival and 
memory Th1 polarization, CD8+ T-cell cytotoxicity and 
IFN-γ production [39]. pDCs exert their effect snot only 
on T-cells but on NK cells as well, and they are known 
to increase NK cell-mediated cytotoxicity and IFN-γ pro-
duction [40]. Our findings in the current study indicate 
an important role of Her-2-specific T-cells in patients 
having higher levels of circulating pDCs. We observed 
either CD4+ T-cell responses to Her-2, or both CD4+ 
and CD8+ T-cell responses, in almost all patients, 
although the majority of tumors had low expression of 
this molecule according to routine pathology (Her-2-0, 1, 
2). This is consistent with the benefit of Her-2 vaccination 
that patients may experience even when their resected 
tumors are classified as having low or no expression of 
Her-2, as reported in some studies [41, 42].

Conclusions
Our results from the present study emphasize the impor-
tance of the presence of high levels of circulating pDCs, 
low levels of immunosuppressive cells and the pres-
ence of CD8+ T-cell responses to Her-2 in predicting a 
favorable outcome in breast cancer patients both for all 
patients, and when only non-metastatic patients were 
considered. High levels of pDCs in blood, particularly in 
non-metastatic patients might reflect that they have not 
been sequestered by the tumor, hence there might be 
more pDCs available in the lymph node for TAA pres-
entation, which in turn could enhance the induction 
of specific T-cells. On the other hand, the finding that 
high levels of pDCs and the presence of a CD8+ T-cell 
response to Her-2 were independent positive survival 
indicators according to multivariate Cox analysis sug-
gests that mechanisms other than antigen presentation 
are responsible for the positive association of higher 
levels of circulating pDCs with survival in breast cancer. 
Regardless of the reason for these findings, the major 

Fig. 3  Percentage of immune subtypes in CD8-Res and CD8-NR. 
Patients with CD8+ T-cell responses to Her-2 (CD8-Res) compared to 
patients with no CD8+ T-cell responses (CD8-NR) with the ratio of a 
MDSC-1 to DCs (p = 0.02), b MDSC-1 to mDCs (p = 0.02), c MDSC-2 to 
mDCs, d MDSC-1 to pDCs and e MDSC-2 to pDCs

◂
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observation from this study remains that circulating 
pDCs are positive prognostic indicators. Defining blood 
immune biomarkers informative for survival could not 
only enable prediction of an individual patient’s disease 
course without the need for biopsies, with all their limi-
tations (limited access, unpleasant, potential triggering 
metastasis), but also provide information on the mecha-
nisms mediating more successful cancer control by the 
immune system. Thus, measuring blood pDCs could 
represent part of a relatively simple blood test facilitat-
ing personalized interventions specifically tailored to the 
immune capacity of each individual patient.
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