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Mapping Phenotypic Plasticity upon  
the Cancer Cell State Landscape Using 
Manifold Learning 
Daniel B. Burkhardt1,2, Beatriz P. San Juan3,4, John G. Lock5, Smita Krishnaswamy1,6, and Christine L. Chaffer3,4

ABSTRACT Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, non-
genetic cell state changes that amplify cancer heterogeneity to promote metastasis 

and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected 
by trajectories defining dynamic transitions upon a cancer cell state landscape. With technologies prolif-
erating to systematically record molecular mechanisms at single-cell resolution, we illuminate manifold 
learning techniques as emerging computational tools to effectively model cell state dynamics in a way 
that mimics our understanding of the cell state landscape. We anticipate that “state-gating” therapies 
targeting phenotypic plasticity will limit cancer heterogeneity, metastasis, and therapy resistance.

Significance: Nongenetic mechanisms underlying phenotypic plasticity have emerged as significant 
drivers of tumor heterogeneity, metastasis, and therapy resistance. Herein, we discuss new experimen-
tal and computational techniques to define phenotypic plasticity as a scaffold to guide accelerated 
progress in uncovering new vulnerabilities for therapeutic exploitation.

INTRODUCTION: PHENOTYPIC PLASTICITY 
AS A SOURCE OF HETEROGENEITY

Any given tumor is made up of a unique collection of 
cancer cells that exist within a spectrum of diverse genotypic 
and phenotypic cell states. Understanding the scale and func-
tional implications of such heterogeneity is a significant sci-
entific challenge because this diversity is clinically associated 

with aggressive disease, resistance to conventional chemo-
therapies, and poor overall survival (1–6). Yet this implies that 
targeting specific cell populations within a tumor, or prevent-
ing the emergence of particularly aggressive subpopulations, 
could lead to enhanced therapies and improved survival out-
comes for patients. To reach this goal, strategies to identify 
and therapeutically target key intratumoral cell populations 
are vital.

It is long established that genetic diversity is a critical 
mediator of intratumoral heterogeneity (5). Studies in glioma 
demonstrate that intratumoral heterogeneity may consist of 
anywhere between 0 and 8,000 coding mutations (7) that 
provide tumors with crucial survival advantages like permit-
ting survival in evolving microenvironments or in response 
to therapeutic insults (5, 7–10). In some instances, genetic 
heterogeneity is already present within the primary tumor, 
such that chemotherapy favors the emergence of otherwise 
minor or dormant clones (11). In other cases, disease progres-
sion is driven by the therapy-induced emergence of clones 
with de novo mutations that are not present in the primary 
tumor (12). Given the spontaneous, random, and stochastic 
nature of such mutations, designing therapies and clinical 
trials to prevent their initial emergence or selection remains 
challenging (5).

Importantly, there is now substantial evidence that non-
genetic mechanisms can also significantly increase intratu-
moral heterogeneity and disease progression (4, 13, 14). In 
this setting, distinct cancer cell states are created by a process 
termed “phenotypic plasticity,” in which epigenetic, tran-
scriptional, and/or translational mechanisms—rather than 
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mutations—drive phenotypic cell state switching in a man-
ner akin to normal development, wound healing, and organ 
regeneration (4, 13, 15–17). In fact, phenotypic plasticity is 
now recognized as a hallmark of cancer (18).

In contrast to genetically driven heterogeneity, phenotypic 
plasticity is dynamic, reversible, and responsive to regulation 
(19–24). Implicit here is the notion that phenotypic plastic-
ity reflects molecular program switching under the control 
of specific pathways that may be therapeutically targeta-
ble. Understanding the molecular mechanisms regulating 
phenotypic plasticity thus constitutes the first step toward 
establishing what we term “state-gating strategies” for cancer 
therapy—controlling entry into or exit from specific pheno-
typic cell states. Given the failure of cytotoxic therapies to 
treat advanced-stage disease, mastering phenotypic plasticity 
to prevent cells from entering into highly aggressive or resist-
ant cell states is a promising strategy to curtail both metas-
tasis and therapy escape. Such therapeutic advances may 
prove clinically transformative (25, 26) but demand a new 
systematic understanding of cancer cell states, their plastic 
dynamics, and molecular regulation.

LINKING SINGLE-CELL TECHNOLOGIES WITH 
MANIFOLD LEARNING TO RESOLVE THE 
CANCER CELL LANDSCAPE

In this review, we consider the biology of nongenetic heter-
ogeneity from the perspective of a cancer cell state landscape, 
whereupon cancer cells occupy a continuous spectrum of 
phenotypic states connected by trajectories defining dynamic 
cell state transitions, herein termed “plasticity.” We illustrate  
how single-cell “omics” measurement technologies now 
synergize with manifold learning–based analytical methods 
to illuminate the topology of this cancer cell state land-
scape. This reflects the recent proliferation of single-cell 
technologies that are providing unprecedented capacity to 
systematically characterize molecular mechanisms governing 
phenotypic plasticity at the cellular scale (27–30). Leveraging 
this revolutionary data, manifold learning techniques are also 
emerging to effectively model cell state dynamics in a way 
that mimics our understanding of the cell state landscape, 
being both globally complex (nonlinear) and locally continu-
ous. Building on this tripartite synthesis of (i) the cancer cell 
state landscape paradigm, (ii) single-cell omics measurement 
methods, and (iii) manifold learning analysis tools, we fur-
ther consider how this systematic framework will inform 
biological advances leading to novel therapeutics. Indeed, we 
believe this synthesis will promote not only new individual 
therapies but ultimately a new class of therapies that strategi-
cally target cancer cell plasticity itself to restrict cancer cell 
heterogeneity and adaptability.

CELLULAR PLASTICITY AS A DRIVER OF 
CANCER PROGRESSION

Although there is mounting evidence that phenotypic plas-
ticity drives disease progression in multiple cancer types (refs. 
14, 16, 20, 27–30; for a recent review on this topic, see ref. 4), 
it remains a complex process to dissect. The temporal dynam-
ics governing cell state changes can encompass trajectories 

spanning months to years, in line with disease progression or 
therapeutic treatment and response. Yet plasticity may also 
result from rapid changes in transcription, protein expres-
sion, and even localization within days, hours, or minutes. 
Cancer cell plasticity is also modulated by spatially resolved 
cues spanning organ, tissue, cellular, and subcellular scales. 
Thus, resolving both temporal and spatial dimensions is criti-
cal to understanding cancer cell plasticity and its role in both 
tumor progression and therapy resistance.

Much of our understanding of the molecular programs 
governing cancer cell plasticity derives from early observa-
tions revealing the co-option of developmental cell plasticity 
programs by cancer cells, such as transitions between epithe-
lial and mesenchymal cell states. This includes epithelial-to-
mesenchymal transition (EMT; refs. 31, 32) and the reverse 
process, mesenchymal-to-epithelial transition (MET; refs. 33, 
34). In this paradigm, cancer cells defined as epithelial-like are 
considered less tumorigenic and generally lacking in cancer 
stem cell characteristics. Upon undergoing EMT to acquire 
a full mesenchymal or even hybrid epithelial/mesenchymal 
state, they are thought to gain stem cell characteristics that 
permit promotion of metastasis and chemotherapy resist-
ance (35–37). These early studies have also revealed important 
information about the significance of ongoing cell plastic-
ity dynamics. For example, EMT at the primary tumor site 
increases metastatic potential; yet among metastatic cells, 
the ability to also undergo the reverse MET process, even if 
only partially, better enables secondary tissue colonization 
and metastasis growth (38–43). Thus, metastatic efficiency is 
greatest when cancer cells retain the plasticity to use epithe-
lial or mesenchymal attributes best suited at distinct stages of 
the metastatic cascade.

The epigenetic landscape of a cancer cell is an important 
determinant of its intrinsic propensity to undergo EMT or 
MET. For example, a bivalent chromatin configuration at 
the promoter of the EMT transcription factor ZEB1 predis-
posed basal breast cancer cells lacking stemness features to 
spontaneous ZEB1 activation and subsequent entrance into a 
cancer stem cell state. In contrast, the equivalent cells isolated 
from luminal breast cancer maintain repressed chromatin at 
the ZEB1 promoter and do not readily change cell state (19). 
Bivalent chromatin configuration also underlies phenotypic 
plasticity within cancer stem cell populations themselves, 
providing cancer stem cells with additional adaptability (44).  
Epigenetic modulation plays an important role not only in 
a cell’s predisposition to invoke phenotypic plasticity but in 
the execution of the process. The transcription factors that 
execute EMT—for example, SNAI1—bind to the promoter of 
the CDH1 gene encoding E-cadherin, a gatekeeper of the epi-
thelial cell state. This binding recruits components of the poly-
comb repressor complex and histone deacetylases to modify 
chromatin and mediate the silencing of CDH1 expression (45, 
46). Accordingly, chromatin remodelers, writers, and readers 
provide important regulatory control over phenotypic plastic-
ity and are the subject of therapeutic investigation (47, 48).

Notably, there are now several examples of phenotypic 
plasticity programs that drive cancer progression outside of 
those associated with developmental differentiation. Meta-
bolic plasticity enables cancer cells to alter their utilization 
of metabolic programs to sustain growth and survival. These 
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changes may occur in response to hyperproliferative cell 
states, changes in microenvironmental nutrient availability, 
or the requirement for de novo rate-limiting macromolecule 
synthesis (49). The capacity to change metabolic dependen-
cies not only favors survival but may also favor metastatic 
outgrowth in distinct organs—for example, elevated fatty 
acid synthesis (50) or de novo serine synthesis (51) is enhanced 
in breast cancer brain metastases compared with primary 
tumors, whereas the pyruvate carboxylase–dependent resup-
ply of metabolites is enhanced in breast cancer lung metas-
tasis compared with primary tumors (52, 53). Beyond the 
impact of those changes on the cell’s metabolism, epigenome 
regulators are also highly sensitive to changes in intracel-
lular metabolism. Indeed, a cancer cell’s epigenetic and tran-
scriptional landscape can be altered, for example, by iron 
endocytosis (54), proline metabolism (55), or the metabolite 
2-hydroxyglutarate (56).

Entrance and exit from slow-cycling, quiescent, dormant, or 
even senescent cell states are phenotypic plasticity programs 
that are particularly consequential for tumor relapse or recur-
rence (57–59). Cells that escape these latent states may reenter 
the cell cycle via activation of proteins controlling cycling 
(e.g., cyclin-dependent kinases; ref.  59), through upregula-
tion of stemness markers (60), or by changing extracellular 
matrix composition in the dormant niche (61). Returning to 
the importance of metabolic plasticity in cell state determi-
nation, reactivation of cell cycling among therapy-resistant 
persister cells has been linked to the upregulation of fatty 
acid metabolism (62). Interestingly, survival in a dormant cell 
state has been linked to the upregulation of immune genes 
that provide a “cloak” to cancer cells to avoid immune detec-
tion. Similarly, downregulation of that immune program 
enables dormant cells to reenter the cell cycle (63).

Immune evasion is not only a critical component of tumor 
dormancy, it is also fundamental to robust tumor growth. 
Indeed, this biology underpins the breakthrough success of 
immunotherapy (64). Like most cancer therapeutics, how-
ever, intrinsic or acquired resistance to immunotherapy 
ensues, with evidence that phenotypic plasticity plays a sig-
nificant role (65). Alongside the ability of EMT to drive cancer 
cells into more aggressive cell states, it also promotes immune 
evasion by decreasing levels of MHC-I and promoting high 
levels of PD-L1 on cancer cells (66, 67). These changes are in 
line with the direct impact of EMT-inducing cytokines, for 
example, TGFb, that drive EMT in cancer cells while sup-
pressing innate and adaptive immune responses in the tumor 
microenvironment (67, 68). In fact, clear differences in the 
immune landscape have been noted in epithelial versus mes-
enchymal tumors, including a change from CD8+ T cells and 
M1 antitumor macrophages to M2 protumor macrophages, 
increased CD8+ T-cell exhaustion, and increased regulatory 
T-cell recruitment (67). These studies suggest that therapies 
preventing EMT, or conversely, enhancing MET, may be effec-
tive in sensitizing tumors to immunotherapy.

Perhaps the most alarming manifestation of phenotypic 
plasticity is in facilitating therapy evasion and the emergence 
of therapy-resistant disease (69, 70). A prime example of this is 
evidence demonstrating that a partial EMT is associated with 
entrance into a chemotherapy-resistant state (71). Similarly, 
radiotherapy can promote phenotypic plasticity in the stroma 

of distant metastatic organs, establishing a positive feedback 
loop with metastatic cancer cells, which in turn undergo a 
phenotypic transition that enhances their capacity to grow 
and evade therapy (72). Moreover, multiple studies have now 
proven that chemotherapies themselves—spanning anthracy-
clines, topoisomerase inhibitors, platinum-based therapies, 
and taxanes—all induce components of the EMT program and 
thereby chemotherapy resistance (73). Similarly, the evidence 
of partial MET at metastatic sites also leads to chemotherapy-
resistant cell states (74). These studies show that chemo-
therapies affect multiple cell states and stages of metastasis 
to actively induce therapy-resistant phenotypes, as opposed 
to only creating resistance through a gradual selection of 
preexisting resistant clones. This active induction of resist-
ant cancer cell states through nongenetic plasticity programs 
suggests a targetable vulnerability, such that the elucidation 
and modulation of these chemotherapy-induced plasticity 
programs will permit novel therapeutic strategies (25).

Together, these studies highlight the complex interplay 
of plasticity programs spanning developmental, metabolic, 
immune evasion, epigenetic, and drug resistance systems that 
cooperate to optimize cancer cell growth and survival (75–77). 
Beyond these insights, we are only on the cusp of understand-
ing how underlying genetic mutations contribute additional 
dimensions to the control of phenotypic plasticity (78–81).

TEMPORAL AND SPATIAL REGULATION OF 
PHENOTYPIC PLASTICITY

Given the sensitivity of phenotypic plasticity programs to 
environmental cues, it is interesting to consider how short 
or transient exposure can lead to long-term, stable pheno-
typic changes. For example, if a cancer cell is exposed to an 
EMT-inducing signal at the primary tumor site, how is the 
phenotype maintained once the cell transits into the circu-
lation or to a distant metastatic site? Recent insights into 
miRNA/EMT transcription factor regulatory loops, for exam-
ple, the miR200–ZEB1 feedback, demonstrate how negative 
feedback loops create a sensitive yet noise-resistant bistable 
response to short-term cytokine exposure (82). In this example, 
a 5-minute exposure to the EMT-inducing cytokine TGFb rein-
forces ZEB1 signaling to stabilize an EMT that persists for days 
and is capable of increasing metastatic potential. The bistabil-
ity revealed here is emblematic of a hysteretic process in which 
differences in the histories of individual cells dictate divergent 
responses to equivalent stimuli. Such hysteresis raises further 
questions as to whether particular state transitions are (i) 
bidirectional, in which cells in state A can transition to state B  
and cells in state B can transition to state A; (ii) reversible, in 
which a single cell in state A can transition to state B and then 
back to state A; and (iii) asymmetrical, in which cells transition 
from state A to state B via a different trajectory versus cells 
transitioning from state B to state A, as in the hysteresis exam-
ple above and depicted in the epithelial-to-hybrid epithelial/ 
mesenchymal state and hybrid epithelial/mesenchymal-to-
epithelial example in Fig.  1A. Ultimately, understanding how 
these plasticity pathways are regulated, together with defining 
permissive epigenetic states, is vital for a systematic understand-
ing of the temporal dynamics giving rise to cancer cell hetero-
geneity and to the adaptive capacity of individual cancer cells.
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Of course, phenotypic plasticity does not arise purely 
through cell-autonomous decision-making or stochasticity. 
Rather, it emerges as part of the complex, spatially distrib-
uted milieu comprising each evolving tumor site (83). Just as 
the recent history of a given cell may be encoded in hysteretic 
signaling motifs of the kinds discussed above, or in gene 
expression or epigenetic patterns, each cell’s history is also 
manifest in its local spatial context. This context incorporates 
factors such as cell–cell interactions (homotypic; with other 
cancer cells and/or heterotypic; with fibroblasts, immune 
cells, vasculature, etc.); cell–extracellular matrix (ECM) inter-
actions; extracellular soluble factors (autocrine/paracrine 
signaling ligands or cytokines); and chemical properties such 
as pH and the levels of O2, CO2, or reactive oxygen species. 
Importantly, the reciprocal relationship between each cell 
and its spatial context not only reflects the cell’s history 
but also shapes its future, guiding decisions between pro-
cesses such as proliferation, programmed death, motility, or 
particular cell state transitions. As a consequence, a robust 
understanding of cancer cell state dynamics—and how these 
give rise to population heterogeneity—cannot be disentan-
gled from a parallel understanding of intratumoral spatial 
organization, since in the evolution of tumors, temporal and 
spatial determinants are fundamentally interwoven (84). This 
basic concept underpins established yet more specific ques-
tions about the existence and nature of so-called cancer stem 
cell niches, the composition and properties of tumor invasive 
fronts, and the interfaces between tumors and macrostruc-
tures such as vasculature or organ fascia. The mapping of 
phenotypic cell states via single-cell spatial transcriptomics 
(85, 86) and proteomic analyses (87) has enormous potential 
to resolve these questions.

RESOLVING CANCER CELL STATES AND 
PLASTICITY TRAJECTORIES: MAPPING THE 
CANCER CELL STATE LANDSCAPE

Given the potential complexity and interplay of phenotypic 
plasticity programs, how do we begin to unravel, resolve, and 
ultimately understand how those programs contribute to the 
creation and evolution of a heterogeneous tumor? We can 
begin by thinking of cancer cells as occupying a cancer cell 
state “landscape” (Fig. 1A–C). On this landscape, cancer cells 
reside within a phenotypic continuum. We hypothesize that 
there may be multiple stable states connected by transitional 
trajectories permitting traversal of the cell state continuum 
and that some states and transitions will be favored at dif-
ferent sites or stages of cancer progression. Accordingly, we 
expect a final understanding of cancer cell states to reveal 
a more complex and multifaceted landscape—much like the 
landscape underpinning cellular differentiation envisaged 

by Conrad Waddington, as revisited by Sui Huang and col-
leagues (88), and like that proposed as an explanation of 
nongenetic cancer driver dynamics (89).

In the paradigm of the cancer cell state landscape, high-
stability cell states constitute “valleys,” or “attractor states,” 
into whose orbit adjacent cells tend to fall (Fig.  1B). Con-
versely, unstable or unfavorable cell states constitute “moun-
tain ranges” that cells cannot easily traverse. These valleys 
and mountain ranges, thus, partition the cellular landscape 
into accessible and inaccessible state spaces that collectively 
give rise to cancer cell heterogeneity. Plastic phenotypic tran-
sitions occur between cell attractor states via “canalising” 
features, for example, channels linking valleys (Fig. 1C). Cru-
cially, it is becoming clear that specific molecular mecha-
nisms underpin the plastic state transitions that constitute 
these canalizing features, making them prime targets for 
therapeutic intervention to control tumor heterogeneity.

A significant but often overlooked aspect of cellular 
dynamics within this landscape paradigm is that the land-
scape topology “shapes probabilistic outcomes” but is not 
wholly deterministic. Specifically, although the dynamics of 
an individual cell are heavily influenced by the local landscape 
topology (e.g., uphill or downhill gradients), the stochastic 
nature of cellular information processing nonetheless per-
mits some movements counter to these gradients, meaning 
that cells can occasionally climb “uphill.” This accounts for 
the ability of cells to traverse landscapes that have multiple 
local minima without becoming permanently trapped in 
these. This “stochastic jittering” provides a degree of flexibil-
ity that maintains cell heterogeneity, while nonetheless being 
guided by the evolved topology or “logic” of the cell state 
landscape. This mirrors the classic concept of the “explore 
versus exploit” trade-off considered in evolutionary and com-
plexity theories, in which exploration corresponds to stochas-
tic jittering and exploitation corresponds to a strict following 
of topological cues (90).

Intriguingly, the level of stochastic jittering—essentially, 
noise in cellular information processing—is evidently a 
meta-property that is subject to evolutionary tuning. At the 
genomic level, mechanisms exist to rapidly raise this noise 
level in response to stress—for example, stress-induced chro-
mosomal instability increases mutation rates, thereby pro-
moting greater heterogeneity and thus improved population 
survivability in the presence of stressors (91). Understanding 
how this meta-property of “noise levels” may be embodied 
and tuned in the context of nongenetic cellular plasticity 
could provide an alternative lens through which to interpret 
and potentially modulate cell state landscapes and the cancer 
cell dynamics emerging upon them. For example, distinct epi-
genetic states, or epigenetic priming, such as, a bivalent chro-
matin configuration at critical gene mediators of phenotypic 

Figure 1.  Estimating the topology of the cancer cell state landscape via manifold modeling. Cancer cell populations reside in a high-dimensional 
state space that can be conceived as a landscape (A) in which highly populated “attractor states” constitute valleys (B) and the trajectories of “plastic 
transitions” between these states follow canalizing features such as channels (C). The height or depth of topologies on this landscape reflect the relative 
favorability of the corresponding cell state in thermodynamic or informational terms. D, The topology of cell state landscapes can be modeled using 
graph representations that approximate nonlinear but locally continuous “cellular manifolds.” Learning a graph from high-dimensional data such as single-
cell RNA sequencing involves calculating global distances and then connecting adjacent neighborhoods of cells using a kernel function. Methods like 
diffusion, modeling random walks on the connected graph, can be used to estimate recurring trajectories within the data, reflecting plastic cell state tran-
sitions. E, Given the estimation of a manifold representing the cell state landscape, tasks like clustering (left), trajectory inference (center), and archetypal 
analysis (right) of phenotype composition can be performed to extend biological inferences. E, epithelial; E/M, epithelial/mesenchymal; M, mesenchymal. 



Burkhardt et al.MINI REVIEW

1852 | CANCER DISCOVERY AUGUST  2022	 AACRJournals.org

plasticity, increase the likelihood of normal and cancer cells 
changing states (19, 92).

Overall, defining tumor-specific cancer cell state land-
scapes is critical to understanding the diversity of cell states 
that exist, the transitional trajectories that link significant 
states, and how these topologies contribute to disease pro-
gression and site-specific metastasis. Using such knowledge, 
we may define the molecular programs controlling plastic-
ity, thereby informing the design of novel therapeutics to 
block deleterious trajectories or activate beneficial ones. By 
thus effectively remodeling cancer landscape topologies, 
we envision a new treatment strategy to prevent cancer 
progression and therapy resistance. Yet to enact this vision, 
sophisticated new combinations of experimental and com-
putational tools must now elucidate the specific molecular 
programs driving plastic transitions that bridge the con-
tinuum of cancer cell states.

COMPUTATIONAL FRAMEWORK FOR 
DEFINING CONTINUUM CELL STATE SPACES: 
MAPPING LANDSCAPE TOPOLOGY

Recent advances in measurement technologies have facili-
tated the measurement of gene expression, DNA accessibility, 
protein content, or genomic mutations across tens of thou-
sands of single cells and now even allow for the measurement 
of multiple modalities in the same cell. This is a revolution-
ary change from the previous half century of research where 
techniques such as flow cytometry recorded only one or two 
dozen features per cell and involved iterative gating of cells 
into high or low expression on a per-marker basis. The recent 
explosion in the number of features provided by cutting-edge 
single-cell techniques now requires a new framework for 
data analysis.

One emerging approach is manifold learning (Fig.  1D), 
which models the cellular landscape as a “manifold” to eluci-
date the states that cells can occupy. The manifold assump-
tion holds that, despite the measurement space of cells being 
very high dimensional [∼20,000 gene dimensions in the case 
of single-cell RNA sequencing (scRNA-seq)], the data actually 
lie in an intrinsically lower dimensional space due to infor-
mational redundancy, that is, dependency between the genes. 
Thus, by discovering the real intrinsic (often nonlinear) axes 
of variation, we can understand the true shape of the data. 
This in turn can be used for denoising data (i.e., restoring 
data to its manifold-intrinsic dimensions), clustering data 
(discretizing the lower dimensional representations; Fig. 1E, 
left), and analyzing trajectories (by associating the intrinsic 
axes with gene expression, etc.).

The term “manifold” comes from Riemannian geometry 
and describes a space that is smooth, differentiable, and 
locally Euclidean (93). For example, measured features (e.g., 
gene counts in an scRNA-seq space) define a space with 
tens of thousands of dimensions in which relationships 
between genes, as well as between genes and phenotypes 
(94–96), may be nonlinear. We understand, however, that 
cells progress smoothly between states rather than jumping 
discretely as an electron might change orbitals, implying that 
the landscape of cellular states consists of locally smooth 
patches of cells. Each individual patch can be thought of 

as analogous to Waddington’s landscape, in terms of gene 
configuration, wherein valleys represent the viable cell states. 
Intrinsic dimensionality in the gene space is further reduced 
by informational redundancy resulting from gene interac-
tions and coregulation of gene modules. This suggests the 
cell phenotypic manifold has lower dimensionality than that 
implied by the combinatorial diversity of genes or proteins 
comprising each cell, a prediction validated, for instance, by 
the quantification of discernible phenotypic diversity pro-
duced by large-scale chemical compound screening (97, 98). 
These constraints on the gene space mean that the cellular 
landscape is in many cases suitable to be computed from 
scRNA-seq data using manifold learning techniques. Mani-
fold learning may be limited in settings with very small or 
disconnected data. For example, bulk sequencing, though 
high dimensional, typically contains only limited samples 
(<20). In such cases, the cellular state space or landscape can-
not be mapped, and more traditional statistical testing may 
be applied to understand differential expression signatures. 
Alternatively, if the data contain selectively sampled points 
from disparate clusters or curated markers designed to decide 
between only known cell types, then a supervised classifica-
tion approach may be preferable.

A particularly elegant framework available within the man-
ifold theory is data diffusion (ref.  99; Fig.  1D). The goal of 
diffusion geometry is to identify the major trajectories and 
density centers of a manifold. Diffusion geometry can be 
defined by the creation of a Markovian diffusion operator, 
which involves the computation of distances between data 
points, converted to affinities via a kernel function (such 
as a Gaussian function), with the subsequent normaliza-
tion of the affinities. Eigenvectors of the diffusion operator, 
also called diffusion components (or diffusion maps), reveal 
major pathways or trajectories within the data. If the original 
kernel is anisotropic—that is, adapts to the effect of data 
density—the diffusion operator then shows diffusion, similar 
to Brownian motion in ambient space, and delineates the 
geometry of the cellular landscape. On the other hand, if the 
kernel is isotropic, the Markovian diffusion operator shows 
a combination of Brownian motion and drift toward density 
centers. Both modalities can be useful for mapping the cel-
lular landscape in cancer. The diffusion operator applied to 
an initial distribution of cells can show the pathways that 
lead to favorable or “low energy” attractor states where many 
cells gather. Thus, energy changes in the landscape can be 
revealed to a large extent simply by looking at data density, 
as this approximates potential energy at that landscape loca-
tion. Overall, diffusion-based manifold learning has been 
used successfully for many types of cellular analysis, includ-
ing trajectory and clustering pseudotime analysis (refs. 100–
106; Fig. 1E, center), data visualization (107), data denoising 
(108), differentiation potency analysis (109), and comparative 
analysis of single-cell data types (110), and joint embedding 
from multimodal data (111). Thus, diffusion operators are 
used to analyze both steady state and transitional behaviors 
in these systems.

Another promising approach for learning cellular mani-
folds is deep learning. Self-supervised deep learning meth-
ods such as autoencoders re-create their (high-dimensional) 
input as (high-dimensional) output following encoding 
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to a low-dimensional “latent space” embedding. Methods 
such as SAUCIE (112), sCVI (113), VASC (114), and a 
recent two-stage variational autoencoder architecture (115) 
developed for single-cell phenotypic imaging data constrain 
(typically smoothing) the structure of the latent space to 
produce state space manifold representations suitable for 
biological inference.

Archetypal analysis (116) constitutes a third analytical 
approach (Fig. 1E, right) wherein a convex hull is fitted to the 
data such that corners of the convex hull represent extrema 
and other data points are convex mixtures of the extrema 
(116, 117). In contrast to clustering, which assumes cells 
occupy distinct and disconnected spaces, the archetypal anal-
ysis describes a spectrum of cell states. Recently, archetypal 
analysis has been advanced with neural networks AAnet and 
DeepAA (118), providing scalable and nonlinear extensions of 
the classic archetypal analysis framework. Taken together, the 
manifold model provides an expansive and growing frame-
work for single-cell data analysis.

MODELING TEMPORAL DYNAMICS OF 
PHENOTYPIC PLASTICITY: TRAVERSING  
THE LANDSCAPE

With methodologic advances in data acquisition and mani-
fold learning in place to map the “static” topology of the 
cancer cell state landscape, including through the integra-
tion of data from several measurement modalities (Fig.  2A) 
(119), it is now vital to understand how cells dynamically 
traverse this landscape. At the molecular level, understanding 
the mechanisms that control, initiate, or inhibit phenotypic 
plasticity constitutes an opportunity to gain therapeutic 
control over those cancer cell dynamics and thereby curb 
disease progression.

Biomedical technologies usually negotiate a trade-off of 
the ability to measure many cellular components (genes, 
proteins, etc.), with the ability to allow the cell to continue 
to carry out its function. Thus, it is very difficult to devise 
technologies that can follow a cell unperturbed in time with a 

Figure 2.  Modeling temporal dynamics. A, Single-cell populations can be characterized via different omics modalities capturing genomic, transcrip-
tomic, or proteomic information. Resulting data sets may vary significantly in the number of observations and the number of features, and different sets 
of relationships may exist between the same set of cells depending on which set of features is being examined. Data integration algorithms must be used 
to merge data sets for joint analysis of multiple data domains. B, In the context of single-cell time-series analyses comprising discrete time point data 
sets (left), dynamical models based on optimal transport or neural ordinary differential equations (NeuralODE; center) have been used to improve our 
understanding of biological dynamics by interpolating intervening time point data (orange points, right) to allow inference of dynamic trajectory models 
(gray lines).
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high-dimensional measurement. However, high-dimensional 
data can be collected as static snapshot measurements, and 
newly emerging computational techniques, particularly 
involving deep learning, can allow us to learn continuous 
dynamics and causal effects even using discrete time-series 
data (Fig. 2B).

Among these approaches, pseudotime trajectory (101, 102, 
109) methods were first applied to learn biological dynamics, 
in which data from a single time point are used to infer a 
“pseudotime” dimension along which cells transition. Effec-
tively, if the cellular data were collected under a transitional 
or differentiation condition, the largest axis of variation 
could be associated with the developmental process. Since the 
term “pseudotime” was coined in 2014, over 50 methods have 
been described for trajectory inference. Yet a major drawback 
of these techniques is that they learn a simple ordering of 
cells without modeling the dynamics that underlie the prob-
ability that a cell will follow one path or another. A newer 
data-augmented technique for learning cellular transitions is 
RNA velocity (120, 121). RNA velocity learns transcriptional 
dynamics based on the ratio between spliced and unspliced 
transcripts that are naturally found within scRNA-seq data, 
where the ratio of spliced to unspliced RNA is used to deter-
mine if the cell is increasing or decreasing the expression 
of each gene, that is, learning a velocity vector for each cell. 
However, this is a very localized snapshot of a global process.

To elucidate underlying dynamic processes across the cel-
lular state space, some groups have leveraged advances in 
computational optimal transport. Optimal transport is a 
mathematical technique that quantifies the minimum cost 
mapping between two distributions. For example, Wadding-
ton optimal transport (122) is a method that has been used to 
describe cellular dynamics during induced pluripotent stem 
cell reprogramming. However, Waddington optimal transport 
restricts these dynamics to linear shifts in the ambient space.

To learn nonlinear dynamics on an underlying cellu-
lar manifold, we recently described TrajectoryNet, which 
combines RNA velocity (capturing local transitions) with 
the global transport ability of optimal transport (123). 
TrajectoryNet uses a newly devised class of neural network 
called a NeuralODE (ordinary differential equation). Neural
ODEs (Fig.  2B, center) learn a time-varying derivative of a 
complex dynamic system parameterized via a neural network 
by setting network weights using an ODE solver instead 
of standard back-propagation and gradient descent. The 
resulting network can predict the future state of a measured 
cell based on the underlying geometry of the data set and 
predicted intracellular dynamics based on RNA velocity. This 
framework can enforce directionality through time and along 
a manifold representation of the data.

We anticipate that emerging models of cellular dynamics will 
increasingly leverage stochasticity to more closely model cellular 
processes. Currently, optimal transport models used in Trajec-
toryNet and Waddington optimal transport are deterministic, 
meaning that two cells with identical transcriptional profiles 
will produce identical future state prediction. However, it is 
possible that these cells have different posttranscriptional regu-
latory regimes and will therefore diverge in their specific fates. 
Stochastic differential equation models (124) might be more 
suited to capture such divergent potentials among similar cells.

THERAPEUTICS TO TARGET CELL 
PLASTICITY: STRATEGICALLY REMODELING 
THE CELL STATE LANDSCAPE

Although we do not yet fully understand the intricacies 
of the tumor ecosystem’s dynamism, we posit that cancer 
progression, metastasis, and therapy resistance all depend 
heavily on the emergence of landscape topologies permit-
ting adaptive phenotypic cell state dynamics (Fig.  3A). It 
is vital to understand that, even as individual cells move 
dynamically upon these landscapes, the landscape topolo-
gies are themselves mutable, being sensitive to microen-
vironmental changes, metastatic relocation, or therapeutic 
challenges (125). In the clinical context, the inherently adap-
tive nature of the tumor ecosystem, thus, actively enables 
therapeutic evasion.

Yet recognition of the mutability of cancer cell state land-
scapes illuminates a new therapeutic strategy: intentional 
remodeling of the landscape topology to “corral” cancer 
cells into states that are more therapeutically vulnerable. 
By designing therapies that erect barriers to undesirable cell 
states or shape new channels toward preferable states, we 
envisage a new class of state-gating therapeutics designed to 
control the cancer cell state equilibrium. Moreover, we foresee 
potential for powerful synergies when combining such state-
gating therapies with existing anticancer therapies.

For example, as detailed above, it is becoming apparent 
that some chemotherapies fail because they actively promote 
plastic transitions to resistant cancer cell states by creating 
or enhancing transitional trajectories (i.e., channels; Fig. 3B). 
Given this, multiple approaches can be conceived to enhance 
and sustain the effectiveness of chemotherapies by activat-
ing transitions from the resistant to chemosusceptible states 
(Fig. 3C), inhibiting transition to the resistant state (Fig. 3D), 
or preventing self-renewal of the resistant state (Fig. 3E). To 
design such state-gating strategies, however, now demands 
that we understand the molecular programs enabling specific 
trajectories of cell plasticity.

Significantly, state-gating strategies differ fundamentally 
from traditional targeted therapies. They are designed to 
target topological “channels” to modulate state plasticity 
rather than targeting specific topological “wells” to attack 
particular cancer cell states. Considering this, we may con-
ceive of a future scenario where state-gating approaches 
are used to shift cells toward, or corral cells within, cell-
attractor states that are vulnerable to chemotherapy or other 
targeted treatments.

CLINICAL MANIFESTATIONS OF PHENOTYPIC 
HETEROGENEITY AND PLASTICITY

Developing clinical assays to define and quantify distinct 
tumor cell phenotypic states, and their evolution in response 
to specific treatments, remains a significant clinical challenge. 
With clinical pathology tests often limited to IHC stains of 
a small number of proteins (generally in the range of one to 
three), it is not yet generally possible to define phenotypic cell 
states in a clinically sufficient manner or to use that informa-
tion to inform therapeutic strategy. Despite these limitations, 
several studies have demonstrated how the simultaneous 
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analysis of even a limited set of markers can successfully 
define a range of phenotypic cell states in human carcinomas 
and their association with more aggressive disease, poorer 
clinical outcome, and resistance to therapy (73, 126). For 
example, b-catenin, E-cadherin, and Vimentin define the evo-
lution of EMT cell states in untreated and treated human 
carcinomas (including breast, prostate, non–small cell lung, 

esophageal carcinomas). CD104 and CD44 can define differ-
ing tumorigenicities of cancer cell subpopulations in breast 
cancer models (35), whereas CD51, CD61, and CD106 define 
different tumorigenic and metastatic potential in models of 
squamous cell carcinoma (21). Although such data hint at 
the clinical potential of defining phenotypic cell state spaces, 
we are only beginning to understand the diversity of cell 
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Figure 3.  State-gating strategies to control cancer 
cell plasticity by remodeling the cancer landscape.  
A, A subspace of the cancer cell state landscape 
containing epithelial (E) and hybrid epithelial/mesenchy-
mal (E/M) attractor states linked by plastic transitions. 
B, Chemotherapy (Chemo) remodels the landscape 
favoring the transition from the E to the E/M state 
while inhibiting the reverse process. This increases the 
population of E/M cells, which promote metastasis and 
therapy resistance. C–E, Potential antiplasticity state-
gating strategies: activating E/M-to-E transition 
(C), inhibiting E-to-E/M transition (D), and inhibiting E/M 
self-renewal (E). These will have dual actions, preventing 
the amplification of E/M cells by chemotherapy while 
favoring the E state that is sensitive to chemotherapy.
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phenotypes that exist within tumors, the levels of plasticity 
coupling these states, and how therapies change the pheno-
typic landscape. As the field continues to develop technolo-
gies for systematic single-cell measurement of this complex 
biology, we envisage that manifold learning methods will also 
continue to develop in parallel to enable the full exploitation 
of these profoundly transformative data. These methods hold 
great promise to delineate both intrinsic and extrinsic factors 
underlying phenotypic plasticity, enabling the next genera-
tion of diagnostic and therapeutic capabilities.

FUTURE DIRECTIONS
The cancer cell state landscape paradigm, matched to 

the analytical framework of manifold learning, provides a 
coherent prism through which to explore the adaptive phe-
notypic plasticity of cancer cell populations. The comple-
mentarity detailed herein between single-cell measurement 
modalities and computational approaches for manifold 
learning is vital to advance our understanding of the inte-
grated signaling, genetic, and epigenetic regulatory net-
works that control cancer cell state plasticity and thus the 
cancer cell state landscape. In turn, such understanding 
is critical for the design of novel state-gating therapeutics 
whose capacity to constrain specific trajectories of plastic-
ity could be used to lock cancer cells into vulnerable states 
that are targetable with existing chemotherapies and tar-
geted therapies. We believe this dual strategy of combining 
state-gating and state-targeting therapies will substantially 
undermine one of cancer’s most problematic capabilities—
its adaptability—thereby transformatively improving cancer 
patient outcomes.
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