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Abstract

During retinogenesis seven different cell types are generated in distinct yet overlapping
timepoints from a population of retinal progenitor cells. Previously, we performed single cell
transcriptome analyses of retinal progenitor cells to identify candidate genes that may play
roles in the generation of early-born retinal neurons. Based on its expression pattern in sub-
sets of early retinal cells, polo-like kinase 3 (PIk3) was identified as one such candidate
gene. Further characterization of PIk3 expression by in situ hybridization revealed that this
gene is expressed as cells exit the cell cycle. We obtained a Plk3 deficient mouse and
investigated changes in the retina’s morphology and transcriptome through immunohis-
tochemistry, in situ hybridization and gene expression profiling. These experiments have
been performed initially on adult mice and subsequently extended throughout retinal devel-
opment. Although morphological studies revealed no consistent changes in retinogenesis
upon PIk3 loss, microarray profiling revealed potential candidate genes altered in PIk3-KO
mice. Further studies will be necessary to understand the connection between these
changes in gene expression and the loss of a protein kinase such as PIk3.

Introduction

Neural progenitor cells acquire their cell fates at particular times and places to ensure the right
connections are formed in concert to generate an intricately functioning and responsive tissue.
Although numerous environmental and cell-intrinsic factors have been shown to contribute to
the fate decisions of neural progenitor cells, there are many players still to be identified [1].
Importantly, single-cell transcriptomic analyses have shown that cycling retinal progenitor
cells exhibit extreme diversity in their expression of known transcription factors and markers
of various cell processes [2]. However, the function of many of the dynamically expressed
genes has not been studied and, therefore, the phenotypic repercussions of this gene expression
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heterogeneity are not understood. A better understanding of the effects on cell fate acquisition
and retinal cell differentiation through gain and loss of function of these genes will greatly
inform our knowledge of how a complex neural tissue is generated.

Central nervous system development can be modeled using the vertebrate retina due to its
relative simplicity, laminar organization, and ease of isolation. The retina’s six major neural
types are organized into three nuclear layers with rod and cone photoreceptors in the outer
nuclear layer (ONL); horizontal, bipolar, and amacrine interneurons in the inner nuclear layer
(INL); and retinal ganglion cells (RGCs) and displaced amacrine cells in the ganglion cell layer
(GCL) [3]. The developmental timeline during which these cells are generated has been well-
characterized and is common to all vertebrates, beginning with ganglion cells and other early-
born cell types such as cone photoreceptors, horizontal cells, and amacrine cells and ending
with the production of rod photoreceptors, bipolar cells, and Miiller glia [4-7]. Clonal analyses
have determined that retinal progenitors are multipotent, or capable of producing more than
one type of retinal cell throughout development [8, 9]. While the exact mechanism by which
dividing retinal progenitor cells assume a cell fate is not fully elucidated, studies of individual
retinal progenitor cells did reveal considerable gene expression heterogeneity throughout the
different stages of retinogenesis and identified many new genes with expression patterns that
correlated with the generation of different retinal cells [2].

Math5 is a bHLH transcription factor expressed in retinal progenitor cells late in the cell
cycle, when cell fates are most likely being acquired [10, 11]. In the mouse, a subset of early-
generated retinal progenitor cells, including photoreceptors, amacrine cells, horizontal cells,
and a majority of ganglion cells show a history of Math5 expression [10, 12-14]. Furthermore,
Math5 and its homologues are necessary for ganglion cell generation and optic nerve formation
in multiple vertebrates, including zebrafish and mice [15-17]. In addition, Math5 deficiency
leads to altered proportions of other early retinal cells, indicating that this transcription factor
is important in early retinal cell development [12, 13, 15, 16, 18, 19]. Given the critical and con-
served expression of Math5 in early retinogenesis, we identified genes highly correlated with
Math5 expression in the transcriptomes of single retinal progenitors and developing neurons
isolated throughout retinogenesis (Trimarchi & Cepko, in preparation). Among the genes most
highly correlated with Math5 expression in single retinal cells was Polo-like kinase 3 (P1k3).

The vertebrate polo-like kinases, much like their Drosophila homologue, Polo, can behave
as key cell cycle regulators [20-22]. In mammalian cells, Polo-like kinase 1 (Plk1) plays the
canonical role of controlling entry into M phase, whereas the precise roles of PIk2 and PIk3 are
less clear [21]. While P1k3 expression has been detected throughout the cell cycle in cultured
cells, peak Plk3 protein expression has been found to occur during the G1 phase of the cell
cycle. Downregulation of P1k3 in these same cultured cells showed that this kinase is a key reg-
ulator of the G1 to S phase transition through post-transcriptional attenuation of Cyclin E, pos-
sibly in conjunction with its substrate, Cdc25A [20, 22, 23]. Additionally, P1k3 has been linked
to the p53 pathway, possibly playing a role in cell cycle arrest and apoptosis [24]. Other studies,
however, have pointed to possible roles for Plk2 and PIk3 outside of the cell cycle. For example,
Plk2 and Plk3 have been linked to the integrity of hippocampal neurites and synaptic plasticity
[25, 26]. P1k3 has also been shown to phosphorylate alpha- and beta-synuclein and along with
other Plk family members it is often co-localized with phosphorylated synucleins [27]. Despite
these glimpses into Plk3 function, there is no study that examines its specific role during the
development of the retina.

To ascertain the function of PIk3 in retinal development we first characterized its expres-
sion, both in single retinal cells and on retinal sections. Contrary to previous findings in cul-
tured cells, P1k3 is expressed primarily in newly postmitotic retinal cells throughout the early
stages of retinogenesis, with its expression becoming undetectable by the time the animal is
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born. Furthermore, we obtained a Plk3-knockout (KO) mouse [23] to examine both the devel-
opment of the retina and the mature retina in the absence of P1k3. However, extensive morpho-
logical analyses of mature and developing Plk3-KO mice revealed that loss of P1k3 does not
lead to significant disruptions to the mature retinal architecture. To probe deeper, transcrip-
tomic analyses were utilized to reveal significant changes in the expression levels of multiple
gene markers. These changes were further confirmed by real-time quantitative PCR (qQPCR),
but to our surprise, no observable downstream effects of these transcriptomic changes were
seen in morphological analyses. It is possible that some form of compensatory mechanism is
occurring during development in Plk3-KO mice, but we did not observe upregulation of other
Plk family members at the RNA level. At this time, though, despite its robust expression, it
appears that P1k3 is dispensable for proper retinal development.

Materials and Methods
Ethics Statement

All procedures for the care and housing of mice conform to the U.S. Public Health Service Pol-
icy on the Humane Care and Use of Laboratory Animals and were approved by the Institu-
tional Animal Care and Use Committee at Iowa State University.

Genotyping

Plk3 deficient mice were obtained (Peter Stambrook, University of Cincinnati College of Medi-
cine) and genotyped as described [23]. Plk3 knockouts were defined by the presence of the KO
band (F: 5 ~AAACCACCTGTGTTGGTGATGTGC-3' ;R: 5’ ~AGCTAGCTTGGCTGGACGTAA
ACT-3' ) whereas wildtype littermates were identified by the presence of a WT band (F: 5 -
TTTCCTGGAGCTCTGTAGCCGAAA-3' ; R: ACACCCATCTGTGCCATACACTCA-3" ). All four
primers were used in the same reaction according to the same program: 3 min at 95°C; then 37
cycles of 30s at 95°C, 10s at 60°C, 1 min at 72°C; followed by 7 min at 72°C. The products were
separated on a 2% gel.

Antibody stains

Whole-mount Immunohistochemistry. Immediately upon euthanasia, mouse eyes were
placed in 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) overnight (O/N) at
4°C. After three 15 minute washes in PBS, the retinas were dissected and processed as in [28].
Briefly the retinas were first equilibrated at 4°C in increasing concentrations of sucrose (10%,
20%, 30% sucrose (w/v) in PBS for 30 minutes. After the retinas sank to the bottom of the tube
of 30% sucrose/PBS, they were snap-frozen on dry ice and subjected to three freeze/thaw cycles.
Retinas could be stored at -80°C in the 30% sucrose/PBS solution. When ready to proceed with
the immunostaining, the retinas were rinsed 3 times in PBS for 30 minutes and incubated for 2
hours at room temperature (RT) in blocking solution [3% goat serum/1% bovine serum albu-
min (BSA)/0.1% Triton-X100/0.02% sodium dodecyl sulfate (SDS) in PBS]. Retinas were then
incubated in the different primary antibodies in blocking solution O/N at 4°C on a rocking
platform. The retinas were rinsed 3 times in PBS at RT for 30 minutes each and then secondary
antibody plus DAPI (10 pg/ml) in blocking solution was added and further incubated O/N at
4°C on a rocking platform. Retinas were rinsed 3 times in PBS at RT for 30 minutes and then
flattened between two coverslips for confocal imaging on a Leica SP5 X MP confocal micro-
scope. To quantify each antibody staining, four fields were counted from each retina, two from
the nasal side and two from the temporal side.
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Section Antibody Staining. Immediately upon euthanasia, eyes were placed in 4% (PFA)
in PBS O/N at 4°C. After three 15 minute washes in PBS, retinas were isolated and rocked in a
solution of 30% sucrose in PBS until they sank (time dependent on mouse age). OCT solution
(Tissue-Tek) was added to a concentration of 50% OCT/ 50% sucrose in PBS and retinas were
rocked until the solution equilibrated. Upon equilibration, retinas were frozen in blocks at
-80°C until cryosectioning. Retinas were sectioned at 20pum and sections placed onto Superfrost
Plus microscope slides (Fisher Scientific). Slides were blocked for 30 minutes in PBS-Triton
(1% BSA, 0.01% Triton X-100, 0.004% SDS) and then placed in primary antibody, diluted
according to manufacturer’s instructions in PBS-Triton, O/N at 4°C. Slides were washed in
PBS-Triton three times for 15 minutes at RT. Secondary antibodies were diluted according to
manufacturer’s instructions in PBS-Triton and applied either for 2-4 hours at RT or O/N at
4°C. After this incubation, slides were again washed three times for 15 minutes at RT, and
mounted with Fluoromount-G (Southern Biotech).

Primary antibodies used were anti-Calbindin28K [Calb28k] [29] (1:2000; Swant, Switzer-
land), anti-Calretinin [Calr] [29] (1:1000; Millipore), anti-Chx10 (1:1000; [30], anti-Hnf6 [31]
(1:200; Santa Cruz Biotechnology) anti-Glutamine Synthetase (1:10,000; Sigma), anti-Rhodop-
sin [Rho4d2] (1:100; [32]), anti-Choline Acetyltransferase [Chat] (1:100; Millipore), anti-Pro-
tein kinase C alpha [PKCa] (1:10,000; Sigma-Aldrich), anti-Recoverin (1:100), anti-Brn3b
(1:100; Santa Cruz Biotechnology), anti-Brn3a (1:500; Chemicon MAB1585), anti-Opn4
(1:1000; Advanced Targeting Systems), anti-Ap2a (1:200; Santa Cruz Biotechnology) and anti-
PH3 (1:500; Millipore). The anti-Pax6 (1:50) and anti-Isletl (1:50) antibodies were obtained
from the Developmental Studies Hybridoma Bank (DSHB), developed under the auspices of
the NICHD and maintained by the University of Iowa, Department of Biology, Iowa City.

In Situ Hybridization

Sequences (between 650 and 800bp in length) were amplified by PCR from mouse cDNA.
Probes were visualized using an anti-digoxigenin (DIG)-AP antibody (Roche) and subsequent
exposure using BCIP and NBT [28]. The 3’-targeted Plk3 probe used in this study was from the
BMAP collection, accession number AW488956, the sequence for which was confirmed before
use by sequencing. A probe was also designed for the center of the gene (F: tgtctcctgcttggtgagtg;
R: cccgtagaagttcacctgga) and the 5° portion (F: ctcatcaccgaccctctcag, R: ttgatgcageggtatgtctc).
Fluorescent dissociated cell in situ hybridization was also performed as described [33]. Briefly,
one probe was synthesized with DIG-labeled nucleotides and the other probe was labeled with
fluorescein. Tyramide amplification (Promega) was performed for 10 minutes for the first
probe, followed by inactivation in 0.3% hydrogen peroxide. The second probe was then pro-
cessed in exactly the same manner as the first probe, but with a second color. Six independent
fields were photographed and quantified.

Microarrays

Microarray hybridization was performed as described previously [28]. Briefly, RNA was iso-
lated from retinas using Tri-reagent (Sigma) according to standard manufacturer’s protocols.
400ng of total RNA was used to generate aRNA, from which 5ug were fragmented using the
Ambion MessageAmp™ IT aRNA Amplification Kit according to manufacturer’s instructions.
Samples were hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 arrays at the Gene-
Chip facility at Iowa State University. The data are available at NCBI Gene Expression Omni-
bus (GEO) number GSE75382. Microarray results were analyzed using the Bioconductor Afty
package in R [34]. Mas5 was employed for background adjustment and normalization and all
data were log(2) transformed. We limited the differential expression analyses to only those

PLOS ONE | DOI:10.1371/journal.pone.0150878 March 7,2016 4/21



@’PLOS ‘ ONE

Development of PIk3-KO Retinas

genes whose mean log(2) transformed expression value in either WT or KO retinas exceeded
the minimum cutoff of 7 as this level of expression was consistently labeled as present by the
Affymetrix algorithm. A two-tailed t-test that resulted in p-values of less than 0.05 indicated
significant differential expression. The heatmaps were generated using Genesis software [35].

qgPCR

Retinal RNA was isolated using Tri-reagent (Sigma) according to manufacturer’s instructions.
400ng of RNA was used to generate cDNA using random primers and SuperScript III (Life
Technologies) according to standard protocols. SybrGreen MasterMix (ThermoFisher) was
used to perform qPCR in a BioRad CFX96 Real Time System with BioRad C1000 Thermal
Cycler. The program used for gPCR was: 15 min at 95°C, followed by 40 cycles of 15s at 95°C,
30s at 56°C, and 30s at 72°C. B-Actin was used to normalize each experimental gene, and fur-
ther analysis was performed as described [36]. The difference in average AAC(t) values and the
difference plus and minus the standard error of the difference were computed on the C(t) scale.
The base-2 antilogs of these three values were computed to obtain estimates with error bars on
the fold change scale. Results were plotted on a logarithmic scale. qPCR primers were designed
as follows: P1k3-3’ (F:cctgcttaggttccaactceg; Ritaaagctggtcectgattec), PIk3-5
(F:ggtatagcctacgcggtcaa; Ritgtcagcatcctegaaatga), Rpl (F:icctatgteca
ctccctecaas Riccagectggaaaccatacat), Tacl (F.gatgaaggagctgtccaage; R:
cagcatgaaagcagaaccag).

Results
Characterization of PIk3 expression in the mouse retina

To attempt to gain insight into the mechanisms of cell fate determination in the retina, the tran-
scriptomes of single retinal progenitors were analyzed. Since Math5 expression correlates with
the transition from retinal progenitor cell to differentiating neuron [10, 13, 18], we focused on
genes that strongly associated with Math5 expression. Among the genes preferentially expressed
in Math5+ retinal progenitors was P1k3 (Fig 1A). In fact, Math5 and P1k3 were among the high-
est correlated genes in a dataset of embryonic single cells with heterogeneous gene expression
[2] (Trimarchi and Cepko, in preparation). The polo-like family of kinases have been shown to
behave as regulators of cell division in mammalian cells [20, 22, 37], but the specific function of
PIk3 in vivo is still in question. Since polo-like kinases may have overlapping functions [38], we
examined the expression of other Polo-like kinases in our transcriptome dataset of embryonic
retinal single cells. It was interesting to note that while other family members, including Plk1
and Plk4, were expressed in subsets of our retinal progenitor cell transcriptomes, the expression
of neither Plk3 nor Math5 was strongly correlated with other polo-like kinases (Fig 1A). To
determine whether P1k3 expression in the retina correlated with other markers of cell cycle pro-
gression, we looked at the expression of G2/M marker genes in Plk3+ and PIk3- cells (Fig 1B).
Despite P1k3’s previously described functionality as a cell cycle regulator and the role of these
kinases in G2/M progression [20, 22], there was no correlation between Plk3 expression and
other markers of G2/M during retinogenesis. In fact, PIk3+ cells were less likely to exhibit mark-
ers of G2/M than the Plk3- cells in our set of embryonic retinal progenitor cells. Furthermore,
PIk3 did not associate with any cell cycle markers of the G1 or S phase in our hierarchical clus-
tering analysis (data not shown). PIk1 did strongly associate with the G2/M markers demon-
strating that our clustering method was in fact robust (data not shown).

We sought to further characterize the expression of Plk3 throughout the course of retino-
genesis. In situ hybridization (ISH) was performed on frozen retinal sections derived from sev-
eral different stages of developing mice. At embryonic day (E)12.5, P1k3 mRNA was detected
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Fig 1. Survey of PIk3 expression in the developing mouse retina. (A) A heatmap showing the expression of Plk family members in Math5-positive cells.
The four E12 cells at the left are Math5-negative, but were previously identified as G2/M progenitor cells [2]. These cells are shown as a comparison. In the
heatmap, the genes (in rows) expressed in isolated single retinal progenitor cells (in columns) at various stages of development from embryonic day (E)12.5
to E16.5 are shown. Higher levels of microarray signal of a given gene correspond to higher expression levels in a particular single cell and are indicated by
the different shades of red (see the scale below [B]), while the absence of expression is indicated with a black square. (B) A heatmap showing G2/M cell cycle
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marker expression in Math5 and PIk3 expressing single cells. As in (A) the log transformed signal intensities have been scaled according to the intensity of
red color, with black indicating the absence of expression signal. The eleven single cells shown on the left are included for comparison and are Plk3-negative
cells that were previously identified as in the G2/M phase of the cell cycle [2]. (C) In situ hybridization of PIk3 expression in the embryonic mouse retina. (D) In
situ hybridization showing the expression of Tcfap2b, Tcfap2d, and Nhlh2, markers of developing amacrine interneurons, at E14.5. (E) Double fluorescent in
situ hybridization of Math5 (green) and PIk3 (red) at E14.5. The results are quantified in (F). All scale bars represent 100 ym.

doi:10.1371/journal.pone.0150878.g001

in a subset of cells in the outer neuroblastic layer and most strongly in the inner neuroblastic
layer, an area inhabited by newly postmitotic retinal neurons (Fig 1C). By E14.5 the expression
of PIk3 mRNA was detected in a line of cells running through the center of the section (Fig
1C). Interestingly, the location of PIk3 expression at E14.5 overlaps with the position of devel-
oping amacrine cells (Fig 1C) as other markers of maturing amacrine interneurons have nota-
bly similar patterns of expression at this stage in retinal development (Fig 1D). By E16.5, P1k3
expression decreased to undetectable levels in most of the retina, save for the most peripheral
region (Fig 1C) and was completely undetectable at postnatal day (P)0 (data not shown). These
expression patterns place Plk3 at a time and place to affect the normal development of early-
generated retinal cells. Since Math5 and Plk3 were co-expressed in individual retinal cells on
microarrays, we wished to explore the specific overlap between larger numbers of Math5+ and
Plk3+ cells by labeling them in tandem through dissociated fluorescent in situ hybridization
(Fig 1E). In dissociated E14.5 retinal cells, 10.2% of cells expressed Plk3, while 13.4% of cells
expressed Math5, and 2.8% of all cells showed co-expression of both Plk3 and Math5 (Fig 1F).

Characterization of Mature and Postnatal Plk3 deficient retinas

Since we observed that Plk3 was expressed in a time and place consistent with the protein hav-
ing a possible effect on early-generated retinal neurons, we decided to investigate the function
of PIk3 in the developing retina. A P1k3-KO mouse had been previously generated, but the reti-
nal development of these mice had not been characterized [23]. We obtained these mice and
upon initial characterization noticed that their retinas were degenerated. This was because the
mice were partially in a Black Swiss background, which carried a fast-acting allele of retinal
degeneration (Pde6b”", Rd1) [39]. To remove the Rd1 allele from our line, P1k3 heterozygous
mice were crossed with wildtype C57Bl/6 mice until all litters were wildtype at the Rd1 locus as
assessed by genotyping PCR [40].

To determine whether Plk3 deficiency led to gross disturbances in retinal morphology, we
performed antibody stains on adult P1k3-KO retinas and their wildtype (WT) littermates (Fig
2). These surveys of retinal cell populations showed no qualitative differences in populations of
rod photoreceptors (anti-Rho4d2, Fig 2A and 2A’), bipolar cells (anti-Chx10, Fig 2B and 2B’
anti-PKC-o, Fig 2C and 2C’), Miiller glia (anti-glutamine synthetase, Fig 2D and 2D’), ama-
crine cells (anti-Pax6, anti-Chat; Fig 2E-2F and 2E’-2F’), retinal ganglion cells (anti-Brn3b, Fig
2G and 2G’), or the combination of horizontal cells and amacrine cells (anti-Calbindin28k,
anti-Calretinin; Fig 2H and 2H’) between Plk3-KO and WT mice. Next we wished to assess
whether the loss of Plk3 resulted in defects in smaller subsets of mature retinal cells. To accom-
plish this, in situ hybridization was performed (S1 Fig). Cone photoreceptors were marked by
Opnlsw (S1A and S1A’ Fig), rod bipolar cells were visualized using a probe against Sebox (S1B
and S1B’ Fig) [41], horizontal cells with a Septin4 probe [42] (S1C and S1C’ Fig), and Miiller
glia were marked with a probe for Vimentin (S1D and S1D’ Fig). Glycinergic amacrine cells
were visualized using an Slc6a9 probe (S1E and S1E’ Fig), while GABAergic amacrine cells
were observed with a probe to Gadl (S1F and S1F’ Fig). Again we did not observe any signifi-
cant and reproducible differences between WT and Plk3-KO littermates for any of these cell
types. To assess whether a phenotype would appear over time, we stained 8 month old wildtype
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Adult WT Adult KO Adult WT Adult KO

Fig 2. Morphological characterization of adult PIk3-KO retinas. Populations of adult (>P35) retinal cells were identified using antibodies to neuron-
specific markers. DAPI, in blue, marks nuclei. Rod photoreceptors (anti-Rhodopsin [Rho4d2], A,A’), bipolar interneurons (anti-Chx10, B,B’; anti-PKC-a, C,C’),
Muiller glia (anti-Glutamine synthetase [GS] D,D’), amacrine interneurons (anti-Pax8, E,E’; anti-Chat, F,F’), retinal ganglion cells (anti-Brn3b, G,G’), and
horizontal, amacrine and ganglion cells (anti-Calretinin [Calr], anti-Calbindin28k [Calb28k], H,H’) are shown. Scale bars represent 100 pm.

doi:10.1371/journal.pone.0150878.9002

and P1k3-KO retinas with an anti-rhodopsin antibody and observed no degeneration of rod
photoreceptors in the Plk3 deficient retina (data not shown). Additionally, staining with both
anti-Calbindin28k and anti-Calretinin antibodies failed to reveal any deficits in the amacrine
or ganglion cell layers or in the IPL itself at this time point (data not shown).

To more quantitatively assess any potential differences in cell number among the early-gener-
ated retinal cell types in the P1k3-KO mice we performed immunohistochemistry on whole reti-
nas. For each antibody utilized, wildtype and P1k3-KO retinas were stained and then four images
were acquired from four different quadrants of each retina. We chose to examine the different
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Fig 3. Assessment of cell numbers by flat mount antibody staining. To more quantitatively assess any gains/losses in cell number in the PIk3-KO retina,
immunohistochemistry was performed on flat mounted retinas from adult (>P35) wildtype and PIk3-KO littermates. Confocal scans were performed on four
different quadrants from each retina and representative quadrant-matched images are shown. DAPI, in blue, marks nuclei. Horizontal cells (anti-Hnf6, A,A’;
anti-Calbindin28k [Calb28k], B,B’), amacrine interneurons (anti-Ap2a, C,C’), a combination of amacrine and ganglion cells (anti-Calretinin [Calr], D,D’) and
retinal ganglion cells (anti-Brn3a, E,E’; anti-Opn4, F,F’) are shown. Scale bars represent 100 pm.

doi:10.1371/journal.pone.0150878.g003

areas of the retina to assess whether there were any regional differences between wildtype and
PIk3-KO retinas that were not captured on the sections. We did not find any significant differ-
ences in horizontal cells between wildtype and P1k3-KO retinas using two different antibody
markers (anti-Hnf6 [Fig 3A and 3A’; p = .14] and anti-Calbindin28k [Fig 3B and 3B’; p = .73]).
To quantify the number of amacrine we used an anti-Ap2a antibody and also found no signifi-
cant differences in amacrine cells in the different areas of the retina between wildtype and
PIk3-KO mice (Fig 3C and 3C’; p = .17). To examine the numbers of retinal ganglion cells, we
used three different antibodies: anti-Calretinin, anti-Brn3a and anti-Opn4 (Fig 3D-3F’). Anti-
Calretinin antibodies stain ganglion cells and a subset of amacrine cells [29] and this staining did
not show any difference between wildtype and P1k3-KO retinas (Fig 3D and 3D’; p =.27). The
anti-Brn3a antibody is more specific to ganglion cells, but only stains a subset of them [43].
Again we did not find a significant difference in the numbers of these Brn3a+ ganglion cells
between wildtype and P1k3-KO littermates (Fig 3E and 3E’; p = .66). Finally we examined a small
subset of ganglion cells, the melanopsin population of intrinsically photosensitive ganglion cells.
There are only a small number of cells that stain in any retina with this antibody, but again we
did not observe any differences between wildtype and Plk3-KO mice (Fig 3F and 3F). Taken
together, these antibody stains on flat mount retinas indicate that there are no significant differ-
ences in the numbers of horizontal, amacrine or ganglion cells in the P1k3-KO retina.
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P7/WT P7 KO

Fig 4. Morphological characterization of postnatal developing Plk3-KO retinas. Populations of retinal cells in postnatal day (P)7 PIk3-KO retinas were
compared to WT littermates using cell type-specific markers. Specifically, populations of rod photoreceptors (anti-Rhodopsin [Rho4d2], A,A’), bipolar cells
(anti-Chx10, B,B’), retinal ganglion cells (anti-Brn3b, C,C’), bipolar cells, amacrine cells and ganglion cells (anti-Isl1, D, D’), amacrine, horizontal and ganglion
cells (anti-Pax6, E,E’; anti-Calretinin [Calr], anti-Calbindin28k [Calb28k], F,F’) were examined. Scale bars indicate 100 pm.

doi:10.1371/journal.pone.0150878.9004

To identify whether any transient developmental phenotypes were present in the PIk3-KO
mouse, immunohistochemistry was performed on retinas isolated from earlier stages. Antibody
stains at P7 revealed no robust differences between populations of rod photoreceptors (anti-
Rho4d2, Fig 4A and 4A’), bipolar cells (anti-Chx10, Fig 4B and 4B’), ganglion cells (anti-
Brn3b, Fig 4C and 4C’), amacrine cells (anti-Isl1, anti-Pax6; Fig 4D-4E and 4D’-4E’), and the
combination of horizontal cells and amacrine cells (anti-Calbindin28k, anti-Calretinin; Fig 4F
and 4F’). To further investigate postnatal development in the Plk3-KO retina, antibody stains
were also performed at an earlier (P4, Fig 5) and later (P14, Fig 6) time point. At P4, the popu-
lations of maturing photoreceptors (anti-Recoverin, Fig 5A and 5A”), bipolar cells (anti-Chx10,
Fig 5B and 5B’), ganglion cells (anti-Brn3b, Fig 5C and 5C’), amacrine interneurons (anti-Isl1,
anti-Pax6; Fig 5D-5E and 5D’-5E’), and horizontal cells and amacrines (anti-Calbindin28k,
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Fig 5. Survey of retinal cell types in P4 PIk3-KO retinas. Populations of retinal cells in P4 PIk3-KO retinas were compared to WT littermates using cell
type-specific markers for photoreceptors (anti-Recoverin, A,A’), bipolar cells (anti-Chx10, B,B’), retinal ganglion cells (anti-Brn3b, C,C’), ganglion and
amacrine cells (anti-Isl1, D,D’; anti-Pax6, E,E’) and amacrine, horizontal and ganglion cells (anti-Calretinin [Calr], anti-Calbindin28k [Calb28Kk], F,F’). Scale
bars indicate 100 ym.

doi:10.1371/journal.pone.0150878.9005

anti-Calretinin; Fig 5F and 5F’) appeared grossly normal between WT and Plk3-KO mice. Sim-
ilarly, no changes were detected in populations of rod photoreceptors (anti-Rho4d2, Fig 6A
and 6A”), bipolar cells (anti-Chx10, Fig 6B and 6B’), ganglion cells (anti-Brn3b, Fig 6C and
6C’), amacrine cells (anti-Isl1, anti-Pax6; Fig 6D-6E and 6D’-6E’), and the combination of
horizontal cells and amacrine cells (anti-Calbindin28k, anti-Calretinin; Fig 6F and 6F’).

Unbiased transcriptomic screening of PIk3 knockout retinas

To better understand the role that P1k3 may play in retinal development, we searched for the
presence of more subtle changes in adult retinas that were either wildtype or lacking Plk3. Full
transcriptomic analysis of murine retinas not only has the potential to reveal phenotypes that
are not immediately apparent upon gross morphological analysis, but can also provide an
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P14 WT P14 KO

Fig 6. Survey of retinal cell types in P14 PIk3-KO retinas. Populations of retinal cells in P14 PIk3-KO retinas were compared to WT littermates using cell
type-specific markers for rod photoreceptors (anti-Rhodopsin [Rho4d2], A,A’), bipolar cells (anti-Chx10, B,B’), retinal ganglion cells (anti-Brn3b, C,C’),
ganglion and amacrine cells (anti-Isl1, D,D’; anti-Pax6, E,E’) and amacrine, horizontal and ganglion cells (anti-Calretinin [Calr], anti-Calbindin28k [Calb28k],
F,F’). Scale bars indicate 100 pm.

doi:10.1371/journal.pone.0150878.9g006

unbiased determinant of changes in even small neural subpopulations [28]. Therefore, micro-
array analyses were performed on adult Plk3-KO retinas and their littermates (n = 3 P1k3-KO,
n =3 WT) and on retinas isolated from several time points during development (S1-54
Tables). Surprisingly, P1k3 itself was consistently among the genes with the highest increase in
P1k3-KO mice in our microarray-based expression analysis (S5-S8 Tables). As a similar phe-
nomenon was observed previously for a different knockout mouse [28], the microarray probe
for Plk3 was examined and confirmed to contain just the 3’ end of the gene, beyond the extent
of the region targeted in the knockout. A qPCR probe designed to the same portion of the gene
confirmed significant upregulation of the 3’ end of the gene in the knockout retina (Fig 7A,
p<0.01). However, qPCR primers that amplify a region located in the more 5’ functional
domain of the PIk3 gene that had been targeted showed extreme downregulation, further
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Fig 7. qPCR based examination of gene expression in PIk3-KO retinas. Retinas of PIk3-KO and WT littermates were isolated and hybridized to
Affymetrix microarrays at various timepoints (n = 3 for each of four timepoints). Genes with significant differential expression at multiple timepoints were
confirmed using qPCR at adult timepoints. (A) An examination of PIk3 expression in the PIk3 deficient mouse. An amplicon at the 3’ end of the gene showed
upregulation (p<0.001), while one at the 5’ end of PIk3 was significantly downregulated (p<0.05). (B) Tac1 showed decreased expression (p<0.05), whereas
retinitis pigmentosa 1 (Rp1) displayed increased expression (p<0.05).

doi:10.1371/journal.pone.0150878.g007

confirming the fact that the P1k3 coding region had been removed (Fig 7A, p<0.05). Addition-
ally, to establish that the observed expression was indicative of the entire length of the coding
sequence of Plk3, ISH probes to two additional regions of P1k3’s coding sequence were
designed. ISH analysis from all three probes confirmed that the expression patterns of each
probe spanning the length of Plk3 closely mirrored each other in WT retinas, and displayed a
lack of signal in our P1k3-KO retinas (Figs 1C, 8A and 8A’ and data not shown).

To attempt to discern more subtle phenotypes in the PIk3-KO retinas, we first examined the
adult microarray results for significantly altered genes in Plk3-KO retinas when compared to
wildtype littermates. We observed several photoreceptor-expressed genes (Retinitis pigmen-
tosal [Rp1], Castor homolog 1 [Caszl], Retinitis pigmentosal-like 1 [Rp111], Mef2c) that were
upregulated, while some markers of Miiller glia (Vimentin, Tweety homolog 1, Notch regulated
ankyrin repeat protein [Nrarp]) [42], bipolar cells (Sebox, Carbonic Anhydrase 8) [41], and
amacrine cells (Nhlh2, Tachykinin 1 [Tacl], Tcfap2c) [42] were decreased when compared to
WT littermates (S1 and S5 Tables). To verify these changes by a second method, we used
qPCR. Tacl, a marker of subsets of amacrines [44], was confirmed to be downregulated in
P1k3-KO by qPCR (p<0.05), whereas retinitis pigmentosa 1 (Rp1), a gene expressed in photo-
receptors [45], was significantly upregulated (p<0.05) (Fig 7B). It is surprising that only a
small subset of genes in each cell type is altered and this may be why we fail to observe any
obvious changes in cell number and cell morphology in the P1k3-KO animals. These results
may indicate that while there are some quantitative changes taking place in different cell types
in the PIk3-KO, they are not at a high enough level to lead to any overt changes in the cell types
themselves.

Since PIk3 is expressed mainly during early development, it was also possible any changes
that occur upon its deletion are mainly present during development. In addition, we also
wanted to compare the differentially expressed genes from the adult microarrays to the genes
that may be changed during postnatal development. Therefore, we isolated retinas from P7 and
PO WT and KO littermates and performed microarray analysis to determine genes with differ-
ential expression in retinas that were in different stages of postnatal development (S2 and S3
Tables). Overall, multiple genes were consistently changed between the nine samples studied in
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Fig 8. Examination of Plk family member expression patterns and cell cycle at E14.5. The expression
patterns of PIk3 (A, A’), Plk1 (B,B’), PIk2 (C,C’), and Plk4 (D,D’) in WT and PIk3-KO retinas were determined
using in situ hybridization at E14.5. E14.5 developing WT and P1k3-KO retinas were also stained using anti-
phospho-histone H3 (PH3) to mark mitotic cells (E,E’).

doi:10.1371/journal.pone.0150878.g008
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all three time points, including P1k3 again, which was among the most upregulated genes in the
retina (n =9 WT, n = 9 Plk3-KO) demonstrating that our transcriptome preparation was
highly reproducible (S6 and S7 Tables). Genes related to RNA binding, such as Khdrbs1, were
upregulated in the absence of P1k3 (S6 and S7 Tables). Other genes showing significant differ-
ential expression included those with as-yet undescribed function in the retina, such as Meds,
which was highly downregulated in P1k3-KO retinas (S6 and S7 Tables). Additionally, Capl,
which can play a role in promoting actin cytoskeleton dynamics [46], was highly and consis-
tently upregulated among all postnatal timepoints studied (S5, S6 and S7 Tables). One consis-
tent aspect of all these differentially expressed genes was their presence on chromosome 4 in
the mouse, the same chromosome where the PIk3 gene is also located. This may indicate that
there is a more chromosomal-wide misregulation of genes present on this chromosome as a
result of the nature of the disruption in the Plk3 gene.

A GO enrichment survey was performed using DAVID [47, 48] to determine whether there
were any trends in the genes that were significantly differentially expressed at any of the post-
natal timepoints (S9 Table). GO analysis showed that genes that were significantly upregulated
in P1k3-KO retinas were significantly enriched for terms including phosphorylation and
kinase-related genes, positive regulation of transcription and RNA processing, cell differentia-
tion and nuclear export. Enriched GO terms for genes downregulated in the absence of P1k3
included ATP-binding, transcriptional regulation, and cell projection or neurite-related genes.
Given that P1k3 is a kinase, some of these classes of genes are consistent with expectations and,
therefore, warrant further study.

Effects of Plk3 loss during embryonic stages of retinogenesis

The expression patterns of P1k3 during the mid-embryonic period of retinal development war-
ranted further investigation into the role of P1k3 during this critical period in cell fate determi-
nation. First, since we were concerned about possible compensation from other Plk family
members, in situ hybridization was performed to compare the expression of Plk3 and its family
members at E14.5, the peak of P1k3 expression (Fig 8). While we observed the loss of P1k3 at
the mRNA level in sections from Plk3-KO retinas (Fig 8A and 8A’), in situ hybridizations for
other Plk family members did not appear to change significantly upon the loss of P1k3 in any
fashion that would indicate compensation (Fig 8B-8D’). Secondly, we examined any changes
in the retinal progenitor cell number by staining mitotic progenitors with anti-phospho-his-
tone H3 antibody (Fig 8E and 8E’) and total progenitor cells with Ki67 (data not shown), but
found no significant changes in the number of cycling cells using either antibody.

Plk3 expression is strongest at E14.5 and then begins to decrease by E15.5, and is almost
completely gone by E16.5 (Fig 1), by which time the effects of its loss may be apparent in retinal
development. Therefore, we performed a full survey of the cell types and transcriptome of
E16.5 embryonic retinas to determine whether or not Plk3 loss would lead to subtle or transient
changes in retinogenesis. In situ hybridization was performed on Plk3-KO mice and their lit-
termates to determine changes in progenitor populations (Chx10, S2A and S2A’ Fig), retinal
ganglion cells (Sncg, S2B and S2B’ Fig; Brn3b, S2C and S2C’ Fig), developing photoreceptors
(Otx2, 2D and S2D’ Fig) and amacrine interneurons (Ap2a, S2E and S2E’ Fig; Ap2b, S2F and
S2F Fig). While in situ hybridization is not a quantitative assay, we did not observe any
discernable differences in these developing retinal populations.

To better understand the changes that may result from PIk3 loss in the mid-embryonic ret-
ina, including those that would not be apparent from whole tissue sections, transcriptomic
analysis of E16.5 retinas was performed (S4 Table). To minimize biological variation, retinas
from 3 P1k3-KO and WT littermates were isolated. Among the differentially-expressed genes

PLOS ONE | DOI:10.1371/journal.pone.0150878 March 7,2016 15/21



@’PLOS ‘ ONE

Development of PIk3-KO Retinas

were the retinitis pigmentosa GTPase regulator interacting protein (Rgrip1), which was highly
upregulated in the absence of Plk3 and axon targeting molecules and receptors such as Sema3f,
Sema4d, Epha8, and Ephb3 [49] that were downregulated (S8 Table). GO analysis determined
that clusters of genes associated with catabolic processes, cell and neurite projection, and phos-
phorylation were significantly enriched in WT PIk3 mice compared to their Plk3-null litter-
mates at E16.5 (S9 Table). Conversely, genes significantly overexpressed in Plk3-KO mice
disproportionally represented clusters of genes associated with ion binding, chromatin organi-
zation and regulation, RNA binding and transcriptional processes (S9 Table). Since we failed to
observe any changes in dendritic morphology in adult retinas, the repercussions of these
changes to the overall retinal function remain unknown.

Discussion

To try and gain a better understanding of retinal progenitor cell behavior, we examined the sin-
gle cell transcriptomes of Math5 expressing cells isolated from embryonic mouse retinas [2].
We found that the expression of Polo-like kinase 3 was highly correlated with the expression of
Math5 in our single cell data set. P1k3 is a member of the polo-like family of kinases, members
of which have been previously shown to play important roles in cell cycle progression [20, 22,
50, 51]. In particular, Plk3 has been hypothesized to work together with Cdc25a to decrease
Cyclin E levels post-transcriptionally as a means of regulating progression from G1 to S phase
[22, 50]. P1k3 and its related family member P1k2 have also been implicated in non-cell cycle
processes including synaptogenesis and the maintenance of neurite integrity [25, 26]. Despite
its potential roles in multiple important cellular processes, Plk3 has not yet been characterized
in the retina, either by expression or by function. Therefore, when we found that it was one of
the most highly correlated genes with Math5 expression in our single cell data, we sought to
examine its expression in embryonic retinas and assess its role during retinal development.
Surveys of Plk3’s expression in the embryonic retina revealed that this gene was expressed in
patterns reminiscent of Math5 expression, with strong expression in a subset of cells at both
E12.5 and E14.5. At this point, the expression of P1k3 deviated from that of Math5. Math5
expression is strong at E16.5, while P1k3 expression is confined to the far periphery of the ret-
ina. The expression pattern of PIk3 in the early retina was even more reminiscent of markers of
developing amacrine cells such as Tcfap2b, Tcfap2d, and Nhlh2, especially at E14.5. Altogether
the expression data for P1k3 pointed to possible phenotypes in early-generated retinal neurons,
particularly the amacrine cell population.

To better understand the role played by Plk3 in the neural retina, we obtained a P1k3 defi-
cient mouse [23] and performed a thorough morphological and transcriptomic analysis search-
ing for any differences present between Plk3-KO mice and their WT littermates throughout
development. To our surprise, no distinctive reproducible morphological changes were
observed in adult Plk3-KO mice when compared with their WT littermates. This lack of differ-
ences between the P1k3-KO and its WT littermates was consistent across all stages of develop-
ment examined, both postnatal and embryonic. Although we were initially surprised by the
lack of a discernable phenotype, perhaps we should not have been. Studies of mice deficient for
members of the Tcfap and Nhlh families of transcription factors also failed to reveal discern-
able phenotypes or even subtle phenotypes, possibly resulting from functional redundancy
among family members [52, 53]. Tcfap2b, Tcfap2d, and Nhlh2 showed very similar expression
patterns as Plk3 during retinal development, which may point to all of these genes being
involved in the development of the same small population of cells. Redundancy was one
hypothesized reason for why phenotypes were not observed in these other knockout mice. The
Plk family members exhibit high levels of conservation that could indicate overlapping
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functionality [21] and all of the family except P1k2 were detected in the developing retina.
While we noted no significant changes in the mRNA expression levels of other Plk family
members upon loss of Plk3, this observation does not preclude that even small amounts of
enzymatic activity from other family members could compensate for the loss of P1k3.

There have been multiple examples of non-phenotypic mice that exhibit genetic robustness;
that is, the knocked-out gene carries no observable phenotypic weight as a result of adaptation
or as an inherent feature of a genetic pathway with built-in failsafe mechanisms [54]. An addi-
tional concern when considering the phenotype of a knockout mouse is the variability in back-
ground strain and mechanism of generation of the knockout, including the nature of deleted
exons. For instance, while the mouse used in this study was generated with a knockout of
exons 1-6, it was not shown to contribute to tumorigenesis [23]. However, another P1k3-KO
mouse generated by removal of exons 1-8 did show increased tumor formation in mice of
advanced age [55]. Both deletions of the Plk3 gene included the active sites for the protein and
should have resulted in a non-functional PIk3 protein (if any protein was produced). However,
the possibility remains that the background of the mice or the methods employed to identify a
phenotype contributed to either study’s findings as well as those of the current investigation.
Perhaps with better markers for different retinal cell subsets, especially amacrine cells, it will be
possible in the future, to discern a subtle morphological phenotype, such as the loss of a small
subtype of amacrines, in the Plk3 deficient retinas.

Even though we did not observe any reproducible morphological alterations in the P1k3-KO
animals, we did observe transcriptomic changes through microarray experiments performed at
various time points. It is unclear what these changes mean, as PIk3 is not a transcription factor,
but rather a kinase enzyme. However, the alterations in gene expression were observed across
multiple biological replicates and were additionally confirmed by qPCR. These changes, espe-
cially to the gene Tacl, might be indicative of subtle phenotypes in small populations of ama-
crine cells and warrant further investigation. Additionally, these array experiments revealed
genes that were changed across multiple different timepoints. Upon further examination it was
noticed that these genes happened to reside on the same chromosome (chromosome 4) as
PIk3. It is entirely possible that the changes in expression of these genes are due to the nature of
the P1k3 deletion. Surprisingly, these genes do not all lie in close proximity to P1k3 itself so the
nature of how the deletion affected their expression is unclear. Taken together though, these
observations serve as a potential caution for future studies assessing transcriptomic changes in
knockout animals of this nature.

Supporting Information

S1 Fig. In situ hybridization of adult P1k3-KO retinas. In situ hybridization was employed to
determine the effects of Plk3-deficiency on adult retinal cells. Probes staining short-wave cones
(Opnlsw, A, A’), rod bipolar cells (Sebox, B, B’), horizontal cells (Septin 4, C, C’), Miiller glia
(Vimentin, D, D’), glycinergic amacrine cells (Slc6a9, E, E’) or GABAergic amacrine cells
(Gadl, D,D’) were utilized. Scale bars represent 100 pm.

(TTF)

S2 Fig. Examination of expression patterns in E16.5 Plk3 deficient retinas. In situ hybridiza-
tion was employed to determine any effects of Plk3-deficiency present at E16.5. The probes
used were Chx10 [A,A’] (progenitor cells), Synuclein gamma [Sncg](RGCs) [B,B’], Brn3b
(RGCs) [C,C’], Otx2 (developing photoreceptors) [D,D’], Ap2a (ACs) [E,E’], and Ap2b (ACs)
[EF’]. Scale bars represent 100 pm.

(TIF)
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S1 Table. Adult array data. Affymetrix array data for n = 3 adult P1k3 deficient retinas and
n = 3 corresponding wildtype littermate control retinas. The data was extracted from the cel
files using the Affy R package developed by Bioconductor [49]. After background adjustment
and normalization using Mas5, the data were log(2) transformed.

(XLSX)

S2 Table. P7 array data. Affymetrix array data for n = 3 P7 PIk3 deficient retinasand n = 3
corresponding wildtype littermate control retinas. The data was extracted from the cel files
using the Affy R package developed by Bioconductor [49]. After background adjustment and
normalization using Mas5, the data were log(2) transformed.

(XLSX)

S3 Table. PO array data. Affymetrix array data for n = 3 PO P1k3 deficient retinas and n = 3
corresponding wildtype littermate control retinas. The data was extracted from the cel files
using the Affy R package developed by Bioconductor [49]. After background adjustment and
normalization using Mas5, the data were log(2) transformed.

(XLSX)

S4 Table. E16.5 array data. Affymetrix array data for n = 3 E16.5 PIk3 deficient retinas and
n = 3 corresponding wildtype littermate control retinas. The data was extracted from the cel
files using the Afty R package developed by Bioconductor [49]. After background adjustment
and normalization using Mas5, the data were log(2) transformed.

(XLSX)

S5 Table. Differentially expressed genes from adult WT and P1k3-KO retinas. To be consid-
ered for differential expression analysis, the log(2) transformed mean of either n =3 WT or

n = 3 KO expression values must have exceeded 7 to indicate overall expression in either geno-
type. A two-tailed t-test that resulted in p-values of less than 0.05 was used to indicate signifi-

cant differential expression.
(XLSX)

S6 Table. Differentially expressed genes from P7 WT and Plk3-KO retinas. To be consid-
ered for differential expression analysis, the log(2) transformed mean of either n =3 WT or

n = 3 KO expression values must have exceeded 7 to indicate overall expression in either geno-
type. A two-tailed t-test that resulted in p-values of less than 0.05 was used to indicate signifi-
cant differential expression.

(XLSX)

S7 Table. Differentially expressed genes from PO WT and Plk3-KO retinas. To be consid-
ered for differential expression analysis, the log(2) transformed mean of either n =3 WT or

n = 3 KO expression values must have exceeded 7 to indicate overall expression in either geno-
type. A two-tailed t-test that resulted in p-values of less than 0.05 was used to indicate signifi-
cant differential expression.

(XLSX)

S8 Table. Differentially expressed genes from E16.5 WT and Plk3-KO retinas. To be consid-
ered for differential expression analysis, the log(2) transformed mean of either n =3 WT or

n = 3 KO expression values must have exceeded 7 to indicate overall expression in either geno-
type. A two-tailed t-test that resulted in p-values of less than 0.05 was used to indicate signifi-
cant differential expression.

(XLSX)
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S9 Table. Gene ontology (GO) term enrichment for upregulated genes in the WT and
PIk3-KO retinas at each of the stages profiled. GO term enrichment was performed with
DAVID (http://david.abcc.nciferf.gov/) using default parameters. The p-values are reported as
computed by DAVID.

(XLSX)
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