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Abstract

The increased focus on addressing severe maternal morbidity and maternal mortality has

led to studies investigating patient and hospital characteristics associated with longer hospi-

tal stays. Length of stay (LOS) for delivery hospitalizations has a strongly skewed distribu-

tion with the vast majority of LOS lasting two to three days in the United States. Prior studies

typically focused on common LOSs and dealt with the long LOS distribution tail in ways to

fit conventional statistical analyses (e.g., log transformation, trimming). This study demon-

strates the use of Gamma mixture models to analyze the skewed LOS distribution. Gamma

mixture models are flexible and, do not require data transformation or removal of outliers

to accommodate many outcome distribution shapes, these models allow for the analysis

of patients staying in the hospital for a longer time, which often includes those women

experiencing worse outcomes. Random effects are included in the model to account for

patients being treated within the same hospitals. Further, the role and influence of differing

placements of covariates on the results is discussed in the context of distinct model specifi-

cations of the Gamma mixture regression model. The application of these models shows

that they are robust to the placement of covariates and random effects. Using New York

State data, the models showed that longer LOS for childbirth hospitalizations were more

common in hospitals designated to accept more complicated deliveries, across hospital

types, and among Black women. Primary insurance also was associated with LOS. Sub-

stantial variation between hospitals suggests the need to investigate protocols to standard-

ize evidence-based medical care.

Introduction

The United States (US) spends more per person on health care than any other nation, yet still

performs poorly on key population health measures [1]. Childbirth is an unusually dangerous

experience in young women’s lives. Recently in the US, attention has focused on the unaccept-

ably high maternal mortality rate. Forty-six countries, including all of Western Europe, Can-

ada, Australia, and Japan have substantially lower maternal mortality rates than the US (3–9

versus 14 deaths per 100,000 deliveries, respectively) [2].
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For every maternal death many more women are experiencing severe maternal morbidity

(SMM). SMM is defined as an injury, illness or condition that could lead to maternal death or

disability. A group of indicators are utilized to measure SMM, including direct measures (e.g.,

cardiac arrest, stroke) and indirect measures (e.g., blood transfusions, intensive care unit

admission). A subset of these indicators apply only to women with a longer LOS [3,4]. SMM

has been increasing in the US, likely due to the older ages of women having children, the obe-

sity epidemic and, associated with both these factors, increases in comorbidities [3,4]. Annu-

ally, more than 50,000 women have a SMM indicator during their delivery hospitalization,

resulting in serious medical complications and extended hospital stays [2–4]. To reduce SMM

and maternal mortality, research and intervention development efforts are focused on

improvement of maternal health and health care.

Childbirth is the most common reason for hospitalization in the US with approximately

four million deliveries annually. The cost of maternal hospitalizations totaled approximately

$18.9 billion in the US for 2014 [5]. Federal regulations require health insurance plans to pro-

vide coverage for a minimum hospital stay of 48 hours following a vaginal delivery and 96

hours following a Cesarean delivery [6]. The average vaginal delivery without complications

costs $3,490 and the average Cesarean delivery without complications costs $5,611 in the US

[7]. Costs increase as complications arise during delivery or when hospital stays are extended.

To improve the quality of maternal care and allocation of healthcare resources, it is impor-

tant to determine patient and hospital characteristics that influence the variation of LOS.

Women may experience a varying number and severity of complications during their delivery,

and a longer hospital stay may be necessary. The patients with longer LOS represent an impor-

tant group that may have experienced SMM. Understanding LOS and balancing health care

costs and quality of care in defining appropriate LOS are important public health focuses [2,8].

Hospital administrators can benefit from the use of better predictive models to assist with

planning and resource allocation for deliveries. In this study, we present finite mixture models

as a modeling technique to understand the influence of patient and hospital characteristics for

all patients’ delivery LOS.

Statistical literature review

The empirical distribution of LOS for delivery hospitalizations is typically right skewed, pluri-

modal, and contains outliers. These distributional properties pose challenges in statistical anal-

ysis. Modeling the LOS distribution is not amenable to conventional parametric models (e.g.,

multiple linear regression) as it often violates normality and independence assumptions. Thus,

various methods have been proposed to model the LOS distribution (Fig 1). Lee, et al. [9], Lee,

et al. [10], Wang, et al. [11], Lee et al. [12], Leung, et al. [13], Cots, et al. [14], Freitas, et al. [15],

and Marazzi, et al. [16] used trimming methods (e.g., mean plus two standard deviations) on

the LOS to identify outliers and build models using the trimmed data. However, trimming

points are defined without theoretical support. Additionally, some distributional characteris-

tics of LOS are ignored when trimming methods are applied. Lee, et al. [17], Faddy, et al. [18],

Ng, et al. [19], Xiao, et al. [20], and Yau, et al. [21] used logarithm transformations on LOS to

attain normality. Unfortunately, transformation for LOS is not always appropriate as the data

may not be well approximated by the log-normal distribution, thus applying the transforma-

tion does not sufficiently reduce skewness [16].

Finite mixture models may be better alternatives to analyze LOS compared to trimming

methods or transformations since these models account for the distributional characteristics

of LOS and incorporate all data into the models. A finite mixture model is a weighted sum of

distributions and does not require transformation or defined trim points. A variety of
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distributions such as Gamma, Weibull or Normal can be used. Further information on finite

mixture model theory can be found in McLachlan and Peel [22].

Delivery hospitalizations may be conceptualized as a combination of distributions for

subpopulations of women with differences in demographics and clinical characteristics (e.g.,

comorbidities, complications) and delivery methods (e.g., vaginal vs Cesarean section, hospital

protocols). Finite mixture models distinguish subpopulations of women’s LOS by the compo-

nent distributions that create the overall distribution.

The current literature focuses on applying the methodology of finite mixture models to ana-

lyzing LOS and developing algorithms for model estimation [17,19,20,23–28]. Finite mixture

models can incorporate patient level and hospital level characteristics (covariates) that influ-

ence LOS for different subpopulations (components). However, there is a research gap on the

placement and selection of covariates in finite mixture model analysis. The aim of this paper

is to explore the role of covariates in finite mixture regression model specifications and their

impact on the resulting components. This new work enhances the application of finite mixture

models for understanding the influence of covariates on hospital LOS for delivery.

Methods

In this study a finite mixture distribution is used to model delivery LOS distributions. Patient

level (e.g., age) and hospital level (e.g., teaching status) characteristics are incorporated in the

Gamma mixture regression models. The addition of patient and hospital characteristics refines

the LOS predictions. The location of the covariates and their influence on model results are

evaluated. Gamma mixture models can be specified with patient and hospital characteristics in

Fig 1. Comparing methods for length of stay (LOS) distributions for New York City Cesarean deliveries.

https://doi.org/10.1371/journal.pone.0231825.g001
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the mixing probabilities function and in the component density functions. In determining fac-

tors that influence LOS, the clustering of patients treated within the same hospitals needs to be

modelled because differences in hospital practices and procedures may influence LOS. This

clustering is accounted for using random hospital effects.

Gamma mixture distribution

Gamma mixture models accommodate a wide range and high variability associated with the

empirical distribution of delivery LOS. Mixtures of Gamma distributions can identify the sub-

populations by breaking down the empirical distribution of LOS into a weighted sum of ele-

mentary components. Thus, Gamma mixture distributions are flexible and can model multiple

subpopulations. Mixture models using other distributions such as Poisson have been used to

study LOS [11]. The Gamma distribution is appropriate for modeling LOS given the flexibility

in accommodating varying degrees of skewness. For example, the distribution of delivery LOS

may be decomposed into multiple subpopulations with different LOS distributions.

Let yi represent the LOS for the ith woman, i = 1, . . ., n. The probability density function of

Y with c components is defined as:

f ðyiÞ ¼
Xc

j¼1

pjðxiÞfjðyi;yjÞ

where, πj(xi) gives the proportion of individuals belonging to the jth component

(
Pc

j¼1
pjðxiÞ ¼ 1) and fj (yi;θj) denotes the jth component density. This finite mixture model

takes into account the variability within components and estimates the proportions of the

components based on the LOS. In this paper, we use a Gamma mixture distribution to model

the LOS. The Gamma probability density function is parameterized as follows for the jth com-

ponent,

fj yi; yj
� �

¼
1

yiℾðvjÞ
vjyi
mj

 !vj

e
�

vjyi
mj

with mean μj and shape parameter vj. The Gamma distribution is flexible for different degrees

of skewness and is bounded by zero on the left.

Gamma mixture regression models

Gamma mixture regression models, which are special cases of generalized linear models for

finite mixtures, are fit to the empirical LOS distribution with patient and hospital characteris-

tics. Gamma mixture models can be specified with covariates in the mixing probabilities func-

tion and in the component density functions. Thus, the identified covariates can be compared

between the subpopulations (components).

In mixture models, mixing probabilities are assumed to be either constant or dependent on

covariates. Constant mixing probabilities assume all individuals have equal prior probabilities

of being a member of a given component. Mixing probabilities that depend on covariates are

modeled using multinomial logistic regression that allows the covariates to influence compo-

nent membership. The probability of the ith individual belonging to the jth component is

denoted as:

pj xið Þ ¼
exp ð

Pp
l¼0
ajlxilÞ

1þ
Pc� 1

h¼1
exp ð

Pp
l¼0
ahlxilÞ
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where the xi are vectors of covariates with corresponding αj vectors of regression coefficients,

and c is the number of components. Odds ratios are calculated to assess the relationships

between covariates and component membership.

Gamma mixture regression models allow estimation of component densities that depend

on covariates and thus the covariates influence the mean LOS for each of the components. The

Gamma mixture regression models relate the mean LOS to the covariates. For the jth compo-

nent, the mean LOS is modeled by a linear function of covariates via the log link.

log ðmjiÞ ¼ bj 0 þ bj 1xi1 þ . . .þ bjpxip

where the βj vectors are the regression coefficients that correspond to the xi vectors of covari-

ates. Mean ratios are calculated within each component to assess the relationship between

covariates and LOS. Mean ratios compare the mean LOS in one level of a covariate compared

to another level of the same covariate. For example, if the mean LOS among women aged 45

years and older was 6 and the mean LOS among women younger than 45 years was 3, then the

mean ratio is 2.

Modeling the effects of hospitals

The model defined above does not account for the fact that patients treated in the same hospital

are correlated. The correlation of patients nested within hospitals may result in misleading

inferences due to incorrect estimates of the standard errors if these effects are not incorporated

into the LOS models [13]. The dependency of patients nested within hospitals can be accounted

for by adding random hospital effects to the model. The random hospital effects are assumed to

be independent and normally distributed. The random hospital effects capture the differences

in clinical care and unmeasurable characteristics impacting the population in each hospital.

Random effects specified in the component density functions affect the means of the compo-

nents, and random effects specified in the mixing probabilities function affect the component

memberships. Predicted random effects from fitting the different models provide estimates of

inter-hospital variation adjusted for other factors.

Comparison of Gamma mixture models

Four different model specifications are compared in this paper where the covariates and ran-

dom effects are included in different portions of the model as summarized in Table 1.

Model 1) The LOS is fit to a Gamma mixture distribution with no covariates or random hospi-

tal effects. This serves as the baseline case for comparing models containing covariates and

hospital effects. Model 1 is defined as:

f ðyiÞ ¼
Xc

j¼1

pjfjðyi;yjÞ

Table 1. Placement of modeling effects in Gamma mixture models.

Model Mixing Probabilities Function Component Density

1 None None

2 Covariates Hospital Effect None

3 Covariates Hospital Effect

4 None Covariates Hospital Effect

https://doi.org/10.1371/journal.pone.0231825.t001
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where fj (yi;θj) is the Gamma probability density function and πj is the mixing probability

for the jth component.

Model 2) The mixing probabilities depend on covariates and random hospital effects. Model 2

is defined as:

f yið Þ ¼
Xc

j¼1

exp ð
Pp

l¼0
ajlxil þ ukÞ

1þ
Pc� 1

h¼1
exp ð

Pp
l¼0
ahlxil þ ukÞ

fjðyi;yjÞ

swhere the xi are vectors of covariates with corresponding aj vectors of regression coeffi-

cients, uk is the random effect for the kth hospital, c is the number of components, and

fj(yi;θj) is the Gamma probability density function for the jth component.

Model 3) The mixing probabilities depend on covariates and random hospital effects are speci-

fied in the component densities. The density of Model 3 is defined as:

f yið Þ ¼
Xc

j¼1

exp ð
Pp

l¼0
ajlxilÞ

1þ
Pc� 1

h¼1
exp ð

Pp
l¼0
ahlxilÞ

fjðyi;yjÞ; log ðmjiÞ ¼ ujk

where the xi are vectors of covariates with corresponding aj vectors of regression coeffi-

cients, c is the number of components, and fj (yi;θj) is the Gamma probability density func-

tion with the mean (μji) modeled by the random effect for the kth hospital (ujk) via the log

link for the jth component.

Model 4) The component density depends on both covariates and random hospital effects.

Model 4 is defined as:

f ðyiÞ ¼
Xc

j¼1
pjfj ðyi;yjÞ; log ðmijÞ ¼ bj 0 þ bj 1xi 1 þ � � � þ bjpxip þ ujk

where fj (yi;θj) is the Gamma probability density function with the mean (μji) modeled by

the βj vectors of the regression coefficients that correspond to the xi vectors of covariates

and a random effect for the kth hospital (ujk) via the log link, and πj is the mixing probability

for the jth component.

Estimation

In this paper the Gamma mixture regression models are fit using PROC NLMIXED in SAS

version 9.4 (SAS Institute, Cary, NC). Example SAS code to fit the four Gamma mixture

regression models is provided (S1 Appendix). We obtain maximum likelihood estimates for

the unknown parameters in the models using integral approximations and numerical optimi-

zation algorithms [29]. The Adaptive Gaussian Quadrature method is used to fit the mixture

regression model by providing an approximation of the likelihood integrated over the random

effects [30]. The Dual Quasi-Newton optimization technique is used to perform the maximiza-

tion [29]. The models without random hospital effects were fitted first to obtain good starting

values for PROC NLMIXED. Good initial values are important to avoid non-convergence in

the estimation. The maximum likelihood covariate coefficient estimates and standard errors

are computed using the final Hessian matrix. The ratio of the covariate coefficient estimates and

corresponding standard errors produce t-values and p-values calculated based on the t-distribu-

tion. The test for the random effects variance component should be interpreted with caution as

the null hypothesis of the variance equals zero lies on the boundary of the parameter space.

Thus, Empirical Bayes estimates are used to obtain predicted random hospital effects [29].
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Model goodness of fit

The models with different numbers of components are compared to each other based on the

AIC statistical criteria. In using the AIC criteria for model comparison, the smaller AIC value

indicates a better fit to the data. Model parameters were evaluated to ensure mixing probabilities

were nonzero and that all components are different [22]. Model goodness of fit was evaluated

through residual analyses and estimation of bias. Residuals were calculated as the difference

between observed and predicted mean LOS for each covariate pattern. Bias was calculated as the

average residual across all covariate patterns weighted by the size of the covariate pattern [31,32].

Application

This study used New York State (NYS) hospital data from the New York Statewide Planning

and Research Cooperative System (SPARCS) inpatient de-identified dataset for 2014 [33]. The

dataset is publicly available on NYS Department of Health website and no Institutional Review

Board approval is needed.

Records with All Patient Refined Diagnosis Related Groups codes (540, 560) for vaginal

and Cesarean delivery were selected. Delivery hospitalizations were restricted to those dis-

charged to home or self-care (96% of delivery hospitalizations). Patients transferred to other

institutions are excluded since they would have additional LOS not measured in the unlinked

file. Patients who died during their delivery hospitalization (11 women) are excluded as their

true LOS had they survived is unknown.

The delivery LOS was defined as the number of days from admission to discharge. Patient

characteristics of age, race/ethnicity, and primary insurance were included as potential covari-

ates that influence LOS.

Hospitals’ teaching status and perinatal level of care were included as potential covariates

that influence LOS. Teaching status (teaching hospital vs non-teaching hospital) was obtained

from the Accreditation Council for Graduate Medical Education [34]. In New York, hospital

perinatal levels of care are designated based on the hospital’s capabilities and types of health

care providers available for care [35,36]. There are four perinatal levels of care; level 1 hospitals

are only equipped for low risk deliveries, level 2 hospitals are equipped for deliveries with mod-

erate risk, and levels 3 and 4 hospitals are equipped for high-risk deliveries [35]. Birthing facili-

ties were stratified into level 1 or 2 hospitals and level 3 or 4 hospitals [4,37].

Table 2 summarizes patient and hospital characteristics by hospital location and delivery

method. The distributions of characteristics differed by geographic region (New York City

(NYC) vs rest of the state (ROS) hospitals) and by delivery method (vaginal vs Cesarean deliv-

ery). Table 2 also provides the mean LOS and standard deviation of LOS for the patient and

hospital characteristics. To account for the interaction of hospital location with the other

covariates, all models were stratified by geographic region (NYC and ROS).

Gamma mixture regression models were fitted to delivery hospitalization LOS by delivery

method using patient and hospital covariates. For each stratum (delivery method by hospital

location), the data was initially investigated without restriction on the number of components

(subpopulations). For efficiency of space, the results for NYC Cesarean deliveries are provided

here, and the results for NYC vaginal deliveries, ROS vaginal deliveries, and ROS Cesarean

deliveries are in the supplemental tables (S1–S6 Tables).

Throughout all analyses two components provided the best fit, with component A captur-

ing common LOS and component B capturing long LOS and one day stays. The one day stays

(0.08%) have a negligible impact on the results.
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Model 1: No covariates

When no covariates are considered, a two component Gamma mixture model was found to

best fit the empirical distribution of LOS for NYC Cesarean deliveries. Component A captured

LOS ranging from 2 to 6 days (median = 3 days), that is the common LOSs for uncomplicated

Cesarean deliveries. Component B predominately captured longer LOS ranging from 7 to 97

days (median = 9 days). The model fit could not be enhanced by adding more components as

the model was nonidentifiable due to overfitting (fitting too many components).

Developing models to measure association between covariates and LOS

Patient and hospital covariates are next added to the Gamma mixture models in the mixing

probabilities function or component density to assess their influence on LOS. Since labor and

delivery procedures within a hospital impact all women delivering at that hospital, random

effects need to be included in the analyses. The results were consistent across hospital locations

and types of delivery (S1–S6 Tables). The associations of teaching status, age, and primary

Table 2. Patient and hospital characteristics by delivery method and region.

Characteristic Vaginal Deliveries (n = 144,379) Cesarean Deliveries (n = 73,076)

NYCa (n = 74,738) ROSd (n = 69,641) NYC (n = 35,778) ROS (n = 37,298)

N (%) Mean LOSb(SDc) N (%) Mean LOS(SD) N (%) Mean LOS(SD) N (%) Mean LOS(SD)

Maternal Age:

Less than 30 37,473 (52.6%) 2.5 (1.3) 38,433 (55.2%) 2.4 (1.3) 13,152 (36.8%) 3.9 (2.6) 16,009 (42.9%) 3.6 (2.3)

30 and over 37,265 (49.9%) 2.4 (1.5) 31,208 (44.8%) 2.3 (1.3) 22,626 (63.2%) 3.9 (3.0) 21,289 (57.1%) 3.7 (3.0)

Race/ethnicity:

Black, non-Hispanic 12,293 (16.4%) 2.7 (1.9) 7,541 (10.8%) 2.5 (1.4) 7,553 (21.1%) 4.2 (3.0) 4,470 (12.0%) 4.1 (3.2)

Hispanic 14,615 (19.6%) 2.6 (1.4) 7,557 (10.9%) 2.4 (0.9) 7,237 (20.2%) 3.9 (2.4) 4,275 (11.5%) 3.8 (2.8)

Other, non-Hispanic 22,787 (30.5%) 2.5 (1.2) 9,416 (13.5%) 2.4 (1.4) 11,469 (32.1%) 3.8 (2.8) 5,055 (13.6%) 4.0 (3.0)

White, non-Hispanic 25,043 (33.5%) 2.3 (1.3) 45,127 (64.8%) 2.3 (1.3) 9,519 (26.6%) 3.8 (3.1) 23,498 (63.0%) 3.5 (2.5)

Primary Insurance:

Medicaid 46,256 (61.9%) 2.5 (1.4) 32,029 (46.0%) 2.4 (1.3) 20,235 (56.6%) 3.9 (2.7) 15,362 (41.2%) 3.7 (2.8)

Private 28,419 (38.1%) 2.4 (1.5) 37,603 (54.0%) 2.3 (1.3) 15,509 (43.4%) 3.9 (3.2) 21,924 (58.8%) 3.7 (2.6)

Hospital Level:

Levels 1,2 7,597 (10.2%) 2.5 (0.8) 39,251 (56.4%) 2.3 (0.7) 3,933 (11.0%) 3.5 (1.1) 19,452 (52.2%) 3.3 (1.1)

Levels 3,4 67,140 (89.8%) 2.5 (1.5) 30,387 (43.6%) 2.5 (1.8) 31,845 (89.0%) 4.0 (3.0) 17,845 (47.8%) 4.1 (3.7)

Teaching Status:

Yes 50,385 (67.4%) 2.4 (1.5) 22,309 (32.0%) 2.5 (1.6) 24,098 (67.4%) 4.0 (3.2) 13,392 (35.9%) 4.1 (3.5)

No 24,353 (32.6%) 2.5 (1.3) 47,332 (68.0%) 2.3 (1.1) 11,680 (32.6%) 3.8 (2.2) 23,906 (64.1%) 3.5 (2.1)

Length of Stay

1 day 2,720 (3.6%) 4,953 (7.1%) 30 (0.1%) 115 (0.3%)

2–3 days 67,798 (90.7%) 61,250 (88.0%) 19,582 (54.7%) 21,566 (57.8%)

4–6 days 3,738 (5.0%) 3,095 (4.4%) 14,802 (41.4%) 14,572 (39.1%)

7–14 days 354 (0.5%) 246 (0.4%) 1,028 (2.9%) 763 (2.1%)

15+ days 128 (0.2%) 96 (0.1%) 336 (0.9%) 281 (0.8%)

a New York City.
b Length of Stay.
c Standard deviation.
d Rest of State (New York State excluding New York City).

https://doi.org/10.1371/journal.pone.0231825.t002
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insurance with LOS differed across each stratum. All models were consistent in identifying the

longer LOSs occurred in hospitals designated to care for the most complex patients (levels 3 and

4).

To assess the association between covariates and longer LOS, we estimated the odds of a

women’s hospitalization being assigned to component B (longer stays) compared to compo-

nent A (common LOS) when the covariates were placed in the mixing probabilities function

(Model 2 and Model 3). We estimated mean ratios for LOS in each component when the

covariates were placed in the component densities (Model 4).

Model 2: Covariates and random hospital effects in the mixing

probabilities function

When patient and hospital covariates and random hospital effects were included, a two-com-

ponent Gamma mixture regression model was found to provide the best model fit to the data

(Table 3). Each woman was assigned to either component A or component B based the maxi-

mum of their posterior probabilities. Component A generally captured women with shorter

LOS and accounts for an estimated 95% of the NYC Cesarean deliveries with LOSs ranging

from 2 to 6 days. Component B accounts for an estimated 5% of the NYC Cesarean deliveries

with the majority LOSs ranging from 6 to 97 days.

The AIC statistic improved from Model 1 with no covariates (AIC = 99584.1) to Model 2

with covariates and random hospital effects in the mixing probabilities function

(AIC = 98863).

The odds of belonging to component B for Black, non-Hispanic women are 1.98 (95% CI:

1.62–2.33) times the odds for White, non-Hispanic women adjusted for all other covariates.

Women delivering in level 3 or 4 hospitals are associated with longer LOS compared to

women delivering in level 1 or 2 hospitals (Table 4).

Fig 2 shows the predicted random hospital effects for assignment to component B (longer

LOS). Hospital 27 has the largest effect of women more likely to belong to component B. Hos-

pital 27 is a level 4 teaching hospital with 61% of the deliveries covered by private insurance

and 72% of the women who delivered aged 30 years and older. Hospital 32 has the largest effect

of women more likely to belong to component A (shorter LOS). Hospital 32 is a level 3 teach-

ing hospital with a high proportion (90%) of women covered by Medicaid.

Table 3. Model 2 covariates and random hospital effects in the mixing probabilities function for belonging to

component B for NYC Cesarean deliveries.

Covariates Reference Category Logistic Parameter Estimate (S.E.)

Intercept -4.43 (0.32)�

Maternal Age: 30 and over Under 30 0.04 (0.06)

Race/Ethnicity:

Black, non-Hispanic White, non-Hispanic 0.68 (0.09)�

Hispanic 0.05 (0.10)

Other, non-Hispanic -0.03 (0.08)

Primary Insurance: Medicaid Private 0.31 (0.07)�

Hospital Level: Levels 3,4 Levels 1,2 1.40 (0.32)�

Teaching Status: Yes No 0.05 (0.22)

Variance component 0.59�

AIC 98863

� p-value < 0.05.

https://doi.org/10.1371/journal.pone.0231825.t003
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Model 3: Covariates in the mixing probabilities function and random

hospital effects in the Gamma regression

Component A accounts for an estimated 95% and component B accounts for an estimated

5% of the NYC Cesarean deliveries. The estimated component LOS ranges are the same as in

Model 2. The AIC statistic improved from Model 2 (AIC = 98863) to Model 3 with covariates

in the mixing probabilities function and random hospital effects in the Gamma regression

(AIC = 97020).

Black, non-Hispanic race/ethnicity, hospital level, and primary insurance have the same

associations for component membership in both Model 2 and Model 3. The odds of belonging

to component B (longer LOS) for women with Medicaid as primary insurance are 1.35 (95%

CI: 1.20–1.53) times the odds of women with private primary insurance adjusted for all other

covariates (Tables 4 and 5).

For component A, the performance of the hospitals are similar and no large random effect

predictions are found (Fig 3). For component B, Hospitals 25 and 27 have the largest effects on

lengthening the LOS, and Hospitals 4 and 32 have the largest effects on shortening the LOS.

Hospitals 25 is a large level 4 teaching hospital with a high proportion (92%) of women with

private insurance and Hospital 4 is a smaller level 3 non-teaching hospital with a 94% of

women covered by Medicaid.

Model 4: Covariates and random hospital effects in the Gamma regression

Component A accounts for an estimated 95% of the NYC Cesarean deliveries with LOS rang-

ing from 2 to 7 days. Component B accounts for an estimated 5% of the NYC Cesarean deliver-

ies with LOS ranging from 6 to 97 days and includes the one-day stays. The AIC statistic

improved from Model 2 (AIC = 98863) and Model 3 (AIC = 97020) to Model 4 with covariates

and random hospital effects in the Gamma regression (AIC = 96829). The differences in the

AIC statistic for the models with covariates were small.

The set of significant covariates that influence LOS for each component (subpopulation)

differ. The magnitude of the parameter estimates and standard errors are larger for component

B (Table 6). Among women’s LOSs in component A (LOSs between 2 and 6 days for NYC

Cesarean deliveries), maternal age and race are the statistically significant covariates. The

Table 4. Adjusted odds ratios (OR) with 95% confidence intervals for component B membership for NYC Cesar-

ean sections.

Covariate Model 2 Model 3

OR (95% CI) OR (95% CI)

Maternal Age:

30 and over vs Under 30 1.04 (0.92–1.17) 1.03 (0.91–1.15)

Race/Ethnicity:

Black, Non-Hispanic vs White, Non-Hispanic 1.98 (1.62–2.33) 2.25 (1.88–2.62)

Hispanic vs White, Non-Hispanic 1.05 (0.84–1.25) 1.31 (1.06–1.55)

Other, Non-Hispanic vs White, Non-Hispanic 0.97 (0.80–1.14) 1.01 (0.84–1.18)

Primary Insurance:

Medicaid vs Private 1.37 (1.17–1.57) 1.35 (1.18–1.53)

Hospital Level:

Levels 3,4 vs Levels 1,2 4.03 (1.42–6.66) 2.66 (1.84–3.48)

Teaching Status:

Yes vs No 1.05 (0.59–1.50) 0.99 (0.86–1.12)

https://doi.org/10.1371/journal.pone.0231825.t004
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mean LOS for women aged thirty and older is 0.97 (95% CI: 0.96–0.97) times the mean LOS

for women under the age of thirty, adjusted for all other covariates (Table 7). Black, non-His-

panic women are associated with longer stays compared to White, non-Hispanic women. Spe-

cifically, the mean LOS for Black, non-Hispanic women is 1.06 (95% CI: 1.05–1.07) times the

mean LOS for White, non-Hispanic women in component A, adjusted for all other covariates.

This can also be interpreted as a 6% increase in the mean LOS for Black, non-Hispanic women

Fig 2. Estimated hospital effects from fitting Model 2 with covariates and random hospital effects in the mixing probabilities function for

belonging to component B for New York City Cesarean deliveries.

https://doi.org/10.1371/journal.pone.0231825.g002

Table 5. Model 3 covariates in the mixing probabilities function for belonging to component B and random hospital effects in the Gamma regression for NYC

Cesarean deliveries.

Covariates Reference Category Logistic Parameter Estimate (S.E.) Comp A Comp B

Intercept -3.90 (0.18)�

Maternal Age: 30 and over Under 30 0.03 (0.06)

Race/Ethnicity:

Black, Non-Hispanic White, Non-Hispanic 0.81 (0.08)�

Hispanic 0.27 (0.09)�

Other, Non-Hispanic 0.01 (0.08)

Primary Insurance: Medicaid Private 0.30 (0.06)�

Hospital Level: Levels 3,4 Levels 1,2 0.98 (0.15)�

Teaching Status: Yes No -0.01 (0.06)

Variance component 0.002� 0.07�

AIC 97020

� p-value < 0.05.

https://doi.org/10.1371/journal.pone.0231825.t005
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compared to White, non-Hispanic women. The performance of the hospitals are similar and

no large random effect predictions are found (Fig 4).

Among women’s LOSs in component B (LOSs primarily between 7 and 97 days for NYC

Cesarean deliveries), race, primary insurance, and hospital level are the statistically significant

covariates. On average, Black, non-Hispanic women had longer stays compared to White,

non-Hispanic women. Specifically, the mean LOS for Black, non-Hispanic women is 1.18

(95% CI: 1.06–1.30) times the mean LOS for White, non-Hispanic women in component B,

adjusted for all other covariates. Women delivering in level 3 and 4 hospitals are associated

Fig 3. Estimated hospital effects from fitting Model 3 with covariates in the mixing probabilities function for belonging to component B and

random hospital effects in the Gamma regression for New York City Cesarean deliveries.

https://doi.org/10.1371/journal.pone.0231825.g003

Table 6. Model 4 covariates and random hospital effects in the Gamma regression for NYC Cesarean deliveries.

Covariate Reference Category Component A Estimate (S.E.) Component B Estimate (S.E.)

Intercept 1.22 (0.02)� 1.46 (0.12)�

Maternal Age: 30 and over Under 30 -0.03 (0.003)� 0.04 (0.03)

Race/Ethnicity:

Black, Non-Hispanic White, Non-Hispanic 0.06 (0.004)� 0.17 (0.05)�

Hispanic 0.01 (0.004) -0.02 (0.05)

Other, Non-Hispanic 0.01 (0.003)� 0.06 (0.04)

Primary Insurance:

Medicaid Private 0.001 (0.003) 0.08 (0.04)�

Hospital Level: Levels 3,4 Levels 1,2 0.03 (0.02) 0.48 (0.12)�

Teaching Status: Yes No 0.01 (0.02) 0.13 (0.09)

Mixing probability 0.93

Variance component 0.002� 0.05�

AIC 96829

� p-value < 0.05

https://doi.org/10.1371/journal.pone.0231825.t006
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with longer stays in component B compared to women delivering in level 1 and 2 hospitals

(Table 7). Hospitals 25 and 27 have the largest effects on lengthening the LOS, and Hospital 32

has the largest effect on shortening the LOS (Fig 4).

Overall, the AIC statistic improved substantially from Model 1 to all the models with covar-

iates and random hospital effects.

Table 7. Adjusted mean ratios (MR) with 95% confidence intervals for length of stay for Model 4 for NYC Cesar-

ean sections.

Covariate Component A Component B

MR (95% CI) MR (95% CI)

Maternal Age:

30 and over vs Under 30 0.97 (0.96–0.97) 1.04 (0.97–1.11)

Race/Ethnicity:

Black, Non-Hispanic vs White, Non-Hispanic 1.06 (1.05–1.07) 1.18 (1.06–1.30)

Hispanic vs White, Non-Hispanic 1.01 (1.00–1.02) 0.98 (0.88–1.08)

Other, Non-Hispanic vs White, Non-Hispanic 1.01 (1.00–1.02) 1.07 (0.97–1.16)

Primary Insurance:

Medicaid vs Private 1.00 (0.99–1.01) 1.08 (1.01–1.16)

Hospital Level:

Levels 3,4 vs Levels 1,2 1.03 (0.99–1.01) 1.62 (1.23–2.00)

Teaching Status:

Yes vs No 1.01 (0.98–1.04) 1.14 (0.94–1.33)

https://doi.org/10.1371/journal.pone.0231825.t007

Fig 4. Estimated hospital effects from fitting Model 4 with covariates and random hospital effects in the Gamma regression for New York City

Cesarean deliveries.

https://doi.org/10.1371/journal.pone.0231825.g004
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Discussion

As research on SMM increases in the effort to improve maternal outcomes, the need for good

statistical models for the entire LOS distribution, including the tail of very long LOSs, is imper-

ative. Gamma mixture models are particularly useful for research on LOS. These models can

analyze the complete LOS data distribution and are relatively robust to investigator decisions.

For example, regardless of the placement of the covariates and random hospital effects, the

models predict the vast majority of women to the same components (subpopulations). Specifi-

cally, for NYC Cesarean deliveries all models that included covariates predicted 97.9% of the

women to the same component. Of the 2.1% of women with a predicted component change in

at least one model, all had LOS of 6 or 7 days (the boundary region of LOS between the two

component distributions (common LOS and long LOS)).

Overall, the observed differences in LOS for NYC Cesarean deliveries for all three models

with covariates and random hospital effects are associated with race, primary insurance,

and hospital level. Model 2 and 3 provide insight into covariates associated with having a

longer LOS through odds ratios of being assigned to component B. Model 4 provides infor-

mation about how covariates are associated with lengthening LOS within each component

(long and short stay distributions) through mean ratios for comparing mean LOS by covari-

ate levels.

Covariates found to be associated with LOS are similar across regions for Cesarean deliver-

ies. Associated covariates with LOS vary for vaginal deliveries across regions. For example, age

is associated with longer LOS for NYC vaginal deliveries but not for ROS vaginal deliveries

(S1–S6 Tables). Fewer covariates influence LOS for vaginal deliveries compared to Cesarean

deliveries. This is not surprising given the differences in the delivery processes, increased vari-

ability in LOS for each method, and the additional risks associated with Cesarean delivery [38].

A limitation of using NYS public use de-identified discharge data is that comorbidities are

not available. Future studies to incorporate comorbidities would move the field forward. Study-

ing comorbidities is complicated as some occur prior to hospitalization, useful for predicting

LOS, and others during hospitalization. Unfortunately, large national databases do not provide

the nuanced information needed to fully sort out when comorbidities occur. The patient and

hospital characteristics available in the data are known before admission, this allows for predic-

tion of LOS before the delivery hospitalization. The hospital variation in component member-

ship and LOS is significant in all the models, indicating unexplained differences in LOS among

hospitals after adjusting for the available covariates; hospitals have effects beyond the covariates

measured. Diagnosis codes in conjunction with present on admission codes could be used to

identify comorbidities (e.g. hypertension) that could vary between hospitals and explain part of

the observed hospital effects. However, when comorbidities are included, hospital effects are

notable when studying SMM and risk for Cesarean delivery [4,37,38]. After obtaining and eval-

uating these additional risk factors, hospital protocols should be reviewed to understand differ-

ences in care not captured by measured factors.

Finite mixture regression models can be complex and computationally intensive to imple-

ment. The unknown parameters in finite mixture modeling can be estimated using numerical

methods or EM algorithms. EM algorithms are widely used and numerically stable. However,

EM algorithms do not estimate the variance-covariance matrix. The variance-covariance

matrix is necessary to calculate the standard errors and the tests of statistical significance for

the estimated parameters. We use an alternative numerical method of Dual Quasi-Newton

optimization to estimate the unknown parameters and to provide the variance-covariance

matrix. Results of finite mixture models estimated with numerical methods and EM algo-

rithms have been found to be comparable [17].
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While some studies used covariates to model both the mixing probabilities and component

density means, we did not fit this specification of a finite mixture regression to avoid identifia-

bility problems [21,39]. In such complex and computationally intensive models, using a large

number of parameters tends to overtax the models and they do not converge.

The values of residuals for all models for NYC Cesarean deliveries ranged from -0.43

to 0.55 days. There was very good agreement between the averages of the observed and

predicted lengths of stay within each covariate pattern with smaller differences in the

covariate patterns with a large number of patients (over 100). The largest difference

between observed and predicted lengths of stays for Model 2, Model 3 and Model 4 was

in a covariate pattern with only 3 patients. The model biases for the three models were less

than two tenths of a day and the positive biases represent underestimation of the models

by approximately one tenth of a day in predicting mean LOS (Table 8). We are using NYS

publicly available de-identified administrative data and thus are limited in the covariate

choices. The limitation in the choice of covariates and not being able to include health

status information likely lead to the underestimation of the mean LOS. Individual patient

comorbidities are unlikely to substantially change prediction of components (shorter LOS

and longer LOS distributions) [40,41]. As with modeling in general the effect of a parame-

ter changes depending on the other covariates in the model. Changing the covariates in

finite mixture regression models influences both the component membership and param-

eter effects.

Thirty (0.08%) women who had Cesarean delivery in NYC had LOSs of one day recorded

in the administrative data. It is most likely that these LOSs are errors [42]. One day stays were

assigned to component B (longer hospital stays) however they are irrelevant in the analyses.

When the 30 women were removed from the analyses, the findings were not importantly

changed.

This study shows the predictive power of including covariates in modeling LOS for delivery

hospitalizations. The different placement of covariates and random effects produced consistent

results. Future work will focus on selecting important covariates for application in finite mix-

ture regression models for LOS.
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