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The roles of hydrogen sulfide in renal physiology and disease states
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ABSTRACT
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for
its physiological effects. In this review, we aim to summarize and discuss existing studies about
the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S
is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous
studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal
physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production
as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been
implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In
chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and
obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress,
inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence
from experimental studies suggesting the potential roles of H2S donors in the treatment of kid-
ney disease, these results need further clinical translation. Therefore, expanding the understand-
ing of H2S can not only promote our further understanding of renal physiology but also lay a
foundation for transforming H2S into a target for specific kidney diseases.
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1. Introduction

Hydrogen sulfide (H2S) is a toxic, colorless gas with an
odor of rotten eggs. It exists in nature and can be found
in natural gas, volcanic emissions and petroleum [1]. In
1989, Warenycia and Goodwin [2] first demonstrated
that the human body contains H2S, which mainly exists
in the brain, and indicated that the brainstem is more
sensitive to exogenous H2S than other parts of the
brain. The physiological function of H2S has only
recently been gradually recognized. High concentra-
tions of H2S may lead to complete inhibition of cell res-
piration, mitochondrial membrane potential
depolarization and superoxide generation [3]. Low lev-
els of H2S can regulate homeostatic mechanisms such
as blood pressure (BP) control and apoptosis and par-
ticipate in pathological mechanisms including oxidative
stress (OS) and inflammation [4,5]. In the kidneys, H2S is
actively involved in renal regulation, and H2S produc-
tion disorders are involved in the onset and develop-
ment of many kidney diseases [6]. Although exogenous
H2S has been shown to play key roles in alleviating

various animal models of kidney damage, its specific
molecular mechanism is unknown.

In this review, we first describe H2S generation and
functions. Next, we introduce the role of H2S in renal
physiology. Furthermore, we discuss H2S as a related
factor in the occurrence and progression of renal dis-
ease and reveal some mechanisms. Finally, we summar-
ize the application of H2S donors and inhibitors in
preclinical work and logically evaluate the therapeutic
potential of H2S in kidney diseases.

2. H2S generation and functions

Although originally viewed as only a toxic gas, H2S is
now recognized as a gaseous signaling molecule that is
in some ways similar to nitric oxide (NO) and carbon
monoxide (CO) [7]. Unlike NO and CO, H2S is acidic,
which allows it to dissolve in water. In addition, because
H2S is highly lipophilic, it can spread freely to the cell
membranes of all cell types [8]. The enzymes responsible
for the generation of endogenous H2S include cystathio-
nine–b–synthase (CBS), cystathionine–c–lyase (CSE), and
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mitochondrial 3–mercaptopyruvate sulfurtransferase
(3–MST) [9]. CBS and CSE both produce endogenous H2S
in the cytosol, while 3–MST produces endogenous H2S
in mitochondria [4,10]. Endogenous H2S is produced in
four main ways. In the first mechanism, L–homocysteine
and serine produce L–cystathionine under the action of
CBS; the L–cystathionine is then changed into L–cysteine
by CSE. Finally, H2S is formed in a process mediated by
CBS and CSE in the cytoplasm [6]. In the second mechan-
ism CSE reacts with L–homocysteine to produce H2S,
a–ketobutyrate and L–homolanthionine [4]. In the third
mechanism, cysteine aminotransferase converts
L–cysteine to 3–mercaptopyruvate (3–MP), which is then
utilized by 3–MST for the production of H2S in mitochon-
dria [11]. In the final mechanism, D–amino acid oxidase
mediates the transformation of D–cysteine to 3–MP, and
H2S is subsequently produced under the action of
3–MST. It is worth noting that 3–MP needs to be
imported to mitochondria for the next step. In the kid-
neys, the main substrate for H2S production is
D–cysteine, and H2S from D–cysteine is much more
abundant than that from L–cysteine [12] (Figure 1).

How does H2S perform biological functions? Recent
studies have provided answers. H2S can regulate differ-
ent signaling pathways that affect cell metabolism. H2S
is involved in signal transmission through signaling path-
ways via sulfhydration, during which it reacts with cyst-
eine residues of various target proteins to form
persulfide bonds. The reactivity of sulfhydration is deter-
mined by the acid dissociation constants of cysteine

residues [13]. Mustafa et al. [14] found that approxi-
mately 10–25% of liver proteins can be activated by
S–sulfhydration, such as actin, tubulin, and glyceraldehy-
de–3–phosphate dehydrogenase. S–sulfhydration is
essential for the functions of liver proteins; for example,
it enhances glyceraldehyde–3–phosphate dehydrogen-
ase activity and actin polymerization. H2S is an endothe-
lium–derived hyperpolarizing factor that can lead to
hyperpolarization and vasodilation of vascular endothe-
lial and smooth muscle cells. This vasodilation is mainly
achieved via activation of the ATP–sensitive, intermedi-
ate and small conductance potassium channels, and the
most critical step for channel activation is
S–sulfhydration [15]. H2S participates in inflammatory
reactions as a messenger molecule, and the downstream
effects of sulfhydration affect nuclear factor jB (NF–jB).
NF–jB plays a key role in the inflammatory response in
cells. Nil Kantha et al. [5] found that tumor necrosis
factor–a (TNF–a) can stimulate the transcription of CSE
to generate H2S. H2S sulfhydrates Cys38 of p65, enhanc-
ing its binding to the coactivator ribosomal protein S3,
thereby regulating the nuclear functions of NF–jB. In
CSE–deficient mice, p65 cannot be sulfhydrated, result-
ing in decreased NF–jB target gene activity. The protein
tyrosine phosphatase–1B is located on the cytoplasmic
face of the endoplasmic reticulum (ER) and has been
implicated in ER stress signaling. H2S–induced sulfhydra-
tion of protein tyrosine phosphatase–1B participates in
the ER stress response [16]. P66Shc is an upstream acti-
vator of mitochondrial redox signaling. In response to

Figure 1. Endogenous synthesis of H2S by four pathways. (A) CSE catalyzes the reaction of L–homocysteine to induce the pro-
duction of H2S. (B) CBS reacts with L–homocysteine, increasing the generation of L–cystathionine, which is then converted into
L–cysteine via CSE, which further produces H2S. (C) L–cysteine is converted into 3MP by CAT, and 3–MST catalyzes the reaction
of 3MP to induce H2S generation in mitochondria. (D) DAO reacts with D–cysteine to generate 3MP, which then enters mitochon-
dria and serves as a substrate for the production of H2S. CBS (cystathionine b–synthase); CSE (cystathionine c–lyase); CAT (cyst-
eine aminotransferase); 3MP (3–mercaptopyruvate); DAO (D–amino acid oxidase); 3–MST (3–mercaptopyruvate sulfurtransferase).
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OS, p66Shc is activated through protein kinase
C–bII–mediated phosphorylation at Ser36. Xie et al. [17]
found that H2S downregulates the phosphorylation of
p66Shc through the sulfhydration of Cys59 residue, thus
reducing mitochondrial production of reactive oxygen
species (ROS) and achieving antioxidant effects. Nuclear
factor–erythroid 2–related factor 2 (Nrf2) is a master
regulator of the antioxidant response. Normally, Nrf2 is
ubiquitinated and rapidly degraded by the proteasome
under the action of Kelch–like ECH–associated protein 1
(Keap1). Sodium sulfide (NaHS) has been reported to
S–sulfhydrate Keap1 at Cys151 and promote Nrf2 nuclear
translocation [18].

3. H2S production in the kidneys and role in
kidney physiology

3.1. H2S production in the kidneys

Some studies have found that the three enzymes that
produce endogenous H2S are highly expressed in cer-
tain tissues, such as the kidneys [19]. CBS, CSE and
3–MST can be detected in renal proximal tubules. CSE
is also mainly expressed in renal glomeruli, interstitia,
and interlobular arteries [19,20]. Under normal condi-
tions, the CSE protein is expressed at the highest level
in the kidneys, reaching levels 20 times those of CBS.
In the kidney tissues of Sprague–Dawley rats, all three
H2S–producing enzymes are present, and CSE mRNA
is expressed more abundantly than 3MST and CBS
mRNA [4]. Therefore, CSE plays a leading role in the
production of H2S [21,22]. CBS and CSE synergistically
produce H2S, and these two enzymes can jointly
increase the production of endogenous H2S in the
kidneys [23].

Three traditional H2S–synthesizing pathways (involv-
ing CSE, CBS, and 3–MST coupled with cysteine amino-
transferase) have been identified in the kidneys, as
described in the “H2S Generation and Functions” sec-
tion. Therefore, we focused on a fourth H2S generation
pathway, namely, the DAO/3–MST pathway [24]. In this
pathway, D–cysteine is transformed into 3–MP by per-
oxisome–located DAO. Due to metabolite exchanges
between peroxisomes and mitochondria, 3–MP is
imported into mitochondria and catalyzed into H2S by
3–MST [24] (Figure 1). Shibuya et al. showed that kidney
lysate can produce 60 times more H2S when D–cysteine
is used as a substrate than when L–cysteine is used
[12]. The discovery of the unique DAO/3–MST pathway
in the kidneys and brain may imply a significant role of
3–MST–mediated H2S generation in these organs. This
possibility is worth exploring further.

3.2. H2S in kidney physiology

3.2.1. Effect of H2S on renal excretory function
H2S plays an important role in renal excretion. Xia et al.
found that both CBS and CSE can produce H2S in the
kidney and that when either enzyme is inhibited, the
expression of the other increases to compensate. They
also found that in anesthetized Sprague–Dawley rats,
infusion of NaHS in the renal artery can increase renal
blood flow and the glomerular filtration rate (GFR).
Because of the increase in the filtration rate, those
authors speculated that the role of H2S in vasodilating
blood vessels was greater in preglomerular arterioles
than in postglomerular arterioles. H2S can also inhibit
the Na–K–2Cl cotransporter in the ascending limb of
the loop of Henle and the Na–K ATPase enzyme, poten-
tially increasing the excretion of sodium and potassium
from urine. Therefore, H2S participates in both vascular
and tubular actions in the kidneys [23].

3.2.2. H2S as an oxygen sensor
H2S may act as an oxygen (O2) sensor to restore O2 bal-
ance, a phenomenon that has been confirmed in vari-
ous O2–sensing tissues, such as the carotid body,
adrenal medulla and other chemoreceptive tissues, as
well as in smooth muscle in systemic and respiratory
vessels and airways [25]. H2S metabolism is highly
dependent on the concentration of O2 [25]. Under
physiological conditions, pO2 is reduced in the renal
medulla, and oxidation of H2S is negatively correlated
with pO2 in mitochondria, so the activity of H2S in the
medulla is likely higher than that in the renal cortex [4].
H2S, which accumulates in increased amounts in the
renal medulla under hypoxic conditions, may restore O2

supply by increasing medullary blood flow [26].
Moreover, studies have shown that under conditions of
sufficient oxygen, the levels of CBS and CSE in mito-
chondria are low. Once hypoxia occurs, the concentra-
tions of CBS and CSE increase, which increases the
production of H2S [27,28]. H2S served as an electron
donor and increases ATP production [27]. Hypoxia is
the most important risk factor for the pathogenesis and
progression of many renal diseases. Endogenous H2S
deficiency can further contribute to compromised
medullary oxygenation and aggravate the occurrence
and development of kidney disease [26]. However, the
specific mechanism remains unclear and needs fur-
ther study.

3.2.3. H2S modulates renin release
H2S attenuates pathological signaling of the renin–an-
giotensin–aldosterone system (RAAS) to preserve kid-
ney function. The RAAS is a humoral regulatory system
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composed of hormones and corresponding enzymes
that regulates the excretion of water and sodium. The
release of renin from juxtaglomerular cells determines
the onset and development of renovascular hyperten-
sion, a procedure adjusted by intracellular 30–50–cyclic
adenosine monophosphate (cAMP). H2S has been
reported to downregulate cAMP by inhibiting adenylate
cyclase activity, thereby regulating renin release and
controlling BP [29,30]. In primary cultures of renin–rich
kidney cells, NaHS significantly reduces the levels of
intracellular cAMP and reduces renin activity. In a Dahl
rat model of high–salt–induced hypertension, treatment
with H2S has been found to inhibit RAAS system activa-
tion in the kidneys and to regulate BP [31]. H2S also
regulates BP via angiotensin–converting enzyme, which
belongs to the RAAS system. In human endothelial cells,
H2S can directly interfere with zinc in the active center
of angiotensin–converting enzyme [32].

In brief, H2S plays a key role in renal physiology;
however, further study is required to establish the spe-
cific mechanisms involved.

4. Role of H2S in acute kidney injury

H2S plays diverse roles in the onset and development of
kidney disease. Acute kidney injury (AKI) is the clinical
syndrome caused by a rapid decline in renal function
due to a number of causes, which can occur in patients
without kidney disease or on the basis of original kidney
disease. The main features of this type of injury are a
rapid decrease in GFR, an increase in serum creatinine,
oliguria and even anuria. Approximately 20% of hospital-
ized patients experience AKI, although among critically
ill patients, the percentage can reach 50%. AKI is divided
into different types according to etiology and stage, and
the prognoses and treatments differ among the types.
However, the main complications include volume over-
load, uremia complications and electrolyte disorders. AKI
causes 2 million deaths a year, placing huge burdens on
society and the medical system [33,34].

4.1. Role of H2S in renal ischemia/
reperfusion injury

The damage to microvascular and parenchymal organs
caused by ischemia reperfusion injury (IRI) mainly occurs
via ROS, as has been proven in many organs. The kid-
neys are the main target organs of this type of injury,
which results in the clinical syndrome of AKI. The pro-
duction of ROS can lead not only to cell necrosis and
apoptosis but also to lipid peroxidation and ATP deple-
tion [35,36]. Recent studies have shown that H2S is

strongly associated with renal IRI. Han et al. [37] found
that the expression and activity of CSE and CBS in the
kidneys were decreased and that the levels of H2S were
also decreased in mice subjected to bilateral renal ische-
mia for 30min. NaHS treatment restored renal function
and accelerated the return of tubular morphology to
normal. Furthermore, NaHS treatment improved renal
function by reducing OS. Eelke et al. [38] revealed that
CSE participates in the improvement of renal ischemia,
most likely via production of H2S to mitigate OS. Azizi
et al. [39] found that H2S can protect against ischemia/
reperfusion–induced AKI by reducing OS.

H2S may exert its renal IRI–improving effects through
several mechanisms. Ischemia has profound effects on the
renal endothelium, resulting in microvascular dysregula-
tion and continued ischemia and further injury [40]. In the
first mechanism, H2S dilates blood vessels in the smooth
muscle tissue of the kidneys, by activating Kþ ATP chan-
nels, thereby increasing renal blood flow, which is helpful
for the recovery of renal tubules [15]. Notably, it has been
confirmed in previous studies that H2S can reduce the
renal burden in mice with angiotensin (Ang) II–induced
hypertension, while IRI can activate the RAAS system [41].
Thus, we speculate that in the second mechanism, H2S
inhibits the RAAS system and protects kidney functions. In
the third mechanism, H2S protects mitochondrial function.
Treatment with H2S donors can induce reversible hypo-
metabolism. The proposed mechanism involves reduc-
tions in mitochondrial activity via reversible binding to
cytochrome c oxidase. Under hypoxic conditions, the
integrity and function of mitochondria are impaired, but
this impairment is alleviated after administration of H2S.
Therefore, H2S reduces the use of O2, protects tissues
from hypoxia and shock, and protects organs from IRI
[42,43]. In the fourth mechanism, homocysteine can be
reduced to cysteine in cells for glutathione synthesis. H2S
can enhance the transport of homocysteine, increase the
production of glutathione, inhibit the activity of nicotina-
mide adenine dinucleotide phosphate (NADPH) oxidase,
play a role in scavenging free radicals and increase the
activity of antioxidant enzymes [1,44]. In addition, A39, as
a mitochondria–targeting H2S donor, has been reported
to be related to the reduction of cellular OS and to exert
dose–dependent protective effects against renal epithelial
cell injury in vitro and IRI in vivo [45].

4.2. Role of H2S in drug–induced acute
kidney injury

Medications are important means of disease prevention
and treatment but can also cause AKI. There are many
kinds of nephrotoxic drugs that can be used in

1292 J. FENG ET AL.



combination with single or multiple drugs. The patho-
genesis of drug–induced AKI varies but mainly involves
acute tubular/tubulointerstitial injury. High–risk factors
include drug use and patient factors [46].

Cisplatin (Cisp) is a chemotherapeutic agent that is
widely used for solid tumors [47]. It has been reported
that approximately 25%–30% of patients treated with
Cisp develop forms of nephrotoxicity, such as AKI. The
most common damage caused by Cisp is DNA injury,
which can also activate the apoptotic pathway and
cause damage to other organelles through OS and
inflammation. The most severe damage occurs to the
ER and mitochondria [48]. Cisp is mainly excreted by
the kidneys and accumulates in renal proximal tubular
cells, leading to subsequent tubular cell death and AKI
[49]. Mitochondrial dysregulation is central to tubular
injury. Some research has shown that Cisp accumulates
in the mitochondria of renal proximal tubular cells and
impairs mitochondrial redox balance, finally leading to
mitochondrial dysfunction [50,51]. Recent studies have
reported that in mice with Cisp–induced AKI mice, dam-
aged mitochondria not only compromise cellular
energy metabolism but also induce mitochondrial frag-
mentation and ROS overproduction, which determined
the degree of tubular epithelial cell injury and death
[52]. Previous studies have suggested that H2S alleviates
Cisp–induced AKI and contrast–induced AKI [53].
However, the underlying mechanism remains largely
unclear. Yuan et al. [54] found that H2S increases Sirtuin
3 (SIRT3) expression and enhances deacetylase activity
by sulfhydrating SIRT3 at two CXXC zinc finger motifs.
SIRT3 mainly exists in mitochondria and is a
NADþ–dependent deacetylase. As one of the major
mitochondrial deacetylases, SIRT3 improves mitochon-
drial bioenergetics and inhibits mitochondrial dysfunc-
tion by mediating deacetylation of its target proteins
[55]. Therefore, it has been concluded that H2S allevi-
ates AKI in Cisp–induced mice [54]. Recent reports have
demonstrated that low concentrations of H2S stimulate
mitochondrial oxidative phosphorylation and inhibit
mitochondrial oxidant production [56]. Akram et al. [57]
also found that H2S prevents the progression of Cisp
nephrotoxicity in rats, possibly through its antioxi-
dant properties.

However, recent studies have found that H2S can
exacerbate Cisp–induced renal damage. Francescato
et al. [58] used DL–propargylglycine (PAG) to inhibit
endogenous H2S production in Wistar rats and found
that inflammation was reduced and kidney damage
was alleviated. Liu et al. found that the slow–releasing
H2S donor GYY4137 aggravated Cisp–induced renal
injury, which was associated with inflammation, OS and

apoptosis. Notably, the dose of GYY4143 they used was
rather low (21mg/kg), which may have led to insuffi-
cient or even a lack of production of H2S [59]. One
study has also revealed that in the context of doxorubi-
cin–induced renal damage, PAG exerts its protective
effect by decreasing H2S production and reducing OS
and inflammation in the kidneys [60].

H2S plays an important role in drug–induced AKI,
but previous studies have yielded quite different
results. The differences may have been related to the
different H2S concentrations used in the experiments,
which needs further study and discussion.

4.3. Role of H2S in sepsis–associated acute
kidney injury

The probability of sepsis in critical patients with AKI is
approximately 40%–50%. When sepsis and AKI occur
simultaneously, a condition known as sepsis–associated
AKI (SA–AKI), the mortality can be as high as 70% [61].
Kidney hypoperfusion is the major contributor to
SA–AKI. The pathogenesis of SA–AKI is complicated and
includes renal macrocirculatory and microcirculatory
disturbances, surges in inflammatory markers and OS
and coagulation cascade activation [62].

Lipopolysaccharide (LPS), TNF–a and interleukin
(IL)–1b, which are typical inflammatory cytokines that
function via Toll–like receptor 4 signaling pathways,
have been found to participate in OS production in an
AKI mouse model. Excessive OS production leads to
dysfunction of tubular epithelial cells. NaHS improves
renal function and attenuates kidney histopathological
changes, LPS–induced inflammation and OS. Chen et al.
[63] found that plasma H2S levels are reduced in rabbits
with SA–AKI and that exogenous H2S can suppress
NF–jB and TNF–a activity and increase IL–10 content,
thus delaying kidney damage. Caitlyn et al. [64] also
suggested that NF–jB transactivation can induce
inflammation and cell hyperpermeability and that the
CSE/H2S system can block NF–jB transactivation.

In contrast, the role of H2S in sepsis is not clear.
Plasma H2S concentrations have been found to be high
in patients with septic shock. In a mouse model of
LPS–induced inflammation, injection of LPS has been
found to increase the gene expression of CSE in the kid-
neys. PAG administration before LPS injection reduces
the content of H2S and the infiltration of leukocytes in
the kidneys. After NaHS injection, the levels of plasma
TNF–a increase significantly [65]. Nevertheless, further
research is needed to elucidate the specific role of H2S in
SA–AKI. The role of H2S in AKI is summarized in Table 1
[37–39,54,57,65–69].
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5. Involvement of H2S in chronic
kidney disease

Chronic kidney disease (CKD) is defined as the occur-
rence of renal structural alteration and dysfunction with
multiple causes over a course of more than three
months. Characteristics of CKD include abnormal blood
or urine test results, pathological damage to the struc-
ture and function of the kidneys, and an unexplained
decrease in GFR, such as a decrease to a level less than
60mL/min. Diabetes mellitus (DM) and hypertension
are common causes of CKD. CKD cannot be cured; even
if the external pathogenic factors have been removed,
CKD tends to deteriorate internally, and glomerular and
renal tubular damage continue to be aggravated, such
that CKD eventually progresses to end–stage renal fail-
ure. In this context, the renal structural changes in
patients lead to OS, and excessive OS can activate
redox–sensitive proinflammatory transcription factors
and signal transduction pathways so that the system
triggers an inflammatory response, resulting in a sus-
tained exacerbation of renal injury [70]. In recent years,
the progression of CKD has been able to be delayed
with strict control of BP and blood glucose, suppression
of proteinuria and suppression of kidney damage.
Complications of CKD include volume and electrolyte
abnormalities, anemia, mineral and bone abnormalities,
endocrine abnormalities, cardiovascular and cerebro-
vascular diseases and uremia [71].

CKD can be divided into five stages according to
GFR, and chronic renal failure (CRF) corresponds to
stages 3–5. Among patients with CRF and end–stage
renal failure, the morbidity and mortality of cardiovas-
cular diseases are increased significantly [72]; therefore,
compared to patients with other chronic diseases,
patients with CRF tend to require longer and more fre-
quent hospitalizations [73]. CRF has become a major
health problem worldwide, and its pathological founda-
tions are renal tubular cell loss and fibrosis.
Inflammation, OS and excessive autophagy are the
main causes of incurable disease or continuous progres-
sion [74].

In both patients and animal models, plasma levels of
H2S are lower in subjects with CRF than in normal sub-
jects [75]. The enzyme that produces H2S in the residual
kidneys is downregulated, and H2S production is also
significantly reduced, which is associated with increased
inflammation and OS [76]. Mohammad et al. [76] found
that 5/6–nephrectomized (5/6–Nx) rats exhibited
marked OS, inflammation, GSH synthase declines and
NADPH oxidase upregulation. Treatment with NaHS
reduced BP and increased creatinine clearance. NaHS

has also been shown to reduce malondialdehyde levels
and increase superoxide dismutase activity [77].

Apoptosis is an intrinsic cell–suicide program that is
critical for the normal development and maintenance
of tissue homeostasis in multicellular organisms [78].
Many researchers believe that high levels of ROS can
lead to imbalances in redox reactions, inducing apop-
tosis or cell necrosis [79]. The proteins of the Bcl–2 fam-
ily are involved in apoptotic signaling pathways and
include proapoptotic and antiapoptotic members [79].
In the renal tissues of CRF rats, apoptosis is significantly
increased, as indicated by evidence including upregula-
tion of the expression of the proapoptotic factor Bax,
and downregulation of the expression of the antiapop-
totic factor Bcl–2 [80].

One study has shown that H2S can effectively inhibit
cleaved caspase–3 activity and thus reduce the extent
of renal apoptosis [77]. Therefore, we predict that a
reduction in cleaved caspase–3 activity may be a key
step for H2S to play an antiapoptotic role, but a large
number of experiments are still needed to verify this
hypothesis [81]. Beclin, LC3A/B, and mTOR are charac-
teristic markers of autophagy, and a recent study found
that the expression of these markers was unequivocally
increased in 5/6–Nx rats. After administration of NaHS,
these markers returned to normal levels. The study also
suggested that the interplay between H2S and NO con-
tributes to renal functions. Chronic renal injury inhib-
ited endothelial NOS (eNOS) expression while inducing
inducible NO synthase (iNOS) expression, but treatment
with H2S reversed these changes [74].

In rats with adenine–induced CRF, administration of
H2S not only reduces the concentrations of blood urea
nitrogen and Scr but also reduces the extent of anemia.
Furthermore, H2S can inhibit apoptosis and inflamma-
tion in these rats through the ROS/mitogen–activated
protein kinase (MAPK) and NF–jB signaling path-
ways [82].

H2S ameliorates CRF by inhibiting OS, inflammation,
and autophagy and interacting with NO. However, the
specific mechanism still needs to be proven.

5.1. Role of H2S in diabetic nephropathy

DM is a widespread disease that seriously threatens
human health. DM can affect important organs and
poses huge medical burdens on families and society
[83]. Diabetic nephropathy (DN) is one of the most
severe microvascular complications of DM. The principal
pathological features of DN are glomerular sclerosis
and interstitial fibrosis [84], and the mechanism is
thought to involve induction of OS [85], accumulation
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of advanced glycosylation end–products (AGEs) [86],
activation of inflammatory and fibrosis signaling path-
ways [87], abnormal renal hemodynamics and abnormal
activation of the RAAS, secondary to chronic hypergly-
cemia [88].

The current evidence suggests that H2S deficiency
contributes to the development of DN. Plasma H2S lev-
els are lower in patients with type 2DM (T2DM) than in
normal individuals, and the same results have been
found in diabetic rats [89]. High levels of urinary sulfate
are related to high plasma H2S concentrations, and
high urinary sulfate can reduce the risk of renal disease
progression in T2DM patients [90].

In addition, the plasma H2S content in DM patients
undergoing dialysis is lower than that in the normal
population, and in chronic hemodialysis patients, a lower
level of H2S is associated with a higher propensity for
uremic atherosclerosis [91]. Recent studies have shown
that H2S supplementation can slow the development of
DN. Treatment with NaHS ameliorates kidney lesions in
T2DM by increasing glucose uptake in myotubes and
adipocytes [92]. Supplementation with H2S or an
endogenous precursor of H2S (L–cysteine) in culture
medium prevents the release of proinflammatory cyto-
kines such as IL–8 and monocyte chemotactic protein–1
in high–glucose–treated human U937 monocytes [89].
We summarize the role of H2S in DN in Table 2 [93–100].

5.1.1. H2S alleviates diabetic nephropathy by reduc-
ing oxidative stress
OS develops due to an imbalance between the levels of
ROS in cells and the antioxidant system [101]. The
increase in blood glucose levels leads to activation of
the protein kinase C pathway in kidney cells. Protein kin-
ase C activates NADPH II in mitochondria and then
increases OS, which leads to expansion of the glomerular
mesangial region, thickening of the basement mem-
brane, disorder of endothelial cell function and protein-
uria [102]. ROS production also results in accumulation
of extracellular matrix, activation of fibrosis factors, and
podocyte injury [103]. Glucose can form AGEs with vari-
ous proteins under nonenzymatic conditions, and AGEs
can induce the OS response and increase protein kinase
C activity, thus inducing increased production of inflam-
matory chemokines [104].

Overall, high glucose induces OS in kidney cells, and
H2S can participate in this process. Marwa et al. [105]
found that kidney damage caused by hyperglycemia
through OS can be antagonized by NaHS. H2S can pro-
tect kidney functions in T1DM rats in a manner related
to suppression of OS via increased activity of super-
oxide dismutase [106].

Under physiological conditions, Keap1 ubiquitinates
and degrades Nrf2. However, under conditions of anti-
oxidation, shear stress, or electrophilic agent exposure,
Nrf2 dissociates from Keap1 and translocates to the
nucleus, where it promotes the expression of down-
stream antioxidant genes [107]. Animal experiments
have shown that activation of the renal Nrf2 signaling
pathway alleviates OS injury and proteinuria and
increases extracellular matrix and basement membrane
thickening [108]. In high–glucose–treated endothelial
cells, H2S induces Nrf2 dissociation from Keap1 by
increasing S–sulfhydration of Keap1, increasing Nrf2
translocation to the nucleus and inducing downstream
antioxidant gene expression, thereby reducing OS and
adhesion molecule levels [109]. Previous studies have
shown that H2S activates Nrf2 and increases the protein
expression of heme oxygenase–1, thus improving renal
resistance to OS in DM rats [110].

Recent studies have suggested that high glucose can
induce NADPH oxidase 4 (NOX4) expression and extra-
cellular matrix synthesis by downregulating adenosine
monophosphate kinase–activated protein kinase
(AMPK) in kidney cells [111]. NOX4 is a member of the
group of NADPH oxidases of the NOX family and is a
main source of ROS in the kidneys [112]. H2S recruits
iNOS to generate NO in order to inhibit high–gluco-
se–induced NOX4 expression, OS, and matrix protein
accumulation [111].

High glucose recruits mammalian target of rapamy-
cin complex 1 to exacerbate hypertrophy and increase
protein synthesis in renal epithelial and mesangial cells.
In DN, phosphatidylinositol 3 kinase/protein kinase B/
mammalian target of rapamycin complex 1 signaling is
activated due to the suppression of AMPK activity
[6,113]. Treatment with NaHS reverses the decrease in
AMPK phosphorylation caused by high glucose, which
reduces renal damage [114].

Autophagy consists of a number of complex steps,
primarily formation of phagocytic vesicles, synthesis of
autophagosomes, formation of autophagolysosomes
after fusion of autophagosomes and lysosomes and
gradual degradation of autophagolysosomes.
Autophagy can scavenge waste within cells to achieve
cellular homeostasis and organelle renewal [115]. In DM
patients, the concentration of ROS increases as hyper-
glycemia persists, which can lead to excessive autoph-
agy or disrupted autophagy, which can damage
endothelial cells [116]. In endothelial cells, high–glu-
cose–/palmitate–induced mitochondrial damage is
associated with OS. Mitochondrial damage reduces ATP
production and causes persistent overactivation of the
AMPK signaling pathway, thereby leading to excessive

1296 J. FENG ET AL.



Ta
bl
e
2.

Pr
ev
io
us

st
ud

ie
s
on

th
e
ef
fe
ct
s
of

H
2S

in
di
ab
et
ic
ne
ph

ro
pa
th
y.

M
od

el
Pr
ot
oc
ol

Tr
ea
tm

en
t

D
os
e

Ef
fe
ct

of
H
2S

M
ec
ha
ni
sm

Re
fe
re
nc
e

m
al
e
C5
7B
L/
6
m
ic
e

in
je
ct
io
n
of

ST
Z
10
0
m
g

kg
–
1
8
w
ee
ks

in
je
ct
io
n
w
ith

N
a 2
S 4

fo
r
th
e

ne
xt

4
w
ee
ks
.

50
0
l
g
kg

–
1
da
y–

1
–a
tt
en
ua
te
d
re
na
lf
ib
ro
si
s
an
d
re
na
l

ce
ll
ap
op

to
si
s

–a
m
el
io
ra
te
d
re
na
ld

ys
fu
nc
tio

na
l

an
d
hi
st
ol
og

ic
al

da
m
ag
e

–i
nh

ib
ite
d
ov
er
pr
od

uc
tio

n
of

in
fla
m
m
at
io
n
cy
to
ki
ne
s
an
d
RO

S
–i
na
ct
iv
at
ed

p6
5
N
F–
j
B
an
d
ST
AT

3
ph

os
ph

or
yl
at
io
n/
ac
et
yl
at
io
n

th
ro
ug

h
su
lfh

yd
ra
tio

n
of

SI
RT
1

[9
2]

m
al
e
C5
7B
L/
6J

m
ic
e

in
je
ct
io
n
of

ST
Z
50

m
g

kg
–
1
4
da
ys

in
je
ct
io
n
w
ith

CY
Y4
13
7
fo
r

12
w
ee
ks

20
m
g
kg

–
1
da
y–

1
–a
m
el
io
ra
te
d
m
es
an
gi
al

m
at
rix

ex
pa
ns
io
n
an
d
gl
om

er
ul
ar

ba
se
m
en
t
m
em

br
an
e
th
ic
ke
ni
ng

–a
m
el
io
ra
te
d
al
bu

m
in
ur
ia

–r
ev
er
se
d
th
e
in
cr
ea
se
s
in

ub
iq
ui
tin

at
ed

CB
S
an
d
ni
tr
ot
yr
os
in
e

in
th
e
ki
dn

ey
s

[9
3]

m
al
e
W
is
ta
r–
Ky
ot
o
ra
ts

in
je
ct
io
n
of

ST
Z
60

m
g

kg
–
1
fo
r
3
w
ee
ks

in
tr
ap
er
ito

ne
al

in
je
ct
io
ns

of
N
aH

S
fo
r
4
w
ee
ks

56
l
m
ol

kg
–
1

–a
tt
en
ua
te
d
th
e
se
ve
rit
y
of

th
e

st
ru
ct
ur
al

ch
an
ge
s

–r
ed
uc
ed

ox
id
at
iv
e
st
re
ss

–a
ug

m
en
te
d
th
e
an
tio

xi
da
nt

ef
fe
ct

[9
4]

di
ab
et
ic
C5
7B
L/
6–
In
s2
Ak
ita
/J
m
ic
e

/
in
tr
ap
er
ito

ne
al

in
je
ct
io
ns

of
G
YY

fo
r
8
w
ee
ks

0.
25

m
g
kg

�
1
da
y�

1
–i
m
pr
ov
ed

re
na
lf
ib
ro
si
s

–m
od

ul
at
ed

PP
AR

/R
AR

–m
ed
ia
te
d
RX

R
si
gn

al
in
g
to

am
el
io
ra
te

PA
I–
1–
de
pe
nd

en
t
ad
ve
rs
e

ex
tr
ac
el
lu
la
r
m
at
rix

tu
rn
ov
er

[9
5]

m
al
e
Sp
ra
gu

e–
D
aw

le
y
ra
ts

in
je
ct
io
n
of

ST
Z

50
m
g
kg

–
1

in
tr
ap
er
ito

ne
al

in
je
ct
io
ns

of
N
aH

S
af
te
r
in
je
ct
io
n
of

ST
Z

56
m
m
ol

kg
�1

da
y�

1
–i
m
pr
ov
ed

ki
dn

ey
fu
nc
tio

n
–a
ct
iv
at
ed

K ff
TP

ch
an
ne
ls
to

af
fe
ct

an
tio

xi
da
nt
s
an
d
N
O

–d
ec
re
as
ed

pr
oi
nf
la
m
m
at
or
y
cy
to
ki
ne
s

[9
6]

m
al
e
Sp
ra
gu

e–
D
aw

le
y
ra
ts

in
je
ct
io
n
of

ST
Z

65
m
g
kg

–
1

in
tr
ap
er
ito

ne
al

in
je
ct
io
ns

of
SP
RC

fo
r
9
w
ee
ks

10
,2

5,
50

m
g
kg

–
1
da
y–

1
–i
m
pr
ov
ed

re
na
lf
un

ct
io
n

–i
nh

ib
ite
d
re
na
lf
ib
ro
si
s

–i
nh

ib
ite
d
in
fla
m
m
at
or
y
re
ac
tio

n
m
ed
ia
te
d
by

IL
–1
b,

TN
F–
a,

M
CP

–1
an
d
St
at
3

–s
up

pr
es
se
d
th
e
ex
pr
es
si
on

of
TG

F–
b1

ex
pr
es
si
on

an
d
in
hi
bi
te
d

th
e
ph

os
ph

or
yl
at
io
n
of

ER
K

an
d
p3
8

[9
7]

m
al
e
w
hi
te

al
bi
no

ra
ts

in
je
ct
io
n
of

ST
Z

60
m
g
kg

–
1

in
tr
ap
er
ito

ne
al

in
je
ct
io
ns

of
N
aH

S
fo
r
30

da
ys

N
aH

S
30

mm
ol

kg
–
1
da
y–

1

N
aH

S
10
0
mm

ol
kg

–
1
da
y–

1
–i
m
pr
ov
ed

re
na
lf
un

ct
io
n

–d
ec
re
as
ed

FB
S,
RO

S
an
d
ap
op

to
si
s

–u
pr
eg
ul
at
ed

SI
RT
1

[9
8]

m
al
e
Sp
ra
gu

e–
D
aw

le
y
ra
ts

in
je
ct
io
n
of

ST
Z

40
m
g
kg

–
1

in
tr
ap
er
ito

ne
al

in
je
ct
io
ns

of
N
aH

S
10
0
mm

ol
kg

–
1
da
y–

1
–i
m
pr
ov
ed

re
na
lf
ib
ro
si
s

–d
ow

nr
eg
ul
at
ed

TG
F–
1

[9
9]

Ab
br
ev
ia
tio

ns
:
RO

S
(r
ea
ct
iv
e
ox
yg
en

sp
ec
ie
s)
;
N
F–
jB

(n
uc
le
ar

fa
ct
or

j
B)
;
N
F–
j
B
(n
uc
le
ar

fa
ct
or

jB
);
ST
AT

3
(s
ig
na
l
tr
an
sd
uc
er

an
d
ac
tiv
at
or

of
tr
an
sc
rip

tio
n
3)
;
SI
RT
1
(s
irt
ui
n1
);
CB

S
(c
ys
ta
th
io
ni
ne

be
ta
–s
yn
th
as
e)
;

PP
AR

(p
er
ox
is
om

e
pr
ol
ife
ra
to
r–
ac
tiv
at
ed

re
ce
pt
or
s)
;
RA

R
(r
et
in
oi
c
ac
id

re
ce
pt
or
);
RX

R
(r
et
in
oi
d
X
re
ce
pt
or
);
PA

T–
1
(p
ut
at
iv
e
an
io
n
tr
an
sp
or
te
r
1)
;
IL
–1
b

(in
te
rle
uk
in
–1
be
ta
);
TN

F–
a

(t
um

or
ne
cr
os
is

fa
ct
or

al
ph

a)
;

M
CP

–1
(M

on
oc
yt
e
ch
em

oa
tt
ra
ct
an
t
pr
ot
ei
n–

1)
;T
G
F–
b1

(t
ra
ns
fo
rm

in
g
gr
ow

th
fa
ct
or

be
ta
1)
;E
RK

(e
xt
ra
ce
llu
la
r
si
gn

al
–r
eg
ul
at
ed

ki
na
se
);
FB
S
(fa
st
in
g
bl
oo
d
gl
uc
os
e)
.

RENAL FAILURE 1297



autophagy and further damaging endothelial cells. H2S
treatment can inhibit OS and attenuate excessive
autophagy [117].

In recent years, an increasing number of studies
have found that H2S can alleviate OS and inhibit exces-
sive autophagy caused by OS, which may provide new
avenues for therapeutic treatment of DN.

5.1.2. Inflammation and H2S in diabetic nephropathy
An abnormal immune system and chronic inflammation
play important roles in the pathological progression of
DN [102]. NF–jB is the central link and common path-
way regulating the transcription of many inflammatory
factors and the key factor in endothelial inflammatory
injury [118]. When the NF–jB pathway of kidney cells is
activated, the cells secrete adhesion factors such as
intercellular adhesion molecule–1 and vascular cell
adhesion protein–1 as well as chemokines such as
monocyte chemotactic protein–1 and IL–1. These adhe-
sion molecules and chemokines attract monocytes,
macrophages, and T lymphocytes into the kidneys,
thereby activating TNF–a signaling and leading to
increased renal pathology and fibrosis [119,120]. In rats
with streptozotocin (STZ)–induced DM, NaHS exerts
anti–inflammatory actions by inhibiting NF–jB signaling
in glomerular mesangial cells [110].

MMP–9, a zinc–dependent endopeptidase, is an
inflammatory cytokine that leads to extracellular matrix
degradation and renal vascular remodeling [121].
Kundu et al. [122] showed that MMP–9 reduces the
expression of CBS and CSE and decreases the content
of H2S in DM mice and that treatment with H2S reverses
MMP–9–induced DM kidney remodeling.

5.1.3. H2S improves diabetic nephropathy by attenu-
ating RAAS activity
The classic RAAS includes several steps. Briefly, the kid-
neys secrete renin, which activates angiotensinogen
produced from the liver to produce Ang I. Ang I is then
converted into Ang II in the pulmonary circulation. Ang
II, the main effector of the RAAS, acts on Ang II type I
receptors, causing the smooth muscle of arterioles to
contract and stimulating the secretion of aldosterone
into the spheroid of the adrenal cortex [123].
Hyperglycemia activates the renal RAAS, increases
glomerular hydrostatic pressure, and causes proteinuria,
glomerulosclerosis and interstitial fibrosis [124].
Blockade of the RAAS has been shown to delay the pro-
gression of DN [125]. As previously mentioned, renin is
secreted by juxtaglomerular cells, and H2S can regulate
renin release by downregulating cAMP. In a murine
model of transverse aortic constriction–induced heart

failure, treatment with H2S reduced renal RAAS patho-
logical activation and protected the heart, kidney and
blood vessels [126]. In DN, H2S may play a preventive
role by regulating renin release and activity [22].

H2S can also inhibit the RAAS system by regulating
other links. Compared with normal–glucose–stimulated
cells, high–glucose–stimulated cells exhibit significant
upregulation of angiotensinogen, angiotensin–convert-
ing enzyme and Ang II type I receptor mRNA levels, but
this upregulation can be reversed by treatment with
H2S [127]. One study has found that the protein expres-
sion levels of angiotensin–converting enzyme, Ang II
type I receptor receptors and Ang II are significantly
upregulated in DN. These proteins are downregulated
after NaHS treatment [110].

Therefore, H2S can attenuate OS and the inflamma-
tory response and inhibit pathological activation of the
RAAS. In the early stage of DN, H2S can ameliorate glom-
erular basement membrane thickening and mesangial
matrix hyperplasia. In the late stage, H2S can delay renal
fibrosis and ameliorate renal remodeling. H2S is thus
involved in the different stages of DN (Figure 2).

5.2. Role of H2S in hypertensive nephropathy

Hypertensive nephropathy is the second–leading cause
of end–stage renal disease after DM [128]. Most hyper-
tensive patients develop mild–to–moderate hyperten-
sive nephrosclerosis, with only relatively few patients
entering end–stage renal disease. Nevertheless, the
occurrence of end–stage renal disease dramatically
increases when BP values are uncontrolled for a long
time or when kidney disease is a preexisting condition
[129,130]. Poor control of long–term hypertension
aggravates kidney damage. Kidney damage further
increases BP levels. Thus, long–term hypertension and
kidney damage form a vicious cycle, resulting in mul-
tiple organ damage [131].

Although the specific mechanism is unclear, studies
have revealed that mice lacking CSE show significant
hypertension and reduced endothelium–dependent
vasorelaxation [132]. In rats, BP can also be increased
via inhibition of H2S–producing enzymes (CBS and CSE)
[133]. As mentioned above, H2S increases the estimated
GFR (eGFR) and the urinary excretion of sodium. In add-
ition, H2S controls BP by directly regulating vascular
tension. H2S is acknowledged as an endothelium–der-
ived hyperpolarizing factor that acts by sulfhydrating
cysteine residues of K–ATP channels [15]. In addition,
H2S can activate the cAMP/protein kinase A signaling
pathway, release calcium, and regulate vasorelaxa-
tion [134].
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PPARs are a class of ligand–activated nuclear tran-
scription factors that belong to the receptor superfam-
ily. Three subtypes of PPARs, PPAR–a, PPAR–b/d, and
PPAR–c, have been found. Each PPAR subtype can alle-
viate metabolic abnormalities under the action of ago-
nists; however, their mechanisms of action are different.
For example, activation of PPAR–b/d can significantly
improve BP by increasing NO and serve as a new thera-
peutic target for hypertension [135,136]. Recent studies
have shown that the role of H2S in regulating BP might
be related to PPARb/d activation. H2S is thought to
work with NO in synergy to regulate vascular tone. The
specific molecular mechanism may involve
H2S–mediated upregulation of PPAR–d expression,
increases in protein kinase B or AMPK phosphorylation,
and enhancement of eNOS phosphorylation with a con-
sequent increase in NO production [137,138]. In rats,
the use of NOS inhibitors, such as Nx–nitro–l–arginine
methyl ester, can cause hypertension, which can be
reversed by treatment with NaHS [139]. However, in
aortic rings of rats, low concentrations of NaHS
(10–100 lM) can downregulate NO production and con-
sequently induce vasoconstriction. In contrast, adminis-
tration of high doses of NaHS has been reported to
directly relax aortic rings [140]. These findings suggest

a role of H2S/NO crosstalk in BP regulation. The antihy-
pertensive effect of H2S is also dose dependent, but the
specific mechanism needs further study [6].

Ang II can contract whole arterioles. In addition, it
can promote secretion of aldosterone in the adrenal
cortex. Aldosterone acts on the renal tubules and
increases blood volume. Furthermore, Ang II induces
OS by binding angiotensin receptor 1 to mediate exces-
sive ROS accumulation, leading to endothelial damage.
In the kidneys, Ang II exacerbates target organ inflam-
mation by increasing superoxide formation and chemo-
kine release [141,142]. In addition to H2S inhibiting
renin release, another possible mechanism is that
exogenous H2S inhibits the binding of Ang II to the
Ang II type I receptor, reduces Ang II–mediated signal-
ing and inhibits pathological progression in mice. In
mice with Ang II–induced hypertension, H2S can also
inhibit ROS production in blood vessels and remove
ROS, improving antioxidant capacity [143].

In summary, H2S plays indispensable roles in regulat-
ing BP, reducing proteinuria, delaying renal dysfunction
and structural deterioration by inhibiting Ang II and
increasing NO production [143]. Thus, H2S may evolve
into a unique target for the treatment of hypertensive
nephropathy.

Figure 2. Mechanisms underlying the protective effect of H2S in DN. (A) H2S stimulates NO formation, which reduces NOX4 levels;
H2S activates AMPK, thereby suppressing mTOR signaling; and H2S activates the Nrf2 pathway. (B) H2S acts as an anti–inflammatory
factor by blocking NF–jB signaling in the renal system. (C) Renin converts AGT into Ang I. Under the action of ACE, Ang I is further
converted to Ang II, and Ang II binds to AT–1, which exacerbates DN. The activation of RAAS in DN is ameliorated by H2S treatment
via inhibition of AGT, renin, ACE, Ang II and AT–1 receptors. OS (Oxidative stress); AMPK (AMP–activated protein kinase); NO (nitric
oxide); mTOR (mechanistic target of rapamycin); Nrf (Nuclear factor–erythroid 2–related factor 2); NOX4 (NADPH oxidase 4). TNF–a
(tumor necrosis factor a); IL–1b (interleukin–1b); VCAM–1 (vascular cell adhesion molecule–1); ICAM–1(intercellular adhesion mol-
ecule–1); MCP–1 (monocyte chemotactic protein–1); MMP–9 (matrix metalloproteinase–9). AGT (Angiotensinogen); ACE (angiotensin
converting enzyme); AngI (angiotensin I); AngII (angiotensin II); AT–1 (Ang II type I receptor1).

RENAL FAILURE 1299



5.3. Role of H2S in obstructive kidney disease

Obstructive nephropathy is a common urological disease
that includes kidney stones, polycystic kidney disease,
and renal artery stenosis. Ureteral obstruction accelerates
renal fibrosis, which is associated with the onset and
development of obstructive nephropathy [144]. Renal
fibrosis is also a key pathological feature in CKD [145]. In
a unilateral ureteral obstruction (UUO) mouse model, the
activity levels of H2S and H2S production enzymes,
including CBS and CSE, have been confirmed to decrease
significantly. After administration of NaHS, H2S levels
increase and renal fibrosis is alleviated, and these
changes are accompanied by an increase in H2S concen-
tration [146]. Kidney damage caused by UUO is closely
related to inflammation and renal fibrosis. Previous stud-
ies have shown that H2S participates in this pathological
state [147]. Supplementation with exogenous H2S
reduces UUO–induced kidney injury. Furthermore, recent
research has shown that in a rat model of obstructive
nephropathy, GYY4137 ameliorates inflammatory dam-
age and tubulointerstitial fibrosis [148,149], as does
NaHS [150,151]. We summarize the role of H2S in
obstructive kidney disease in Table 3 [145–152].

5.3.1. H2S alleviates obstructive kidney disease by
reducing oxidative stress and inflammation
Inflammation, OS, vascular tension and intracellular sig-
naling pathways are involved in the progression of
renal fibrosis. The induction of fibrosis is exacerbated
by oxidative stress, as ROS have been reported to
increase the expression of Ang II and TGF–b1 [153,154].
H2S can increase the activity of antioxidant enzymes
such as glutathione and superoxide dismutase to resist
OS. Nrf2 is a transcription factor that regulates the
adaptive response to OS. H2S has been shown to
induce the gene expression of antioxidant enzymes and
the activation of Nrf2 [107,146]. Excessive autophagy
induced by an increase in OS can lead to vascular endo-
thelial dysfunction. Treatment with NaHS significantly
ameliorates kidney damage in UUO mice, possibly by
inhibiting the ROS–AMPK pathway [152].

UUO causes inflammation in the kidneys. Studies
have found that exogenous H2S inhibits NF–jB activa-
tion, leads to a reduced inflammatory response and
controls the production of proinflammatory cytokines
such as IL–1b and TNF–a, which are also found in H9C2
cardiac cells [146,155]. The characteristic signaling
mechanisms of renal fibrosis involve the TGF–b1–Smad
and MAPK pathways. H2S weakens Smad3 phosphoryl-
ation and blocks MAPK kinase activation. In addition,
administration of NaHS reduces the expression of prolif-
eration–related genes, such as proliferating cell nuclear

antigen and c–Myc, to inhibit fibroblast proliferation
and the phenotypic transition to myofibroblasts [147].

5.3.2. H2S and macrophages in obstructive kid-
ney disease
Zhou et al. [145] found that in obstructed kidneys of
UUO mice, reduced H2S production is related to
increased macrophage infiltration. Macrophages are
immune cells located in tissues that are derived from
monocytes and have broad functions. Macrophages
preferentially induce iNOS or arginase and are classified
as M1 or M2 macrophages [156]. Activated M1 macro-
phages cause tissue damage and inflammation by
increasing the levels of proinflammatory cytokines, NO
and ROS. However, M2 macrophages promote tissue
repair and collagen production and inhibit immune
activity. In previous studies, M1 and M2 macrophages
have been shown to be involved in the pathogenesis of
renal fibrosis. During renal fibrosis, the NF–jB pathway
is activated, which can activate and modulate M1 mac-
rophages. The interferon regulatory factor/signal trans-
ducer and activator of transcription (IRF/STAT, through
STAT6) signaling pathway, activated by IL–4 and IL–13,
can transform macrophages to the M2 phenotype
[157–159]. H2S can significantly reduce M1 and M2
macrophage infiltration by inhibiting NF–jB and IL–4/
STAT6. In addition, NF–jB and IL–4/STAT6 pathway acti-
vation in UUO–induced mice is accompanied by activa-
tion of the NLRP3 inflammasome. H2S donors suppress
NLRP3 inflammasome activation, which may contribute
to the anti–inflammatory and antifibrotic effects of
H2S [145].

On the basis of the positive role of H2S in obstructive
kidney disease, H2S may be a novel potential therapy
against renal injury caused by urinary obstruction [160].

6. Methodology of preclinical work

6.1. H2S donors

The most common class of H2S donors employed in
biological studies is the class of sulfide salts, which
includes sodium hydrosulfide (NaHS) and sodium sul-
fide (Na2S). However, these salts do not release H2S;
rather, they dissociate to yield H2S in an instantaneous
and pH–dependent manner. At physiological pH,
approximately 85% of the sulfide delivered by the salts
will be in the dissociated hydrosulfide form (HS�), and
15% will be the dissolved gas H2S [161].

Sulfide salts can provide direct, instantaneous access
to the biologically relevant forms of sulfide (H2S and
HS�), in contrast to endogenous sources, which slowly
and steadily produce H2S [161,162]. Sulfide
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saltshydrolyze immediately upon dissolution in water,
establishing equilibrium among H2S, HS

�, and S2– spe-
cies. Once this equilibrium is established, H2S volatilizes
rapidly, and the air oxidation of HS� is catalyzed by
trace metals in water, lowering the total concentration
of sulfur species [163].

In the aortic rings of rats, low concentrations of NaHS
(10–100lM) can induce vasoconstriction. However, high
doses of NaHS can directly relax aortic rings. It has been
suggested that high concentrations of H2S may exert a
rapid “knockdown” effect, perhaps because high concen-
trations of H2S cause transient inhibition of complex IV,
resulting in inhibition of mitochondrial respiration [161].
In previous studies, NaHS treatment (100mmol
kg�1day�1) for 4weeks reversed diabetes–induced vas-
cular dysfunction in mouse aortas [100] and ameliorated
the cardiovascular changes induced by obesity [164].
However, it is worth noting that the NaHS was injected
intraperitoneally, which may have led to a high initial cir-
culating concentration of H2S followed by a decline and
would not have provided 24–hour “coverage” for H2S
delivery in vivo [161]. In addition, the hygroscopicity of
sulfide salts introduced error during calculation of the
exact H2S concentration. Sulfide salts also emit a pun-
gent odor, which is a real problem when considering the
use of these compounds for pharmaceutical and human
therapeutic applications.

Although NaHS has been successfully used in a var-
iety of studies, unformulated sulfide salts are not the
best choices for pharmaceutical development due to
their short half–life, rapid and uncontrolled release, and
unpleasant smell. H2S donation can be achieved through
slow–releasing H2S donors, such as GYY4137, which
have been used in hundreds of studies in vitro and
in vivo. Recent studies have also found many donors
with regulated H2S release profiles, including oxidant–-
triggered donors, pH–dependent donors, esterase–acti-
vated donors, and organelle–targeted compounds [161].

As the field continues to develop, we expect that
H2S–related compounds will find their way into clinical
trials. Garlic, which can produce the gasotransmitter
H2S, has been used for T2DM patients and has been
reported to significantly lower glycemia and lipid
metabolism with concomitant amelioration of redox
metabolism [165]. H2S–releasing nonsteroidal anti–in-
flammatory drugs represent examples of new anti–in-
flammatory drugs. Coupling of either naproxen or
diclofenac to an H2S–releasing moiety has been
reported to enhance gastrointestinal and cardiovascular
safety [166]. ATB–346 has been used in clinical trials
and shows milder adverse effects than other drugs
[167]. The novel H2S prodrug (SG1002) increases H2S

levels and attenuates increases in type B natriuretic
peptide in patients with heart failure and is safe and
well tolerated at all doses (200, 400, and 800mg twice
daily for 7 days) [168]. Novel H2S–releasing agents war-
rant further research in larger clinical studies. However,
the benefit–risk ratio and usage should be taken into
account at an individual patient level, especially during
assessment of underlying conditions that may increase
the risk of adverse events.

6.2. Pharmacological inhibitors of H2S

For inhibition of H2S synthesis, there are now several
small molecule compounds targeting each of the three
H2S–producing enzymes CBS, CSE, and 3–MST. The
most commonly used inhibitors of CSE are PGG and
b–cyano–L–alanine (BCA) [169]. PGG and BCA are often
used at very high levels (1–10mM) in cell–based assays,
suggesting that they poorly cross the cell membrane
[170]. Unlike that of BCA, the action of PGG is irrevers-
ible. In addition to PAG and BCA, another glycine ana-
log and natural toxin, aminoethoxyvinylglycine, has
been found to block CSE and is more potent than PAG
[171]. All three inhibitors suffer from the same selectiv-
ity drawbacks, as they inhibit additional pyridoxal
59–phosphate–dependent enzymes [161].

Although PGG is the drug of choice to pharmaco-
logically inhibit CSE, the limitations associated with its
lack of selectivity remain. AVG has not been used in cel-
lular or in vivo assays thus far [161]. Therefore, it is
necessary to investigate more approaches.

7. Conclusions

In this review, we have comprehensively discussed the
roles of H2S in renal diseases, especially DN, and
explored the related molecular mechanisms. DN is one
of the most serious complications of DM, and numerous
drug classes are available for treatment, but their effi-
cacy remains limited. H2S can regulate autophagy,
apoptosis, OS, and inflammation through multiple sig-
naling pathways, providing new targets for treatment.
However, compared to sodium–glucose cotransporter 2
inhibitors, which constitute a new class of blood gluco-
se–lowering medications that block renal glucose
reabsorption and have protective effects on the kid-
neys, H2S may have mild efficacy in lowering glucose
[172]. In addition, the role of H2S in AKI, such as sepsi-
s–associated AKI and drug–induced AKI, is unclear.
Research on such topics will advance and critically
broaden our understanding of the therapeutic potential
of H2S in kidney disease.
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