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The early and accurate prediction of the extent of long-term motor recovery is important
for establishing specific rehabilitation strategies for stroke patients. Using clinical
parameters and brain magnetic resonance images as inputs, we developed a deep
learning algorithm to increase the prediction accuracy of long-term motor outcomes in
patients with corona radiata (CR) infarct. Using brain magnetic resonance images and
clinical data obtained soon after CR infarct, we developed an integrated algorithm to
predict hand function and ambulatory outcomes of the patient 6 months after onset.
To develop and evaluate the algorithm, we retrospectively recruited 221 patients with
CR infarct. The area under the curve of the validation set of the integrated modified
Brunnstrom classification prediction model was 0.891 with 95% confidence interval
(0.814–0.967) and that of the integrated functional ambulatory category prediction
model was 0.919, with 95% confidence interval (0.842–0.995). We demonstrated
that an integrated algorithm trained using patients’ clinical data and brain magnetic
resonance images obtained soon after CR infarct can promote the accurate prediction
of long-term hand function and ambulatory outcomes. Future efforts will be devoted to
finding more appropriate input variables to further increase the accuracy of deep learning
models in clinical applications.
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INTRODUCTION

Despite the progress in drug development and disease management, the mortality and disability
rates of ischemic strokes remain high (Donkor, 2018; Kuriakose and Xiao, 2020). In fact, the
overall disability rate has been reported as high as 75% in ischemic stroke survivors (Ovbiagele and
Nguyen-Huynh, 2011; Donkor, 2018). Among the various disabilities after the onset of ischemic
stroke, motor deficiency in patients is one of the most critical sequelae (Palumbo et al., 1978;
Alawieh et al., 2018).
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Among the various ischemic stroke lesions, those affecting
the corona radiata (CR) and posterior limb of the internal
capsule are often associated with poor motor outcomes (Turhan
et al., 2006; Frenkel-Toledo et al., 2019). For example, Shelton
and Reding (2001) reported that only 5.9% of patients with a
CR infarct showed isolated movement recovery of the upper
limb, which was much lower than the 75% recovery of patients
with cortical infarct. Therefore, patients who suffer from CR
infarct require an accurate prediction of the extent of long-term
motor recovery at an early stage to ensure that clinicians can
establish individual rehabilitation strategies that are conducive to
improved motor outcomes.

Deep learning is a recent artificial intelligence technique in
which a system learns patterns and rules from the available data
(Lee et al., 2020; Choo et al., 2021; Sarker, 2021). Thus, it has
been increasingly applied in the clinical field. In particular, deep
learning can be applied to accurately predict the long-term motor
outcomes of stroke patients (Kamal et al., 2018; Heo et al., 2019).

To develop algorithms including those for deep learning, most
existing studies have focused on either clinical or imaging data
(Choo et al., 2021; Kim et al., 2021a,b). However, developing
algorithms using clinical data requires a large number of
variables, and each hospital collects different types of clinical data.
Consequently, an algorithm developed using specific clinical
data is difficult to utilize in general clinical practice. Regarding
imaging data, as most hospitals use imaging modalities such as
brain magnetic resonance (MR) imaging for diagnosing ischemic
stroke, high data consistency and algorithm applicability can be
achieved (Davis et al., 2006). Nevertheless, deep learning based
only on brain MR images tends to show low prediction accuracy
(Kim et al., 2021b).

In this study, we used both clinical parameters and brain MR
images as inputs to develop a deep learning algorithm that can
increase the prediction accuracy of long-term motor abilities of
patients with CR infarct.

MATERIALS AND METHODS

Patients
A total of 221 consecutive patients (mean age, 65.0 ± 11.9 years;
115 males, 106 females; time to transfer or admission,
30.2 ± 72.2 days; initial modified Brunnstrom classification—
MBC within 7–30 days of infarct onset, 2.4 ± 1.8; initial
functional ambulation category—FAC within 7–30 days of infarct
onset, 1.0 ± 1.2) who suffered CR infarct and underwent
stroke rehabilitation in a single university hospital from January
2003 to January 2020 were retrospectively recruited in this
study (Table 1). The inclusion criteria were as follows: (1) a
patient’s first ever stroke; (2) age > 20 years; (3) hemiparesis
or hemiplegia hemiparesis after cerebral infarction in their
CR; (4) brain MR imaging conducted within 30 days after
stroke onset; (4) MBC ≤ 4 and FAC ≤ 3 within 7–30 days
of infarct onset; (5) motor function checked 6 months after
stroke onset; and (6) absence of other severe medical conditions
(e.g., cardiac problems and pneumonia) between the onset and
final evaluation.

TABLE 1 | Patient demographic and clinical data collected within 7–30 days
of infarct onset.

Demographic data

Number of patients, n 221

Age, years 65.0 ± 11.9

Clinical data within 7–30 days of infarct onset

MBC 2.4 ± 1.8

FAC 1.0 ± 1.2

MRC of shoulder abductor 1.5 ± 1.4

MRC of elbow flexor 1.6 ± 1.5

MRC of finger flexor 1.3 ± 1.5

MRC of finger extensor 1.1 ± 1.5

MRC of hip flexor 2.0 ± 1.4

MRC of knee extensor 2.1 ± 1.5

MRC of ankle dorsiflexor 1.5 ± 1.5

MBC, modified Brunnstrom classification; FAC, functional ambulation category;
MRC, medical research council.

The study protocol was approved by the Institutional Research
Board of Yeungnam University Hospital (No. 2019-10-008). The
requirement for informed consent was waived because we used
de-identified retrospective data, as confirmed by our institutional
review board. This study was conducted in accordance with the
principles of the Declaration of Helsinki.

Images for the Deep Learning Algorithm
Three T2-axial consecutive brain MR images obtained from every
cerebral infarction patient were investigated in our study. The
images were taken at the lateral ventricle level of the body so that
CR fibers passing above the internal capsule can be observed. The
MR images obtained on the day closest to the date of transfer
to the physical medicine and rehabilitation department within
30 days after cerebral infarct onset were used for the development
of the algorithm.

Clinical Data for the Deep Learning
Algorithm
We investigated 11 input variables at the early stage after the
onset of CR infarction: age, sex, MBC, FAC, and the Medical
Research Council’s score for muscle power of the shoulder
abductor, elbow flexor, finger flexor, finger extensor, hip flexor,
knee extensor, and ankle dorsiflexor on the affected side. For
convenient use in clinical practice, data that could be easily
assessed by clinicians were selected.

Motor Outcome at 6 Months
The MBC score was obtained as the motor outcome of the
affected hand, and the FAC score, which quantifies ambulation,
was obtained from the affected leg.

The MBC quantifies the motor function of the affected upper
limb from 1 to 6, with higher scores indicating better hand
function (Huang et al., 2016). The MBC scores of the upper
limbs were used in the analysis. We separated the MBC score
6 months after infarction onset as follows: favorable outcomes for
lower limbs given an MBC score of at least 5, indicating minimal
spasticity with slightly increased tone, and those given an MBC
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score below 5, indicating the ability to initiate non-synergistic
movement. Among the 221 patients, one patient’s MBC was not
assessed because of an ulnar fracture. Therefore, data from 220
patients were used to train and evaluate the algorithm to predict
upper limb motor function.

The FAC score is evaluated based on the degree of
assistance required during a 15 m walk (Mehrholz et al., 2007).
The FAC is categorized as follows: (0) Non-ambulatory, (1)
continuous support from one person necessary, (2) intermittent
support from one person necessary, (3) requirement of verbal
supervision only, (4) assistance required on stairs and uneven
surfaces, and (5) ability to walk independently anywhere. We
evaluated the FAC score 6 months after infarction onset as
follows: favorable outcomes for lower limbs given by an FAC
score of at least 4, indicating the ability to walk without
a keeper’s assistance, and a score below 4, indicating poor
outcomes for the lower limbs (Smith et al., 2017; Stinear et al.,
2019).

Deep Learning Algorithms
For brain MR image analysis, we used a convolutional neural
network (CNN) implemented using the Python programming
language. TensorFlow 2.4, Keras, and scikit-learn 0.23.2 libraries
were used to train the deep learning model. EfficientNet CNN
models were used for both MBC and FAC prediction.

For clinical data analysis, we used a sequential neural
network with three layers containing 256, 512, and 1,024
neurons. The details of the model and its performance are
provided in Table 2. The integrated prediction model was
composed of the EfficientNetB0 (Tan and Le, 2019b) CNN model
and a sequential neural network. A diagram of the resulting
and baseline architectures of EfficientnetB0 are presented in
Figures 1, 2. EfficientNet models are known to achieve improved
accuracy while reducing the number of parameters compared
to other CNNs (Tan and Le, 2019a). EfficientNetB0 has the
advantage of fast learning speed and reduced overfitting in
MR image training because it has fewer parameters than
other CNN models.

To compare the performance of our integrated prediction
model, we used the ResNet50 CNN model (He et al., 2016) for
MR images and a random forest model for clinical data. ResNet
is a well-known CNN model as the winner of the 2015 ILSVRC
(ImageNet Large Scale Visual Recognition Challenge). Random
forest is a classification algorithm frequently used in machine
learning. We compared the performance of ResNet50, random
forest, and our integrated prediction model, which uses both MR
images and clinical data as inputs. The details are presented in
Table 3.

To predict the motor outcome of each patient, the integrated
prediction model used three brain MR images and the patient’s
clinical data as inputs and returned three predictions, one per MR
image combined with the clinical data. If the three predictions
were accurate, the final judgment was considered suitable, and if
any prediction was inaccurate, it was considered poor.

We conducted an ablation study of our model to understand
critical components. Two core parts of the proposed integrated
model, the image model (CNN) and the clinical data model
(SNN), were separately trained using the same parameters as

TABLE 2 | Performance of deep learning algorithm for predicting motor outcome
after corona radiata infarct.

MBC prediction model FAC prediction model

Sample size
(patients)

154 For training (462
images, 70%), 66 for
validation (198 images,
30%)
Sample ratio: Poor 52.7%
(0), good 47.3% (1)

154 For training (462 images,
70%), 67 for validation (201
images, 30%)
Sample ratio: Poor 54.3% (0),
good 45.7% (1)

CNN model Model for MR images

- EfficientNetB0 with
fine-tuning
- SGD optimizer, ReLU
activation
- Data augmentation and
dropout for regularization
- Image of size
256 × 256

- EfficientNetB0 with fine-tuning
- RMSProp optimizer, ReLU
activation
- Data augmentation and
dropout for regularization
- Image of size 256 × 256

Sequential neural
network model

Model for clinical data
- 3 hidden layers with
256-512-1,024 neurons
- SGD optimizer, ReLU
activation
- Batch normalization for
regularization
- 11 clinical variables as
inputs

- 3 hidden layers with
256-512-1,024 neurons
- RMSProp optimizer, ReLU
activation
- Batch normalization for
regularization
- 11 clinical variables as inputs

Integrated
prediction model

Concatenated model with
CNN and sequential
neural network outputs
- MBC and FAC
prediction with three
images and clinical data
per patient
- Binary classification with
sigmoid activation

Decision criteria for
integrated
prediction model

Poor (0): less than 3
“good” predictions; good
(1): 3 “good” predictions

Integrated
prediction model
performance

MBC prediction accuracy
of 90.91% on training
data
Training AUC of 0.907
with 95% CI
[0.861–0.953]
MBC prediction accuracy
of 89.39% on validation
data
Validation AUC of 0.891
with 95% CI
[0.814–0.967]

FAC prediction accuracy of
91.6% on training data
Training AUC of 0.935 with
95% CI [0.896–0.975]
FAC prediction accuracy of
91.1% on validation data
Validation AUC of 0.919 with
95% CI [0.842–0.995]

MBC, modified Brunnstrom classification; FAC, functional ambulation category;
MR, magnetic resonance; CNN, convolutional neural network; SNN, sequential
neural network; SGD, stochastic gradient descent; ReLU, rectified linear unit;
RMSProp, root mean square propagation; AUC, area under the curve; CI,
confidence interval.

the integrated model, and their performances were compared.
Table 4 shows our ablation study results in detail.

Statistical Analysis
The analysis for the receiver operating characteristic curve was
performed, and the area under the curve (AUC) was calculated
using the scikit-learn library. The confidence interval (CI) for the
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FIGURE 1 | Proposed prediction model based on deep learning. (MR, magnetic resonance; SNN, sequential neural network; CNN, convolutional neural network).

FIGURE 2 | Baseline architecture of EfficientNetB0 (Tan and Le, 2019a).

AUC was calculated using the method developed by DeLong et al.
(1988).

RESULTS

From the 221 patients included in this study, we obtained AUC
values for the validation set for the integrated MBC and FAC
prediction models of 0.891 with 95% CI (0.814–0.967) and 0.919
with 95% CI (0.842–0.995), respectively (Table 2 and Figure 3).

Ablation study shows that the clinical data model
outperformed the image model. The clinical data model’s
prediction accuracy and AUC on validation data are 83.3% and
0.845 for MBC, 80.6%, and 0.785 for FAC. On the other hand,
the image model performance on validation data showed an
accuracy of 63.6% and AUC 0.619 for MBC, accuracy 63%, and
AUC 0.662 for FAC.

DISCUSSION

We evaluated the effectiveness of a deep learning algorithm
for predicting motor outcomes of patients 6 months after CR

infarct onset. We developed integrated MBC and FAC models by
combining a CNN to process brain MR images and a sequential
neutral network to process 11 variables of the clinical data. To
the best of our knowledge, this is the first study conducted
on deep learning applied to the prediction of motor outcomes
using brain MR images and clinical data. Unlike previous studies,
we separately predicted the long-term outcomes of upper and
lower limb motor outcomes by developing models for MBC
and FAC prediction.

For the prediction of upper limb function 6 months after CR
infarct onset, the AUC of the integrated MBC prediction model
was 0.891 for the validation set. For the prediction of lower limb
function (ambulatory function) 6 months after onset, the AUC of
the integrated FAC prediction model was 0.919 for the validation
set. Considering that AUC values of 0.7–0.8 are acceptable, 0.8–
0.9 are excellent, and those above 0.9 are outstanding, the ability
of the proposed prediction models for the prognosis of upper
limb function is excellent to outstanding.

To date, for the early prediction of long-term motor outcomes
in stroke patients, clinicians have used several tools, such
as prognostic scoring systems (e.g., ASTRAL and ICHOP
scores), using conventional brain MR images and clinical data
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TABLE 3 | Performance comparison among three models for predicting motor
outcome after corona radiata infarct.

MBC prediction model FAC prediction model

Integrated
model

Integrated model with both
MR images and clinical
data as input
EfficientNetB0 for MR
images
Sequential neural network
with three layers
(1024-512-256) for clinical
data
Accuracy: 90.91% on
training data, 89.39% on
validation data
AUC on validation data:
0.891 with 95% CI
[0.814–0.967]

Integrated model with both MR
images and clinical data as
input
EfficientNetB0 for MR images
Sequential neural network with
three layers (1024-512-256) for
clinical data
Accuracy: 91.6% on training
data, 91.1% on validation data
AUC on validation data: 0.919
with 95% CI [0.842–0.995]

CNN model for
MR images

ResNet50 CNN model with
MR images as input
Training parameters: SGD
optimizer, ReLU activation,
learning rate 6e-05, batch
size 4, fine tuning with last
10 layers trained, binary
classification with sigmoid
activation
Accuracy: 87.8% on
training data, 65.66% on
validation data
AUC on validation data:
0.636 with 95% CI
[0.568–0.704]

ResNet50 CNN model for MR
images
Training parameters: SGD
optimizer, ReLU activation,
learning rate 8e-05, batch size
8, full layers trained, binary
classification with sigmoid
activation
Accuracy: 98.05% on training
data, 80.1% on validation data
AUC on validation data: 0.638
with 95% CI [0.517–0.626]

ML model for
clinical data

Random forest model with
clinical data as input
Scikit learn GridSearchCV
for hyper parameter
optimization
Training parameters:
Max_depth 4,
min_sample_leaf 4,
min_smaples_split 12,
n_estimators 100,
random_state 99
Mean accuracy: 83.66% on
training data, 74.24% on
validation data
AUC on validation data:
0.754 with 95% CI
[0.694–0.814]

Random forest model with
clinical data as input
Scikit learn GridSearchCV for
hyper parameter optimization
Training parameters:
Max_depth 4, min_sample_leaf
14, min_smaples_split 4,
n_estimators 10, random_state
99
Mean accuracy: 85.06% on
training data, 80.6% on
validation data
AUC on validation data: 0.638
with 95% CI [0.567–0.710]

ML, machine learning; MBC, modified Brunnstrom classification; FAC, functional
ambulation category; MR, magnetic resonance; CNN, convolutional neural
network; SGD, stochastic gradient descent; ReLU, rectified linear unit; RMSprop,
root mean square propagation; AUC, area under the curve; CI, confidence interval.

(Papavasileiou et al., 2013; Gupta et al., 2017). Although the
prediction accuracy of motor outcomes in prognostic scoring
systems varies, most of these tools use a limited set of parameters
to calculate the scores. Moreover, in clinical practice, a specific
prognostic scoring system globally may be difficult to apply
because different clinical data are frequently collected depending
on the medical center.

Artificial intelligence has recently been applied in the
prediction of motor outcomes after stroke onset. Heo et al.

TABLE 4 | Ablation study of the integrated prediction model.

MBC prediction model FAC prediction model

Integrated
model

Integrated model with both MR
images and clinical data as
input
EfficientNetB0 for MR images
Sequential neural network with
three layers (1024-512-256) for
clinical data
Accuracy: 90.91% on training
data, 89.39% on validation data
AUC: 0.907 on training data,
0.891 on validation data

Integrated model with both
MR images and clinical data
as input
EfficientNetB0 for MR
images
Sequential neural network
with three layers
(1024-512-256) for clinical
data
Accuracy: 91.6% on training
data, 91.1% on validation
data
AUC: 0.935 on training data,
0.919 on validation data

CNN model
only

EfficientNetB0 CNN model with
fine tuning
MR images as input
Training parameters: SGD
optimizer, ReLU activation, lr
8e-06, dr 0.2, bs 64, binary
classification with sigmoid
activation
Accuracy: 73.8% on training
data, 63.6% on validation data
AUC: 0.974 on training data,
0.619 on validation data

EfficientNetB0 CNN model
with fine tuning
MR images as input
Training parameters:
RMSProp optimizer, ReLU
activation, lr 8e-06, dr 0.25,
bs 64, binary classification
with sigmoid activation
Accuracy: 72.2% on training
data, 63.0% on validation
data
AUC: 0.852 on training data,
0.662 on validation data:

SNN model
only

SNN with clinical data
3 Hidden layers with
256-512-1024 neurons
Training parameters: SGD
optimizer, ReLU activation, lr
8e-06, dr 0.2, bs 64, binary
classification with sigmoid
activation
Batch normalization and
dropout for regularization
11 Clinical variables as inputs
Accuracy: 94.2% on training
data, 83.3% on validation data
AUC: 0.980 on training data,
0.845 on validation data

SNN with clinical data
3 Hidden layers with
256-512-1024 neurons
Training parameters:
RMSProp optimizer, ReLU
activation, lr 8e-06, dr 0.25,
bs 64, binary classification
with sigmoid activation
Batch normalization and
dropout for regularization
11 Clinical variables as
inputs
Accuracy: 96.3% on training
data, 80.6% on validation
data
AUC: 0.992 on training data,
0.785 on validation data:

ML, machine learning; MBC, modified Brunnstrom classification; FAC, functional
ambulation category; MR, magnetic resonance; CNN, convolutional neural
network; SNN, sequential neural network; SGD, stochastic gradient descent; ReLU,
rectified linear unit; RMSProp, root mean square propagation; AUC, area under the
curve; CI, confidence interval; lr, learning rate; dr, dropout rate; bs, batch size.

(2019) predicted the modified Rankin score 3 months after
ischemic stroke using a deep neural network trained on data
from 2604 acute ischemic stroke patients. They used 38 clinical
parameters as inputs, including patient demographics, stroke
subtypes, initial scores in the National Institutes of Health Stroke
Scale, and time from onset to admission. The resulting AUC
for predicting the motor outcome was 0.888. Sale et al. (2018)
investigated the predictability of improvement in motor function
due to rehabilitation early after stroke onset. The authors used
data from 55 patients collected at the time of admission to
the Department of Rehabilitation Medicine and discharge. They
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FIGURE 3 | Modified Brunnstrom classification (MBC) and functional ambulation category (FAC) receiver operating characteristic curve and area under the curve
(AUC) on the validation set.

then predicted the Barthel index and functional independence
measure using a linear support vector machine. The predictions
and measurements showed a high correlation of 0.75–0.81.
Similarly, Lin et al. (2018) constructed a prognostic model for
functional outcomes using a support vector machine from the
clinical data of 313 stroke patients. They used various functional
measurement outcomes early after stroke as inputs, such as
the modified Rankin score and Barthel index, gait speed, and
results of the Mini-Mental State Exam, and then they predicted
the Barthel index at discharge. The AUC for predicting the
motor outcome was 0.774. Kim et al. (2021b) used brain MR
imaging data obtained early after infarction to develop a CNN
to predict the ambulatory outcome 6 months after onset in
patients with CR infarction. They classified the outcome of the
ambulatory function into two categories: (1) Favorable outcome
of ambulatory function (FAC score of at least 4 with ability
to walk without a guardian’s assistance) and (2) poor outcome
of ambulatory function (FAC score < 4). Using a CNN, they
reported an AUC of 0.751 with 95% CI (0.649–0.852) to predict
ambulatory function.

Most existing methods predict broad functional scores, such
as the modified Rankin score, functional independence measure,
or Barthel index, with the exception of Kim et al. (2021b), who
studied ambulation functions using the FAC. However, it is
necessary to evaluate the functional prognosis of both the upper
and lower limbs separately to plan early an effective rehabilitation
strategy. Unlike previous studies, we separately predicted the

functions of the upper and lower limbs using integrated MBC
and FAC models, respectively. The AUC obtained by Heo et al.
(2019) tended to be higher (AUC = 0.888) than that reported in
other studies. However, they used only six clinical data sources
(i.e., age, scores on the National Institutes of Health Stroke
Scale, onset to admission delay, visual field defect, glucose,
and level of consciousness) as inputs for predicting motor
prognosis, thus neglecting image data. Although their AUC
was similar to that obtained in our study, they did not assess
the specific hand or ambulatory function, but only provided a
general function score on the modified Rankin scale. If the hand
and ambulatory motor outcomes were separately predicted as
in our study, a lower prediction accuracy would be expected
because only six variables were used by Heo et al. (2019). In
contrast, Lin et al. (2018) used several inputs obtained early
after stroke, including the modified Rankin score, Barthel index,
functional oral intake score, mini nutritional assessment results,
EQ-5D-5L (the European quality of life) index, instrumental
activities of daily living scale score, Berg balance test score, gait
speed, 6-min walk test score, Fugl–Meyer upper limb assessment
score, modified Fugl–Meyer sensory assessment score, results
of the Mini-Mental State Exam, usage of motor activity log,
and results of the Concise Chinese Aphasia Test. However,
their models are not suitable for clinical practice because it
is time-consuming and cumbersome to obtain all the input
values. Moreover, their AUC (0.774) was lower than that
obtained in our study.
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In this study, by using brain MR images and clinical data
that can be easily assessed and obtained by clinicians, such
as the Medical Research Council’s score of the affected limb,
we developed deep learning algorithms with high prediction
accuracy and applicability. Kim et al. (2021b) used only brainMR
images, which may be advantageous for clinical applicability
because most hospitals use such images in the diagnosis of
cerebral infarction. Nevertheless, the AUC of 0.751 obtained
by Kim et al. (2021b) revealed an unsatisfactory prediction
accuracy. In contrast, we developed integrated deep learning
algorithms using both brain MR images and clinical data, which
are easily obtained in clinical practice, and achieved a high
prediction accuracy for the long-term motor outcomes of hand
and ambulatory functions. Because clinical data (i.e., age, sex,
MBC, FAC, and MRC) used as inputs are simple and commonly
measured in clinical practice and brain MRI is a vital tool for
diagnosing stroke, we believe that our algorithm can be easily
applied in other hospitals.

Our study was limited in that we used a small sample size
of patient data to train the deep learning model. More samples
from stroke patients are likely to increase the prediction accuracy
of the model. Additionally, only patients with CR infarcts were
included in this study. Including the data from patients with
various other brain lesions can improve the generalization ability
of the proposed deep learning algorithm for predicting long-term
motor outcomes after stroke. Finally, we did not include factors
affecting motor prognosis after stroke, such as stroke treatment
at the acute stage and the duration of rehabilitation, as input
variables in the algorithm. In future work, more appropriate
input variables to further increase the prediction accuracy of
deep learning algorithms should be selected for application in
clinical practice.

CONCLUSION

We demonstrated that integrated deep learning algorithms
trained using patients’ clinical data and brain MR images

obtained early after CR infarction can contribute to accurately
predicting long-term hand function and ambulatory outcomes.
The algorithm achieved a suitably high accuracy and thus can
support clinicians in the prediction of long-term hand function
and ambulatory outcomes.
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