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Upon their internalization by macrophages, Leishmania promastigotes inhibit
phagolysosome biogenesis. The main factor responsible for this inhibition is the
promastigote surface glycolipid lipophosphoglycan (LPG). This glycolipid has a profound
impact on the phagosome, causing periphagosomal accumulation of F-actin and
disruption of phagosomal lipid microdomains. Functionally, this LPG-mediated inhibition
of phagosome maturation is characterized by an impaired assembly of the NADPH
oxidase and the exclusion of the vesicular proton-ATPase from phagosomes. In this
chapter, we review the current knowledge concerning the nature of the intra-macrophage
compartment in which Leishmania donovani promastigotes establish infection. We also
describe how LPG enables this parasite to remodel the parasitophorous vacuole.
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The protozoan Leishmania parasitizes phagocytic cells, causing a
spectrum of human diseases ranging from a confined cutaneous
lesion to a progressive and potentially fatal visceral infection.
Leishmania is endemic in 98 countries where it constitutes a seri-
ous health problem (Alvar et al., 2012). This parasite exists under
two distinct developmental stages. Promastigote forms, which
develop within sand flies, are inoculated into the mammalian host
upon the bloodmeal of the vector. They are internalized by phago-
cytes where they subsequently differentiate into amastigotes. To
do so, promastigotes must avoid being killed by the antimicro-
bial activities of macrophages. Amastigotes are fully adapted to
the conditions encountered within macrophage phagolysosomes
and are responsible for the various pathologies associated with
the infection. No effective and safe vaccines are available, and
current treatment is based on chemotherapy, which is difficult
to administer, expensive, and becoming ineffective due to the
spread of drug resistance. Understanding the nature and the
functional properties of the vacuoles in which both stages of
the parasite are internalized and develop is an important step
towards the development of novel approaches to prevent and treat
leishmaniases.

THE PHAGOLYSOSOME AS A REPLICATIVE NICHE FOR
AMASTIGOTES
Early work by Alexander and Vickerman (1975) and Chang
and Dwyer (1976) revealed that Leishmania amastigotes multi-
ply in macrophages within compartments that fuse with lyso-
somes. These seminal discoveries established that in mammals,
Leishmania resides and proliferates within phagolysosomal com-
partments of host macrophages. Subsequent work indicated that
amastigotes are resistant to the hydrolytic environment pre-
vailing in phagolysosomes (Lewis and Peters, 1977; Chang and
Dwyer, 1978). Amastigotes enter macrophages via a Rac1- and
Arf6-dependent process, and are found in parasitophorous vac-
uoles that interact with endosomes and lysosomes and acquire

lysosomal features (Chang and Dwyer, 1976; Berman et al.,
1979; Antoine et al., 1998; Dermine et al., 2001; Lodge and
Descoteaux, 2006). Consistently, vacuoles harboring amastigotes
contain numerous lysosomal hydrolases and their membranes
are enriched with late endosomal/lysosomal proteins, such as
Rab7, LAMP-1, and LAMP-2. The vacuolar H+-ATPase present
on amastigotes-harboring vacuoles is responsible for the acidic
pH (pH 4.7–5.2) (Antoine et al., 1990, 1998; Vinet et al., 2009).
In addition, vacuoles harboring amastigotes display molecules
characteristic of the endoplasmic reticulum such as calnexin and
the membrane fusion regulator Sec22b (Ndjamen et al., 2010).
This observation suggests that amastigotes-harboring vacuoles
are hybrid compartments composed of both endoplasmic retic-
ulum and endocytic pathway components.

The fact that amastigotes reside in an acidic environment is
consistent with their optimal metabolism (respiration, catabolism
of energy substrates and incorporation of precursors into macro-
molecules) at acidic pH (pH 4.0 and 5.5), whereas these activities
are optimal at neutral pH for promastigotes (Mukkada et al.,
1985). To avoid exposure to oxidants, amastigotes subvert the
generation of reactive oxygen species (ROS) within the para-
sitophorous vacuole through diverse mechanisms including heme
degradation and prevention of the NADPH oxidase complex
assembly (Pham et al., 2005; Lodge and Descoteaux, 2006). In
the latter case, amastigotes evade the phosphorylation of cytosolic
p47phox , a key event for the NADPH oxidase activation dur-
ing phagocytosis (Lodge and Descoteaux, 2006). Interestingly,
Leishmania donovani amastigotes disrupt the integrity of lipid
microdomains present within the phagosomal membrane, as
assessed by the alteration of GM1 distribution and the impair-
ment of flotillin recruitment (Lodge and Descoteaux, 2006).
Flotillin is a component of lipid microdomains and is recruited
to phagosomes during the maturation process from late endo-
cytic organelles. The mechanisms by which L. donovani amastig-
otes disrupt lipid microdomains and the ensuing consequences
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on pathogenesis are not known and remain to be investigated.
Whereas amastigotes from most Leishmania species proliferate in
tight individual vacuoles, amastigotes of the L. mexicana complex
reside in large communal parasitophorous vacuoles (Real et al.,
2008). The molecular basis of parasitophorous vacuole enlarge-
ment and the consequences for the intracellular survival of these
parasites are poorly understood.

ARRESTED PHAGOSOME MATURATION BY
PROMASTIGOTES
In contrast to amastigotes, promastigotes exist only transiently
within mammals. Following their inoculation by sand flies, pro-
mastigotes must avoid destruction by the innate immune system
of their mammalian hosts in order to differentiate into amastig-
otes. Hence, promastigotes evade the antimicrobial properties of
serum components before being internalized by macrophages.
Interestingly, recent studies using an experimental model of
natural transmission in mice revealed that a portion of sand
fly-transmitted promastigotes may reside transiently within neu-
trophils before being taken up by dendritic cells and macrophages
(Peters and Sacks, 2009). The nature and characteristics of the
neutrophil compartments in which promastigotes transit are
however unknown.

Serum-opsonized promastigotes enter macrophages predom-
inantly via the complement receptor 3 in a process that mainly
depends on the GTPase RhoA (Lodge and Descoteaux, 2005b).
Focal exocytosis of host cell membrane originating from endo-
somes, lysosomes, and the endoplasmic reticulum contributes
to the formation of the promastigote-containing phagosomes
(Gagnon et al., 2002; Vinet et al., 2009; Forestier et al., 2011).
Such supply of membrane from various intracellular compart-
ments may contribute to the formation and the composition of
the nascent parasitophorous vacuole.

One mechanism used by promastigotes to evade the microbici-
dal consequences of phagocytosis is the inhibition of phagolyso-
some biogenesis (Desjardins and Descoteaux, 1997) (Figure 1).
Hence, in contrast to amastigotes, L. donovani, L. major, and
L. chagasi promastigotes are internalized in phagosomes that
poorly interact with late endosomes and lysosomes and which
display a delayed recruitment of LAMP-1, possibly a conse-
quence of an impaired recruitment of Rab7 (Desjardins and
Descoteaux, 1997; Scianimanico et al., 1999; Dermine et al., 2000;
Späth et al., 2003; Gaur et al., 2009; Rodriguez et al., 2011).
This effect of Leishmania promastigotes on phagosome-lysosome
fusion is restricted to parasite-containing phagosomes, as the
fusion machinery remains operational in infected macrophages
(Desjardins and Descoteaux, 1997).

Promastigote-induced phagosome maturation arrest is charac-
terized by a periphagosomal F-actin accumulation (Holm et al.,
2001), and by the phagosomal retention of components of
the actin polymerization machinery, including Arp2/3, Wiskott-
Aldrich Syndrome Protein (WASP), α-actinin, Myosin II, and Nck
(Lodge and Descoteaux, 2005a). The Rho-family GTPases, Cdc42,
Rac1, and RhoA are also present on promastigotes-containing
phagosomes (Lodge and Descoteaux, 2005a; Lerm et al., 2006).
The significance of this build up of periphagosomal F-actin is
unclear, but it may contribute to the inhibition of phagosome

maturation, possibly by interfering with the recruitment of signal
transducers and vesicles trafficking to the forming phagolyso-
some (Lodge and Descoteaux, 2005a; Lerm et al., 2006). However,
periphagosomal F-actin accumulation is not observed with all
Leishmania species. Indeed, F-actin rapidly disassembles from
newly formed phagosomes harboring L. amazonensis metacyclic
promastigotes (Courret et al., 2002). Whether this is related to
the fact that L. amazonensis induces and resides in spacious
communal vacuoles is a possibility that deserves further investi-
gations.

As is the case for amastigotes, promastigotes disrupt lipid
microdomains present in the phagosomal membrane (Dermine
et al., 2001), as assessed by the inhibition of flotillin recruit-
ment to phagosomes containing promastigotes (Dermine et al.,
2001). These membrane microdomains play key roles in vari-
ous cellular functions, serving as platforms to recruit and con-
centrate molecules involved in processes such as membrane
fusion, generation of microbicidal effectors, and signal trans-
duction (Simons and Vaz, 2004). Targeting and disruption of
these structures in phagosomes may thus represent an effi-
cient way for pathogens to subvert the antimicrobial arsenal of
macrophages.

FUNCTIONAL CONSEQUENCES OF PHAGOSOME
MATURATION ARREST BY PROMASTIGOTES
What are the functional consequences of the inhibition of
phagosome maturation induced by Leishmania promastigotes?
An important microbicidal mechanism of macrophages is the
generation of ROS (ROS; superoxide anions, hydrogen per-
oxide) which is mediated by the nicotinamide adenine din-
ucleotide phosphate (NADPH) oxidase complex. Assembly of
the NADPH oxidase complex requires that cytosolic phospho-
rylated p47phox and p40/p67phoxheterodimers associate to form
p47/p67/p40phox heterotrimers prior to their membrane translo-
cation, where they interact with membrane-associated flavocy-
tochrome b558 (Bokoch and Diebold, 2002; Brown et al., 2003).
Assembly of this complex at the phagosome membrane allows
the generation of high levels of ROS within the phagosome.
Disabling the NAPDH oxidase is a virulence strategy used by var-
ious pathogens to reduce exposure to oxidants (Vazquez-Torres
and Fang, 2001; Allen and McCaffrey, 2007; Harada et al., 2007).
In the case of Leishmania, uptake of promastigotes triggers the
phosphorylation of p47phox and the formation of heterocom-
plexes containing both p47phox and p67phox(Lodge et al., 2006).
However, these cytosolic components of the NADPH oxidase
complex fail to associate to the promastigote-containing vac-
uoles. Co-internalization of L. donovani promastigotes and IgG-
coated erythrocytes revealed that inhibition of ROS production is
restricted to promastigote-containing phagosomes. Thus, phago-
some maturation arrest induced by L. donovani promastigotes
enables these parasites to establish infection in an environment
devoid of oxidants, which may be favorable to their survival.
Interestingly, recruitment of the NADPH oxidase to the phago-
some membrane has been shown to limit the proteolytic activity
of the phagosome. A tight control of proteolysis within the phago-
some is key to an efficient antigen processing and presentation.
As activity of the NADPH oxidase plays an important role in the
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FIGURE 1 | Diagram illustrating inhibition of phagosome maturation

induced by L. donovani promastigotes. Periphagosomal F-actin (red)
accumulates, whereas promastigote-harboring phagosomes interact with
early endosomes (tan). In contrast to amastigote-containing phagosomes,

those harboring promastigotes interact poorly with late endosomes/lysosomes
(purple). The V-ATPase is excluded from promastigote-phagosomes,
contrasting with those containing amastigotes, which are acidic. Assembly of
the NADPH oxidase is impaired in both types of phagosomes.

control of antigen presentation (Mantegazza et al., 2008; Savina
et al., 2009; Rybicka et al., 2012), its impairment by L. donovani
promastigotes may contribute to the evasion of the immune
system by this parasite.

Phagosome acidification is essential for the acquisition of
microbicidal properties and for optimal antigen processing,
as most lysosomal hydrolases are optimally active at acidic
pH. Acidification is mediated by the vacuolar proton-ATPase
(v-ATPase), which is present on various endocytic organelles
(Flannagan et al., 2009). The v-ATPase is a multimeric com-
plex consisting in the multi-subunit cytoplasmic V1-sector that is
responsible for ATP hydrolysis, and of the multi-subunit trans-
membrane V0-sector that pumps protons acrosss the bilayer
(Marshansky and Futai, 2008). Several intravacuolar pathogens
target this process during establishment of infection. The most
notable one is Mycobacterium tuberculosis, which secretes a pro-
tein tyrosine phosphatase, PtpA, to prevent recruitment of the
v-ATPase to the phagosome (Wong et al., 2011). Similar to
phagosomes containing M. tuberculosis, the v-ATPase is excluded
from L. donovani promastigote-harboring phagosomes, up to
24 h after phagocytosis (Vinet et al., 2009). This finding provides
new insight on our understanding of Leishmania biology. In the
absence of data on the pH of promastigote-containing phago-
somes, it has been assumed that promastigotes initiate infection
in an acidic environment and that differentiation of promastig-
otes into amastigotes is mainly triggered by a rapid exposure to
an acidic environment and elevated temperature (Zilberstein and
Shapira, 1994; Rosenzweig et al., 2008). Exclusion of the v-ATPase
suggests that L. donovani promastigotes initiate the differentiation

process in a non-acidified environment. Further studies will be
required to fully address this issue.

PROMASTIGOTE-INDUCED PHAGOSOME REMODELING
REQUIRES LIPOPHOSPHOGLYCAN
An important issue is to understand how Leishmania promastig-
otes can remodel the vacuoles in which they are internalized.
Bacterial pathogens such as Salmonella and Legionella use spe-
cialized secretion apparatuses to alter intracellular trafficking
and block phagosome maturation (Brumell and Grinstein, 2004;
Flannagan et al., 2009). In Leishmania, no such secretion sys-
tems have been described so far. However, recent work have
revealed that Leishmania promastigotes release microvesicles into
the extracellular milieu to deliver cargo into the infected cells
(Silverman and Reiner, 2011; Lambertz et al., 2012). These
Leishmania exosomes, which contain over 300 proteins, modu-
late macrophage functions to create an environment permissive
for early infection (Silverman et al., 2010; Silverman and Reiner,
2012). The possible involvement of exosomes in promastigote-
induced phagosomes remodeling is an attractive hypothesis that
remains to be investigated. This being said, so far, the only
Leishmania molecule known to alter intracellular trafficking and
to inhibit phagolysosome biogenesis is the abundant surface gly-
colipid lipophosphoglycan (LPG) (Desjardins and Descoteaux,
1997).

Leishmania synthesizes various glycoconjugates associated
to virulence, the most notable belonging to the phosphogly-
cans family (Descoteaux et al., 1995). These phosphoglycans
have in common a unique structure not found in mammals,
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namely the disaccharide-phosphate Gal(β1,4)Man(α1-PO4→6)
unit (Descoteaux and Turco, 1999). These unique glycoconjugates
can be either secreted (phosphoglycan, proteophosphoglycan,
and acid phosphatase), or membrane-bound (lipophosphogly-
can, also known as LPG). LPG is the most abundant promastigote
surface glyconjugate, with 5 million copies per cell, and forms
a dense glycocalyx by covering the entire parasite surface. This
molecule is promastigote stage-specific, as it is either strongly
down-regulated or absent in the amastigote stage (McConville
and Blackwell, 1991; Turco and Sacks, 1991). The abundance,
location, and uniqueness of these glycoconjugates are consistent
with the functions that LPG plays during the establishment of
promastigotes within macrophages.

Structurally, LPG consists of a polymer of the repeating
Gal(β1,4)Man(α1-PO4→6) unit, linked to a 1-O-alkyl-2-
lyso-phosphatidyl(myo)inositol (PI) anchor via a glycan core
(Descoteaux and Turco, 1999). At the non-reducing end of
the repeating unit moiety is a small cap composed of neutral
oligosaccharides, mostly galactose, and mannose residues. The
number of repeating units varies from 16 to 30 per LPG molecule,
depending on the promastigote developmental stage (procyclic
vs metacyclic) and species. The PI anchor and the glycan core
are extensively conserved among Leishmania species (McConville
et al., 1990). In contrast, the oligosaccharide cap displays some
degree of variability among Leishmania species, in both sugar
composition and sequence. The most important differences in
the structure of LPG among the various Leishmania species are
found within the repeating units. While L. donovani LPG follows
the basic Gal(β1,4)Man(α1-PO4→6) repeat sequence (Thomas
et al., 1992), LPG molecules from other species have additional
saccharide side chains branching off the C3 position of the
galactose residue.

Using a panoply of L. donovani mutants defective in the
biosynthesis of LPG, Desjardins and Descoteaux discovered that
LPG was the molecule responsible for the inhibition of phagolyso-
some biogenesis by promastigotes (Desjardins and Descoteaux,
1997). Hence, in contrast to wild type L. donovani promastig-
otes, mutants lacking either LPG or all phosphoglycans were
unable alter the fusogenecity of phagosomes toward late endo-
somes and lysosomes, and did not interfere with the recruitment
of the late endocytic and lysosomal markers Rab7 (Scianimanico
et al., 1999). These findings are consistent with the observation
that amastigotes, which do not make LPG, are internalized into
compartments that acquire lysosomal features (Dermine et al.,
2000; Courret et al., 2002), including the v-ATPase (Vinet et al.,
2009).

Further studies revealed the importance of the length of the
LPG repeating unit moiety. Hence, a minimal length appears
essential to perturb membrane properties, as was shown in a
viral syncytia formation assay and in a PKC membrane asso-
ciation assay (Easterbrook et al., 1995; Giorgione et al., 1996).
Consistently, a L. donovani mutant expressing truncated forms
of LPG with only 3–5 repeating units was unable to inhibit
phagosome-endosome fusion (Desjardins and Descoteaux, 1997).
In contrast, the level of structural complexity of this moiety, such
as the presence of oligosaccharide side-chains, does not affect
membrane properties. Indeed, a L. major mutant defective in

LPG oligosaccharide side-chain biosynthesis was able to impair
phagosome-endosome fusion to the same extent as wild-type
L. major promastigotes (Dermine et al., 2000).

Clearly, LPG exerts a profound influence on the composi-
tion and properties of the promastigote-harboring phagosomes.
From a cell biology stand point, in addition to understand-
ing the biology of Leishmania parasites, this discovery pro-
vided a novel and unique system to investigate the process
of phagolysosome biogenesis. For both reasons, one impor-
tant issue was to elucidate the mechanism(s) by which a single
microbial-derived glycolipid can affect so profoundly phagosome
maturation.

THE IMPACT OF LIPOPHOSPHOGLYCAN ON
PHAGOSOME PROPERTIES
Periphagosomal accumulation of F-actin induced by LPG (Holm
et al., 2001) is the consequence of an abnormal retention of
the Rho-family GTPase Cdc42 at the phagosome. This role
for Cdc42 was revealed by expressing the dominant-negative
Cdc42N17 mutant in RAW 264.7 macrophages, which inhib-
ited LPG-mediated periphagosomal F-actin accumulation (Lodge
and Descoteaux, 2005a; Lerm et al., 2006). Interestingly, the host
cell machinery involved in actin polymerization and cytoskele-
ton rearrangement, such as WASP, Arp2/3, Nck, α-actinin, and
myosin II, are retained at the phagosome in a LPG-dependent
manner, and this can be reversed by the Cdc42N17 mutant
(Lodge and Descoteaux, 2005a). LPG also interferes with the
recruitment of Protein Kinase C (PKC)-α to the phagosome
membrane (Holm et al., 2001). PKC-α was shown to par-
ticipate in periphagosomal F-actin breakdown (Holm et al.,
2003) and in the regulation of phagosome maturation (Allen
and Aderem, 1995; Aderem and Underhill, 1999; Ng Yan Hing
et al., 2004). Whether LPG-mediated exclusion of PKC-α from
L. donovani promastigote-containing phagosomes contributes
to the periphagosomal accumulation of F-actin remains to be
demonstrated. Similarly, the consequences of periphagosomal
F-actin accumulation on phagosome functions remain to be
investigated.

Another mechanism by which LPG exerts its action on phago-
some maturation implicates the transfer of LPG from the parasite
surface to lipid microdomains present in the phagosome mem-
brane (Tolson et al., 1990). This causes a disorganization of these
structures and prevents the formation of new lipid microdomains
after phagocytosis. Phagosomal lipid microdomains are central
to the recruitment/assembly of the NADPH oxidase and the
v-ATPase, and are involved in the regulation of phagosome-
endosome fusions (Dermine et al., 2001; Shao et al., 2003;
Vilhardt and Van Deurs, 2004). How lipid microdomains regu-
late interactions between phagosomes and the endocytic system
is unclear. However, the observations that proteins involved in
membrane fusion are located in lipid microdomains are con-
sistent with these structures acting as fusion sites (Gil et al.,
2005; Kay et al., 2006). Insertion of LPG into lipid microdomains
via its GPI anchor allows the negatively charged Gal(β1,4)Man
(α1-PO4→6) polymer to directly interfere with the clusteriza-
tion of molecules into these microdomains (Dermine et al., 2005;
Winberg et al., 2009). One direct consequence of LPG-mediated
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microdomain disorganization is the exclusion of the membrane
fusion regulator Synaptotagmin (Syt) V from the phagosome
(Vinet et al., 2009). Syt V plays a regulatory role in phagocyto-
sis (Vinet et al., 2008), as well as in phagosome maturation, by
controlling the acquisition of the v-ATPase and of cathepsin D
(Vinet et al., 2009). Thus, exclusion of Syt V from the phagosome
membrane by LPG abrogates recruitment of the v-ATPase and
impedes phagosome acidification (Vinet et al., 2009). Targeting
the phagosome fusion machinery thus represents an efficient way
to create an intracellular niche favorable to the establishment of a
pathogen.

Shedding or secretion of glycans as a virulence mecha-
nism to modulate phagosome maturation has been described
for other intracellular pathogens, including M. tuberculosis,
Brucella abortus, and Legionella pneumophila. Similar to LPG,
the cyclic β-1,2-glucans of B. abortus and the lipoarabino-
mannan of M. tuberculosis impair phagolysosomal biogenesis
by disrupting host cell lipid microdomains (Arellano-Reynoso
et al., 2005; Welin et al., 2008). In the case of L. pneu-
mophila, transmissive forms shed LPS-containing membrane
vesicles that inhibit phagosome fusion with degradative lyso-
somes (Fernandez-Moreira et al., 2006). The exact mode of action

is not known. Whether these various bacterial glycans act by dis-
abling the phagosome membrane fusion machinery remains to be
further explored.

CONCLUDING REMARK
Similar to other intracellular pathogens, Leishmania promastig-
otes block the phagosome maturation process and create an envi-
ronment which may be propitious to promastigote-to-amastigote
differentiation. The surface glycolipid LPG plays a central role
in this process. Further studies will be required to determine
whether other Leishmania molecules are involved in the phago-
some remodeling induced by promastigotes. Defining the func-
tional properties of the promastigote-harboring vacuoles may
also provide new insights into our understanding of the biology
of Leishmania parasites, as well as the biology of phagolysosome
biogenesis.
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