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Deep Learning Models for Gastric Signet
Ring Cell Carcinoma Classification
in Whole Slide Images
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Abstract
Signet ring cell carcinoma (SRCC) of the stomach is a rare type of cancer with a slowly rising incidence. It tends to be more difficult
to detect by pathologists, mainly due to its cellular morphology and diffuse invasion manner, and it has poor prognosis when
detected at an advanced stage. Computational pathology tools that can assist pathologists in detecting SRCC would be of a
massive benefit. In this paper, we trained deep learning models using transfer learning, fully-supervised learning, and weakly-
supervised learning to predict SRCC in Whole Slide Images (WSIs) using a training set of 1,765 WSIs. We evaluated the models on
two different test sets (n¼ 999, n¼ 455). The best model achieved a ROC-AUC of at least 0.99 on all two test sets, setting a top
baseline performance for SRCC WSI classification.
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Introduction

According to the Global Cancer Statistics 2018,1 stomach

cancer was responsible for over 1 million new cases in 2018

with an estimated 783,000 deaths, making it the fifth most

frequently diagnosed cancer and the third leading cause of

cancer death in the world. Importantly, incidence rates are

markedly elevated in Eastern Asia (e.g., Japan and Republic

of Korea), whereas the rates in Northern America and Northern

Europe are generally low and are equivalent to those seen

across the African regions.1 However, a series of studies has

shown that the incidence of signet ring cell carcinoma (SRCC)

of stomach (a subtype of poorly cohesive carcinoma) has

been slowly increasing, especially in the United States.2-4 The

great majority of SRCC occurs in the stomach, with the rest

arising in other organs (e.g., breast, gallbladder, pancreas, urinary

bladder, and colon).5

SRCC is an invasive gastric adenocarcinoma and can be

accompanied by diffuse growth of adenocarcinoma cells asso-

ciated with a wide range of desmoplastic reactions, in particular

when infiltrating into the submucosa or beyond.6 This type of

growth is defined as diffuse cancer according to the Lauren

classification.7 In the early stage of the disease, intramucosal

SRCC appears as layered cancer cells in the superficial portions

of the mucosa without desmoplasia.8-10 The typical signet-ring

cells contain intracytoplasmic mucin that compresses the

nucleus to the periphery of the cell wall, and glandular forma-

tions are rarely observed. Due to these morphological appear-

ances, some of the SRCC cells often appear to mimic crushed

oxyntic glands, crushed mucous neck cells, the goblet cells of the

intestinal metaplasia, and gastric xanthoma (histiocytic aggrega-

tion).11 This makes SRCC more likely to be missed on routine

histopathological diagnoses. False negatives have a detrimental
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impact on the quality and accuracy of the pathological diagnosis,

and it should be addressed urgently.

Computational pathology has been gaining momentum

over the past decade, in particular due to the large increase

in resources that allow the digitization and processing of

Haematoxylin and Eosin (H&E) stained glass slides of surgi-

cal and biopsy specimens into Whole Slide Images (WSIs).

Machine learning, in particular deep learning, has found

many applications in computational pathology, such as can-

cer detection and classification, cell detection and segmenta-

tion, and gene mutation expression for a variety of organs and

pathologies.12-31

Preparing a large fully-annotated training dataset for WSI

cancer classification is a tedious, time-consuming task. This is

because WSIs are extremely large, with heights and widths in

the tens of thousands of pixels, as a result of being scanned at

magnifications of �20 or �40 in order to reveal cellular-level

details. The large image size makes it difficult to train and

apply a CNN directly to WSIs due to GPU memory constraints.

To bypass the computational constraints, the typically adopted

approach is to divide the WSI into a set of fixed-sized

tiles.13,14,20,32 Training of the CNN is done by using the result-

ing labeled tiles as input. Classification of a WSI is done by

applying the CNN in a sliding window fashion, classifying the

individual tiles, then aggregating all their classification outputs

into a final WSI classification. The aggregation could be as

simple as taking the maximum probability output of the tiles

or using an RNN model.13,18 Obtaining a dataset of labeled tiles

can either be done by asking pathologists to draw contours on

WSIs or to classify pre-extracted, fixed-sized tiles. The latter

requires pre-fixing the tile size and having pathologists classify

millions of tiles. This is a tedious task. The former is preferable

as the tile size can be modified later, and viewing the WSI

provides context to pathologists and allows them to draw con-

tours on large cancer infiltration areas; however, it can still be

tedious especially with complex cancer infiltration patterns

requiring annotations of individual cells. Once annotated, a

single WSI can produce thousands of labeled tiles for training.

A large dataset of labeled tiles is a requirement for fully-

supervised learning.

On the other hand, weakly-supervised learning is an alter-

native approach and requires only weakly-labeled data.33

Given that diagnoses of WSIs are readily available from

reports, additional annotations by pathologists are not required.

Weakly-supervised learning methods, such as multiple instance

learning (MIL),34 can operate directly on the WSIs by using

the diagnoses as slide-level labels. This is a highly attractive

solution. One particular advantage of MIL is that it can reduce

the labeling requirement. MIL was initially proposed in the

context of drug discovery,34,35 and subsequently found many

applications in computer vision,36 including histopathology

classification and segmentation.13,20,23,30,37-41 The caveat in

histopathology applications, however, is that the method tends

to require a large training dataset of WSIs in order to work well.

This has been demonstrated recently by Campanella et al13

using a dataset of 44,732 WSIs to classify prostate cancer, basal

cell carcinoma, and breast cancer metastases, with a reported

Receiver Operator Curve (ROC) area under the curve (AUC) of

about 0.98 on 3 test sets of about 1,500 WSIs each. They

observed that at least 10,000 WSIs were necessary for training

to obtain a good performance. Both weakly- and fully-

supervised learning could be used on a dataset that has a com-

bination of detailed cellular-level annotations and slide-level

labels.

Only recently has SRCC detection been investigated.42,43

Li et al42 set up the MICCAI DigestPath2019 challenge where 1

task was SRCC instance detection. A training dataset was

made publicly available consisting of a total of 455 images

(of which 77 had SRCC). The images were crops of size 2000

� 2000 pixels extracted from WSIs. A total of 12,381

instances of SRCC were manually annotated; however, the

dataset still contains unannotated instances of SRCC. Li et

al42 proposed a semi-supervised framework for SRCC detec-

tion where the goal was to train a deep learning network to

detect individual SRCC instances using the combination of

annotated and unannotated SRCC instances. The model was

then evaluated on a test set consisting of 227 images (of which

12 had SRCC). The 1st runner up at the challenge proposed

using a specialized loss43 to separate the contribution of anno-

tated and unannotated training samples resulting in an

improvement in SRCC instance detection on the test set.

Although there might be some interest from a research per-

spective in detecting all instances of SRCC in a specimen in

order to calculate measurements, such as the karyoplasmic

ratio or the degree of atypia, and study their correlations with

outcomes. However, from a clinical perspective, all that mat-

ters is detecting whether a specimen has SRCC.

In this paper, our aim is the clinical application of detect-

ing SRCC in WSIs. It is not quite known for this particular

application which training method is the most appropriate.

Annotating individual SRCC cells is a tedious task, and a

method that uses minimal annotations would be more desir-

able if it does not involve a compromise in performance. To

this end, we trained several deep learning models using a

combination of transfer learning, fully-supervised learning,

and weakly-supervised learning. We used a training dataset

consisting of a total of 1,765 WSIs of which 100 WSIs had an

SRCC diagnosis. A group of pathologists non-exhaustively

annotated individual cells suspected of SRCC in all of the

100 WSIs. We performed an investigation of different train-

ing methods in order to best understand which aspects con-

tribute to obtaining a good SRCC WSI classification given

the available data.

Methods and Materials

Our proposed method for SRCC WSI classification consists of

using a CNN trained on tiles extracted from WSIs and using a

combination of transfer learning, fully-supervised learning, and

weakly-supervised learning to train the models. Figure 1 pro-

vides an overview of the training methods.
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Problem Formulation

In histopathology, a pathologist diagnoses a WSI as having

cancer if it is seen in any sub-region of the WSI; otherwise,

it is diagnosed as not having cancer. This means that if a WSI

with cancer were subdivided into a dense grid of smaller fixed-

size tiles, then at least one of those tiles must have cancer, even

though initially we do not know which tiles have cancer. If the

WSI does not have cancer, then none of those tiles have cancer.

This type of problem can be formulated generally with MIL.

The MIL formulation adopts the concept of labeled bags that

contain a collection of instances. A WSI i is considered as a bag

Hi and any tile j sampled from it is considered as a instance

xij 2 Hi. In the binary setting, a bag Hi can either have a pos-

itive label (yi ¼ 1) or a negative label (yi ¼ 0). Similarly, an

instance j from bag i can either have a positive label (yij ¼ 1) or

a negative label (yij ¼ 0). The label of a bag i is positive if at

least 1 instance in the bag has a positive label. If instance labels

yij are known, then the bag label yi can be obtained as

yi ¼maxjðyijÞ. However, in practice, as training is carried out

on the instance level, the bag label yi is used to derive the labels

y
0
ij of the instances xij for which there are no labels. The goal is

then to train a model f ðxÞ that can classify all the instances. The

MIL formulation allows training from data that has either

purely labeled bags or a mix of labeled instances and bags,

with one end of the extreme where only bags are labeled, and

Figure 1. Overview of the training methods. A, Shows examples of biopsy WSIs in the training dataset. B, Shows an example of the SRCC

annotations overlaid digitally on WSIs. The annotations were used to guide the extraction of tiles. C, Shows an overview of the fully-supervised

method where balanced batches of tiles are extracted from the WSI to train the CNN classifier. D, Shows an overview of the weakly-supervised

method. The method alternates between two steps: inference and training. During inference a frozen CNN classifier is run in a sliding window

fashion on each WSI and the top k tiles with the highest probabilities are placed into the training tile set. Once the training tile set reaches a

certain size T, the training step is triggered.
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the other end of the extreme where all instances are labeled. In

this paper we are interested in classifying SRCC, so a positive

label corresponds to a WSI having SRCC, and a negative label

to the absence of SRCC.

Training Methods

Fully-supervised (FS) learning. When we have labels for all the

instances, there is no need to use the bag labels to derive the

instance labels, and the MIL formulation becomes the classical

fully-supervised (FS) learning method. The training dataset is

fðxij; yijÞgi¼1;:::;N ;j¼1;:::;NðiÞ, where N is the number of WSIs and

NðiÞ is the number of tiles from the ith WSI. All positive WSIs

would need to be annotated, potentially at cellular-level, such

that labels are available for all the tiles.

Weakly-supervised (WS) learning. When we have labels only for

bags or a mix of bags and instances, we can train the model

using MIL. The bag label is used to infer the label of the

instances. The training alternates between 2 steps: inference

and training. Using the model trained so far, the inference step

is used to extract a list of candidate tiles for training. During an

epoch (one sweep through the entire dataset), we perform a

balanced sampling (see Sec.) of tiles by randomly selecting

in turn either a positive (yi ¼ 1) or a negative (yi ¼ 0) WSI.

We then run inference on the WSI in a sliding window fashion

and select the top k tiles with the highest probabilities. This is

done by sorting the probabilities in descending order and

selecting the top k instances. From a positive WSI, the top k

correspond to tiles that the model is most confident that they

contain cancer and their probabilities should be closer to 1.

From a negative WSI, the top k correspond to tiles that the

model assigned the highest probabilities to, and they should

be closer to 0. At each iteration, the top k tiles are added to

the set of training tiles. Once the size of the set reaches a certain

threshold T, the set is shuffled and then fed into the model as

batches for training. The model can alternate between inference

and training many times within an epoch (if T is less than the

number of iterations in an epoch) or only once at the end of the

epoch. At each iteration step, yi alternates between 0 and 1, and

for selected instances that do not have a label, they are assigned

the label y
0
ij ¼ yi8x

0
ij 2 Ĥ

0

iðkÞ, where

Ĥ
0

iðkÞ ¼ argmax
H
0
i �Hi;jH

0
i j¼k

X

xij2Hi
0

f ðxijÞ

is the subset of top k tiles.

Weakly-supervised with fully-supervised pre-training. We can train

the model by first training it with the FS method, and then

refining the model further by training it for additional epochs

using the WS method.

Class imbalance. The training set was highly imbalanced, where

WSIs with the negative class far outnumbered WSIs with the

positive class (SRCC). To improve predictive performance on

the positive class, we created a balanced sampler by

over-sampling tiles from the positive class. This was done

by having the tile sampler alternate from picking a fixed num-

ber of tiles from either a positive or a negative WSI. For FS, k

tiles are picked randomly, whereas with WS, the top k tiles are

picked based on their probabilities. The over-sampling

ensures that all the negative WSIs are used for training during

each epoch.

Deep Learning Model

We used the EfficientNet Convolutional Neural Network

(CNN) architecture,44 which has achieved state-of-the-art

accuracy on computer vision datasets while having a smaller

number of parameters and a floating point operations per sec-

ond (FLOPS) values that is an order of magnitude smaller

compared to other existing architectures. The architecture uses

compound scaling along width, depth, and image resolution of

a baseline network, with mobile inverted bottleneck convolu-

tion (MBConv) as convolutional units. Different scales of Effi-

cientNet have been trained on the ImageNet dataset.45 We used

the EfficientNet-B1 model architecture which has 7.8 M

parameters.

For transfer learning (TL), we initialized the weights of all

the convolutional layers with the pre-trained weights on Ima-

geNet. The final classification layer was a fully-connected

layer with single output and a sigmoid activation function, and

its weights were randomly initialized using the Glorot uniform

initializer.46 During the first epoch, all the weights were frozen

except for the weights of the final classification layer; this is so

as to prevent random initial weight of the classification layer

from destroying the pre-trained weights. After the first epoch,

all the weights were unfrozen to become trainable.

Tile Extraction

Tiles were extracted on the fly from the WSIs by direct

indexing of locations without loading the entire WSI into

memory. For a WSI, the locations were pre-computed as

follows: first, we performed tissue detection by thresholding

the image using Otsu’s method; this step allowed eliminating

a large portion of the white background and reducing unne-

cessary sampling of tile instances from the background. If

annotation are available, then they could be used to further

reduce the valid tissue sampling regions. Then, given a stride

that allows subdividing the WSI into a grid, we extracted grid

cell locations only from the valid tissue regions. These grid

cells location were then used to extract tiles at the desired tile

size and magnifications. For all the models, we used a fixed

tile size of 224� 224 pixels, and a stride during training of

112� 112 pixels.

As tiles were extracted from the WSIs, we randomly applied

data augmentation on the fly in the form of tile flips, 90� rota-

tions, translations, and color shifts in order increase robustness

and add regularization effect to the training.
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WSI Classification

The models were trained as classifiers on the tile level; how-

ever, to obtain a WSI classification, the model was applied in a

sliding window fashion using a stride of 112� 112 pixels, then

the WSI was assigned the label of the maximum probability of

its tiles.

Heatmap Visualization

We generated two types of heatmaps from the model using

two methods: classification probability and Gradient-weighted

Class Activation Mapping (Grad-CAM).47 The former consists

in the tiling of the classification probability outputs by mapping

each input tile’s 1� 1 classification probability to a

stride� stride pixels output tile. This can result in a blocky

heatmap visualization, especially with large strides. The smaller

the stride, the more fine-grained the output; however, this comes

at an increase in prediction time. The latter, Grad-CAM, is a

method that uses the gradients of the target output flowing into

the final convolutional layer to produce a coarse localization

map. With the EfficientNet-B1 model, this produces a 7� 7
output for a 224� 224 input tile. Using a stride that is smaller

than the input tile size, the outputs can be further smoothed by

averaging the overlapping tiles; however, this too results in an

increase in prediction time. Figures 2 and 3 show examples

of probability heatmaps with a stride of 112� 112 pixels,

whereas Figures 5 and 6 show Grad-CAM visualizations with

a stride of 32� 32 pixels.

Implementation Details

The deep learning models were implemented and trained using

TensorFlow.48 We used OpenSlide49 to read WSIs on the fly

without pre-extracting all the tiles. AUCs were calculated in

python using the scikit-learn package50 and plotted using mat-

plotlib.51 The 95% CIs of the AUCs were estimated using the

bootstrap method52 with 1,000 iterations.

Datasets

Hospital A and B. For the present retrospective study, 2,824

cases of gastric epithelial lesions HE (hematoxylin & eosin)

stained specimens, each from a distinct patient, were collected

from the surgical pathology files of Hiroshima University Hos-

pital (Hospital A) and Tokyo IUHW Mita Hospital (Hospital B)

after being reviewed by surgical pathologists. The experimen-

tal protocols were approved by the Institutional Review Board

(IRB) of the Hiroshima University (No. E-1316) and Interna-

tional University of Health and Welfare (No. 19-Im-007). All

research activities complied with all relevant ethical regula-

tions and were performed in accordance with relevant guide-

lines and regulations of each hospital. Informed consent to use

Figure 2. Representative true positive case. There are four endoscopic biopsy fragments in this WSI (A). According to the pathological

diagnostic report, #1 is signet ring cell carcinoma and #2-#4 are gastritis (non-neoplastic lesion) (A). When viewed under low magnification,

highlighting is visible only in #1 on heatmap image (B). When the highlighted area in #1 is magnified (C), strong and low-signal areas are seen

(D); a large number of signet ring cell carcinoma cells (E) are observed in the strong-signal area (F) and a small number of signet ring cell

carcinoma cells (G) are seen in the low-signal area (H). Enlargement of the tissue in #4 confirms that it does not contain any signet ring cell

carcinoma cells (I and J).
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histopathological samples and pathological diagnostic reports

for research purposes had previously been obtained from all

patients prior to the surgical procedures at both hospitals and an

opportunity for refusal to participate in research was guaran-

teed by an opt-out manner.

The combined dataset obtained from both hospitals con-

sisted of 2,824 WSIs of which were divided into sets of 1,765,

60, and 999 for training, validation, and test, respectively. The

training set consisted of 100 SRCC, 571 other adenocarci-

noma, and 1,094 non-neoplastic lesion, the validation set

consisted of 20 SRCC, 20 other adenocarcinoma, and 20 non-

neoplastic lesions, and the test set consisted of 78 SRCC, 82

other adenocarcinoma and 839 non-neoplastic lesion. Given

that the goal is to train a binary classifier, the cases were

grouped into SRCC vs non-SRCC (other adenocarcinoma and

non-neoplastic lesions). All cases were solely composed of

endoscopic biopsy specimen WSIs. The 100 SRCC WSIs

were manually annotated by a group of 11 surgical patholo-

gists who perform routine histopathological diagnoses by

drawing around the areas that corresponded to SRCC. The

pathologists carried out detailed cellular-level annotations

on cells that fit the description of SRCC cells as defined by

the World Health Organization (WHO) classification of

tumors (i.e., the following three tumor cell morphologies were

adopted: (1) a cell with an intracytoplasmic cyst filled with

acid mucin, giving the classical signet-ring appearance; (2) a

tumor cell with eosinophilic cytoplasmic granules containing

neutral mucin with a slightly eccentric nucleus; and (3) a

tumor cell in which the cytoplasm is distended, with secretory

granules of acid mucin appearing like a goblet cell).53,54 The

other adenocarcinomas subset included the following sub-

types: tubular (tub), poorly differentiated (por) and papillary

(pap) types which did not include SRCC cells in WSIs.54 The

non-neoplastic subset included the following categories:

ulcer, gastritis, regenerative mucosa, fundic gland polyp and

almost normal gastric mucosa. Each annotated WSI was

observed by at least two pathologists, with the final checking

and verification performed by a senior pathologist. All the

WSIs were scanned at a magnification of �20.

DigestPath2019. The DigestPath2019 data (note 1) was

obtained from the signet ring task of the DigestPath2019 grand

challenge competition, part of the MICCAI 2019 Grand Pathol-

ogy Challenge Li et al.42 We used the provided training dataset

as a test set given that the classification labels were available.

The dataset consisted of 455 images from 99 patients, of which

77 images from 20 patients contained SRCC. The provided

images were 2000 � 2000 pixels crops extracted at a magnifi-

cation of �40 from WSIs. The original intended task of the

challenge was to detect all instances of SRCCs; however, we

only perform SRCC classification on the images. The size of

the images was then adjusted based on the expected magnifica-

tion of a given model.

Experiments and Results

Set-Up

We trained using three different training methodologies: fully-

supervised (FS), weakly-supervised (WS), and fully-supervised

pre-training followed by weakly-supervised (FS-WS). This

resulted in seven different models: FS �5, FS �10, FS �20,

FS w/o TL �10, WS �10, WS-noanno �10, and FSþWS�10.

For the FS method, we training the models using WSIs at

three different magnifications �5, �10, and �20. For the mag-

nification at �10, we trained using the FS method with and

without transfer learning (w/o TL). During training the

balanced tile sampler ensured that at least k ¼ 40 tiles were

randomly selected from each WSIs during a given epoch.

For the WS methods, we trained the models at a magnifica-

tion of at �10. In addition, we trained two versions of the

model where in one version we only sampled from the anno-

tated regions from the positive WSI, and in the other version we

sampled tiles without using any of the annotations (WS-

noanno). We used a top k value of 1, and T ¼ 128, meaning

Table 1. ROC AUCs and Log Losses With Their Associated Confidence Intervals (CIs) for the 2 Test Sets: Hospital A and B and

DigestPath2019.

ROC AUC log loss

Hospital A & B (n ¼ 999) FS �5 0.9891 (0.9791-0.9964) 1.5268 (1.367-1.7253)

FS �10 0.9966 (0.9932-0.9989) 1.4356 (1.3189-1.5564)

FS �20 0.9931 (0.9879-0.9971) 3.0527 (2.8842-3.2541)

WS �10 0.9992 (0.9981-0.9999) 0.0608 (0.0492-0.0737)

FS þ WS �10 0.9986 (0.9971-0.9996) 0.2737 (0.2357-0.322)

FS w/o TL �10 0.9807 (0.9703-0.9894) 1.999 (1.8697-2.1183)

WS-noanno �10 0.9778 (0.9611-0.9908) 0.381 (0.3231-0.4342)

DigestPath2019 (n ¼ 455) FS �5 0.9724 (0.956-0.9836) 0.3667 (0.2477-0.5072)

FS �10 0.9868 (0.9739-0.9963) 0.1584 (0.1037-0.2235)

FS �20 0.9618 (0.9396-0.9769) 0.4678 (0.3869-0.5885)

WS �10 0.9728 (0.9486-0.9907) 0.293 (0.2063-0.3798)

FS þ WS �10 0.9912 (0.9841-0.9974) 0.0911 (0.0636-0.119)

FS w/o TL �10 0.9529 (0.9211-0.9741) 0.2173 (0.1698-0.2808)

WS-noanno �10 0.9619 (0.9389-0.9877) 0.4207 (0.2886-0.5324)
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Figure 3. Representative false positive cases. A, is a case chronic gastritis (non-neoplastic lesion). A-D, Pathologically, the false positives might be

due to the lymphocytes being mixed around the smooth muscle cells and blood vessels of the muscularis mucosae and the nuclear density of the

lymphocytes being similar to SRCC. E, is a case of chronic gastritis (non-neoplastic lesion). E-H, The false positive area includes pyloric glands

disrupted by inflammation. Pathologically, the false positive area is suggested as a pyloric gland by comparison with other adjacent pyloric gland(s).

However, on practical diagnosis, if such a finding is observed, additional investigation should be performed to confirm that it is a pyloric gland.
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that training was run multiple times during an epoch. To look

into the effect of the top k parameter, we also trained multiple

versions of the WS-noanno model for a range of top

k 2 f1; 5; 10; 15; 20g, while keeping all the other hyperpara-

meters fixed.

We evaluated the models on two test sets: Hospital A & B

(n ¼ 999, 78 SRCC, 82 other adenocarcinoma and 839 non-

neoplastic lesions) and DigestPath2019 (n ¼ 455, 77 SRCC).

Model Hyperparameters

All models were trained with the same hyperparameters. We

used the Adam optimization algorithm55 with beta1 ¼ 0:9 and

beta2 ¼ 0:999, a learning rate of 0:001 with a decay of 0:95
every 2 epochs, and the binary cross entropy loss/log loss. We

used a batch size of 32. The performance of a given model was

tracked on a validation set. We used an early stopping approach,

to avoid overfitting, with a patience of 10 epochs, meaning that

training would stop if no improvement was observed for 10

epochs past the lowest validation loss. The model with the low-

est validation loss was chosen as the final model.

Model Evaluation

We performed predictions on the WSIs of the test set by using a

sliding window with an input tile size of 224� 224 pixels and a

stride of 112� 112 pixels. The WSI classification probability

was obtained by max-pooling the probabilities of all of its tiles.

We computed the ROC curves and their corresponding AUCs

as well as the log losses from all the models. Figure 7 and Table

1 summarize the results on the test sets. Figure 2 shows an

example true positive classifications on four endoscopic biopsy

fragments, whereas Figure 3 shows examples of false positive

classifications and Figure 4 shows a representative example of

false negative classification.

The models displayed good generalization performance on

the DigestPath2019 independent test set, which consisted of

WSI crops obtained from a different source than the one used

for training our models. We used the training set provided by

DigestPath2019 as it was publicly available. We could not

perform a direct comparison with the reported results of Li

et al42 as the test set is not publicly available.

The WS training method achieved a statistically signifi-

cantly lower log loss compared to the FS method. Figure 6

shows Grad-CAM visualization of the seven models on four

positive images from the DigestPath2019. The models do no

seem to pick up on the same areas. The FSþWS �10 models

picked up more SRCC cells than the WS �10 model.

For the WS method, guiding the sampling of the positive

tiles from the annotated regions improved the predictive per-

formance as compared to without using any of the annotations

(WS �10 vs WS-noanno �10).

Transfer learning was helpful in increasing predictive per-

formance, given that the model trained without transfer learn-

ing (FS �10 w/o TL) mostly achieved the lowest performance

on all two test sets.

The model trained at �20 has a higher false positive rate

compared to the model trained at�10. The model trained at�5

similarly had a higher false positive rate compared to the model

trained at �10.

An examination of some of the false positive cases showed

that they were mostly due to cells exhibiting similar appearance

to SRCC. In the chronic gastritis case in Figure 3, the nuclear

density of the lymphocytes mimics the appearance of SRCC,

Figure 4. Representative false negative cases. In (A) there are four

endoscopic biopsy fragments (#1-#4). According to the pathological

diagnostic report, (A) #4 has SRCC. In the fragment of (B) #4, a few

SRCC cells were observed (C) at high magnification (D). (E) is

endoscopic biopsy fragment. According to the pathological diagnostic

report, this fragment has tubular adenocarcinoma and SRCC. When

viewed under high magnification (F and G), SRCC cells were

observed.
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which most likely led to the false positive. Figure 5 shows a

Grad-CAM visualization of a case used as part of the validation

set where a tissue fragment was incorrectly annotated as gas-

tritis (non-neoplastic lesion). It was initially thought to be a

false-positive case; however, another inspection by expert

pathologists revealed that it is a true-positive detection of

SRCC. It was missed by the pathologists performing the anno-

tations potentially due to the presence of only a small number

of SRCC cells within a background of chronic inflammatory

cells infiltration that have some morphological similarities to

SRCC cells, making them difficult to spot. Nonetheless, the

models were able to make a correct detection.

Influence of the Top k Parameter

Figure 8 shows the ROC curves for the two test sets. There was

a noticeable trend where an increasing k value led to a decrease

in the AUC and a noticeable increase in the false positive rate.

Running Time

The models overall took between 2-4 days to train on a

machine with a single Nvidia Titan V GPU. The prediction

time per WSI is dependent of the number of tiles that contain

tissue, and it can range from 1k to 10k tiles. Prediction was at

an average rate of 150 tiles per second on a single GPU.

Discussion

In this paper we have presented a deep learning application for

SRCC WSI classification. The models, based on the

EfficientNet-B1 architecture, achieved high ROC AUC perfor-

mance on two test sets, one of which originated from a different

medical institution. We analyzed the performance of different

training methodologies and WSI magnifications. Results

showed that a WS training method with WSIs at a magnifica-

tion of �10 achieved the highest predictive performance.

The use of WS training method achieved better performance

than using the FS method alone. This is most likely due to the

WS method training on tiles that have the highest probability

from both the positive and negative WSIs, while the FS method

trains on randomly sampled tiles. At each training iteration, the

WS trains on the most confident tiles for the positive class and

the most likely to be a false positive for the negative class. This

prioritizes the training on reducing the false positive rate, espe-

cially given that the WSI aggregation method is max-pooling.

As a single false positive tile would result in a false positive

classification for the WSI.

An interesting observation from Figure 6 was that the

FSþWS �10 models picked up more SRCC cells than the

WS�10 model; this is most likely due to it having encountered

more instances of SRCC tiles during the FS pre-training phase,

with the WS training later serving to reduce the false positive

rate.

Guiding the sampling of tiles for the WS method improved

the predictive performance as observed from comparing WS

�10 vs WS-noanno �10. This was to be expected given that

there was only a small number of positive WSIs. Achieving a

high predictive performance without any annotations that

restrict the regions from which to sample requires a signifi-

cantly larger dataset, as from the entire WSI of potentially

thousands of tiles only 1 tile is selected for training. Campa-

nella et al13 observed that at least 10,000 are required to

achieve a good performance.

When only WSI labels are available, using only the tile with

the maximum probability ðk ¼ 1Þ led to the best performance

based on the results in Figure 8. An increase in k led to an

increase in the false positive rate. The only valid assumption

that can be made is that at least 1 tile has to be positive when

the label of the WSI is positive; however, by using k > 1, we

are assuming that there are at least k tiles with a positive label,

which is a strong assumption and more likely to be incorrect

especially when there are WSIs in the training set that only

have a few SRCC cells such that they are contained in a number

Figure 5. Representative Grad-CAM heatmap image for true-positive detection of SRCC cells. (A) Shows non-neoplastic annotations (green

lines) of gastric endoscopic biopsy specimens (#1-#3) by pathologists. Tissue fragments #1 and #3 are gastritis and #2 has SRCC cells (A, C, D).

Pathologists missed SRCC cells on fragment #2 (A). SRCC cells were visualized only in fragment #2 by Grad-CAM heatmap image (B). At high

magnification, in fragment #2, Grad-CAM hotspots (E, F) were overlapped with infiltrating area of SRCC cells (C, D).
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Figure 6. Grad-CAM visualization on positive images from the DigestPath2019 dataset. Row (A) shows four annotated images with yellow

bounding boxes on SRCC instances. Rows (B-H) show the Grad-CAM outputs from the 7 different models.
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< k of tiles. In such cases, then, it would occur that the number

of tiles being sampled as positive is larger the actual number of

positive tiles present. Our training set contained a few WSIs

that only had a small area of infiltrating SRCC cells. This most

likely led to the observed increase in the false positive rate.

The training dataset only contained a small number of pos-

itive WSIs (n ¼ 100), and the use of transfer learning has

helped in increasing predictive performance, given that the

model trained without transfer learning (FS �10 w/o TL)

mostly achieved the lowest performance on all two test sets.

Training at �10 seems to yield better performance than

training at �20. The model trained at �10 had a lower false

positive rate; this is most likely due to the �10 model having

more context information from the neighboring tissues. In

order to confirm an SRCC diagnosis, pathologists typically

view a WSI at a low magnification (e.g., �4 or �5) and then

at a higher magnification to check the cellular morphology. It is

more difficult for pathologists to distinguish between SRCC

cells and mimicker cells (lymphocytes and histiocytes) if they

are viewed in isolation without viewing the neighboring tis-

sues. The lack of context information from the neighboring

tissues could be the reason why the �20 model had a slightly

lower predictive performance than the �10 model. However,

going at magnification of �5 also results in a increase in the

Figure 7. ROC curves from the 7 different models on the 2 test sets: (A) Hospital A and B and (B) DigestPath2019.

Figure 8. ROC curves from varying the top k across the range {1,5,10,15,20} for the WS method using only slide-level labels (WS-noanno).
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false positive rate, and this is most likely due to the loss of

cellular-level detail, making it harder to properly detect SRCC.

Nonetheless, the model was still capable of predicting SRCC.

This result was particularly interesting to pathologists given

that they would view the WSI with a magnification of at least

�10 before confirming an SRCC diagnosis.

As a certain element of randomness is involved when train-

ing the models, some of the variations in the predictive perfor-

mance between the models could be attributed to it. However,

the majority of the training methods achieved an acceptable

high performance, signifying that it is possible to train an

SRCC WSI classifier. One potential limitation is that we do

not know the extent of how well the models generalize to WSIs

from different source, given that most of the WSI test sets came

from the same source as the training set. Nonetheless, the good

performance on the DigestPath2019 dataset, even though it

only consisted of WSI crops, is highly promising. As the model

do not achieve AUC of 1.0, then based on the intended appli-

cation of the models, the threshold can be adjusted to obtain a

desired sensitivity and specificity, so there could be a potential

risk of over- or under-diagnosis based on the chosen threshold.

In addition, we do not know how well the models perform on

challenging cases, such as intramucosal SRCC in-situ56 and

mimicker non-neoplastic cells like xanthoma57 cells, as neither

the training or test sets contained any of these.

Conclusion

In this study, we evaluated several different training methods

for the task of SRCC WSI classification, and each method has a

different requirement on amount of manual annotations. Anno-

tating WSIs can be extremely tedious because of the massive

size of the WSI. We have shown that a weakly-supervised

method using minimal amounts of annotations can be used to

train a WSI SRCC classification model with similar perfor-

mance as a fully-supervised method, meaning that detailed

manual annotations are not required to obtain a model that

could be used in a clinical setting. Patients with SRCC tend

to have poorer prognosis than patients with other types of gas-

tric carcinoma.58,59 However, recent studies have shown that

the incidence of SRCC has been constantly increasing.2,4,60

Pathologists sometimes find SRCC more difficult to diagnose

compared to other types of gastric carcinoma.10 An AI model

that can assist pathologists in detecting SRCC would be

extremely beneficial as it can help them reduce diagnosis errors

as well as potentially detect SRCC at an earlier stage and, as a

result, significantly improve patient prognosis.61
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