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T cells communicate with the environment via surface receptors. Cooperation of surface
receptors regulates T-cell responses to diverse stimuli. Recently, finger-like membrane
protrusions, microvilli, have been demonstrated to play a role in the organization of
receptors and, hence, T-cell activation. However, little is known about the morphogenesis
of dynamic microvilli, especially in the cells of immune system. In this review, I focus on the
potential role of lipids and lipid domains in morphogenesis of microvilli. Discussed is the
option that clustering of sphingolipids with phosphoinositides at the plasma membrane
results in dimpling (curved) domains. Such domains can attract phosphoinositide-binding
proteins and stimulate actin cytoskeleton reorganization. This process triggers cortical
actin opening and bundling of actin fibres to support the growing of microvilli. Critical
regulators of microvilli morphogenesis in T cells are unknown. At the end, I suggest several
candidates with a potential to organize proteins and lipids in these structures.

Keywords: T cell, microvilli, sphingolipids, phosphoinositides, lipid rafts, membrane curvature, dimpling domains,
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INTRODUCTION

T lymphocytes, important supervisors of the immune system, are activated and regulated through
receptors expressed on their surface. Surface of lymphocytes is densely covered by membrane
protrusions, mainly microvilli (1, 2), which allow for a more complex three-dimensional (3D)
organization of receptors compared to a flat membrane. Indeed, critical receptors of T-cell
activation, T cell receptor (TCR), CD2, CD4 and CD28 were shown to accumulate at the tips of
microvilli in recent studies benefitting from 3D imaging at high resolution (1, 3–7). On the contrary,
CD45 is excluded from these areas (6, 7). It was suggested that non-random 3D distribution of
receptors is important for optimisation of signalling and cellular responses (8–10). However, little is
known about the origin of microvilli and molecules involved in their formation and homeostasis in
T lymphocytes. Insight into molecular biophysics and structural details of these membrane
protrusions can help to better understand T-cell function in health and disease.

In this work, I suggest the role of lipids and lipid domains in deformation of membranes and
their potential role in the formation and organization of microvilli. I start with a brief introduction
to microvilli structure and function. These data almost exclusively originate from studies of
microvilli in epithelial cells. It is thus important to note here that microvilli of epithelial cells are
more stable and may differ in structural details when compared to microvilli on leukocytes. In the
central sections, I hypothezise a role of curved lipid domains in microvilli formation and describe
regulatory role of lipids for the function of proteins localized prevalently to these structures. I finish
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Cebecauer Lipids and T-Cell Microvilli
by discussing a handful of molecules with a potential role in
morphogenesis of T-cell microvilli. Like lipid domains, function
of these proteins in T cells needs to be determined.
MICROVILLI AND THEIR STRUCTURE

Microvilli are finger-like membrane protrusions at the surface of
metazoan cells (11). Microvilli consist of the tip, shaft, and base,
which connects these structures to the plasma membrane and
cortical actin (Figure 1). Actin bundles determine a shape of
microvilli and are responsible for their stability, but also a
dynamic character. In the shaft, the membrane is tightly linked
to actin bundles via actin- and membrane-binding proteins [e.g.,
myosins and ERM proteins; see Figure 1 (12)]. At the base, at
least in epithelial cells, actin bundle terminates in the network of
intermediate filaments known as ‘terminal web’ (13, 14). The size
of microvilli is regulated by the growth of actin fibres at the tip
(15). Microvilli on the surface of polarized epithelial cells
covering organs in direct contact with the exterior are rather
stable and long (11). Microvilli on T cells are smaller and highly
dynamic (1, 2, 16, 17). With ~100 nm in a diameter and a length
of 0.5–5 µm, they represent rather small surface structures
[Figure 1 in (17) and Figure 1 in (1)]. It is their abundance
and flexibility, which makes these structures important for T-cell
function. For example, vesicles with receptors and other effector
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molecules can be shed off the microvilli tips. This phenomenon
was observed in epithelia, as well as in T cells, and can be part of
complex regulatory mechanisms in multicellular organisms
(1, 18).

The accumulation of receptors at the tip of microvilli is
beneficiary for an easy access to ligands, substrates or
mechanical forces and can determine cellular responses to such
stimuli (8, 9, 11). The shaft and the base potentially function as a
selecting region, segregating molecules to different membrane
environments. However, physico-chemical basis of such
selection remains unknown. Importantly, it is still unclear what
defines a local onset and chemical composition of microvilli. In
the following sections, I suggest a model (Figure 1), in which
membrane lipids and their physico-chemical properties trigger
the onset of microvilli formation.
LIPID DOMAINS AND LOCAL
BENDING OF MEMBRANES

In our review on membrane lipid nanodomains [(19), Section
8.4], we discussed a role of curvature in stabilization of domains
and prevention of their fusion. In general, formation of a lipid
domain with different properties (e.g., rigidity and thickness)
compared to the adjacent membrane results in line tension at the
boundary (borderline) between the two ‘phases’ (Figure 2A). In
FIGURE 1 | A model of T-cell microvilli morphogenesis. The onset of microvilli can be triggered by transient formation of dimpling lipid domains (see also Figure 2).
Sphingolipids together with phosphoinositides (e.g., phosphatidylinositol 4,5-bisphosphate; PIP2) own a high potential to form dimpling domains in asymmetric
membranes. Later, actin-binding proteins, which associate with plasma membrane via PIP2 (or phosphatidylserine), induce cortical actin opening and stabilize
dimpling domains. Similar proteins can stimulate bundling of actin fibres. The growth of microvilli is driven by polymerization of actin at the plus end of the fibres
(distal end of microvilli). Myosins dynamically anchor actin bundles to the membrane at the shaft. ERM (ezrin, radixin, and moesin) proteins function in a similar
fashion (membrane anchor) and regulate stability of microvilli. Proteins with affinity for rigid (sphingolipid-enriched) and/or for curved membranes accumulate at the tip
or shaft of microvilli. Little is known about T-cell signalling molecules in the lumen of microvilli. The existence of terminal web in microvilli of leukocytes remains
unknown. Components of microvilli are not drawn in scale.
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a growing domain, the length of boundary increases, and line
tension rises. However, lipid membranes prefer to minimize
tensions associated with their organization (20, 21). Since elastic
properties (bending modulus) of membranes are not changing
significantly, the size of a domain can reach the point, at which
Frontiers in Immunology | www.frontiersin.org 3
membrane starts to bend and form dimpling domains [Figure
2B (22, 23)]. This is caused by the fact that line tension at the
boundary exceeds the bending energy (resistance) of a
membrane required for its deformation. Membrane bending
reduces the boundary length and, thus, line tension. Further
A

B

FIGURE 2 | Growth of lipid nanodomains and dimpling (curved) domain formation. (A) Schematic illustration of lipid membrane with a domain. The domain has
different physico-chemical properties (e.g., rigidity-conformational order, thickness) compared to the surrounding lipid bilayer. The two environments are separated by
the boundary. (B) Schematic illustration of a domain growth and formation of a dimpling domain. Certain lipids (e.g., sphingolipids and cholesterol) tend to segregate
into circular domains in synthetic membranes containing unsaturated glycerophospholipids due to their immiscibility at lower temperatures or in the presence of other
clustering factors (e.g., proteins). As the domain grows, line tension at the boundary increases, until it reaches the point, at which it exceeds bending energy required
for membrane deformation and dimpling domain is formed. The length of the boundary is reduced, and further growth of the membrane is accompanied by
membrane tubulation, but not increase in line tension. Hence, domain formation can lead to induction of membrane curvature and its tubulation.
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growth of a domain is enabled by enhanced curvature, which can
result in membrane tubulation. The length of boundary and line
tension remain constant for such growing domain/
protrusion (21).

In flat membranes, small domains diminish due to their
fusion into larger entities, as observed in model, phase-
separated giant unilamellar vesicles (24). Fusion of small
domains reduces the length of boundary and line tension (23).
However, large lipid domains are not frequent in cells. It is
currently agreed that the plasma membrane is highly
heterogenous due to the presence of small (nanometric)
domains (25, 26). One can thus speculate that plasma
membrane is prone to form dimpling domains, which cannot
fuse due to repulsive forces at their boundaries (19, 22).
CLUSTERING OF SPHINGOLIPIDS AND
PHOSPHOINOSITIDES TRIGGERS
MICROVILLI FORMATION

Cellular membranes are composed of a large variety of lipid
species. Among those, sphingolipids, with their long and
saturated acyl chains and affinity to cholesterol, are prone to
segregate from unsaturated glycerophospholipids and form
nanodomains (19, 27–29). Ikenouchi and colleagues suggested
that sphingolipids are required for the existence of microvilli
and, potentially, also initiation of their formation in epithelial
cells (30). Conversion of sphingomyelin to ceramides by acidic
sphingomyelinase in these cells led to impaired microvilli. In
untreated cells, sphingolipids accumulated on microvilli (30).
Accumulation of sphingomyelin (and cholesterol) in microvilli
was confirmed in another study, which employed lysenin
labeling of sphingomyelin (perfolysin O for cholesterol) and
sensitive nanoSIMS imaging in CHO-K1 epithelial-like cells
(31). Of note, only freely accessible lipids could be detected
using this method. In another study, interference with
sphingolipid or cholesterol synthesis lead to reduced presence
of microvilli on epithelial cells (32). All these studies indicate that
sphingolipids are essential for the morphogenesis of microvilli.

Membrane lipid composition considerably differs between
various cell types. Though sphingolipids consistently constitute
20-40% of plasma membrane lipids (33, 34). Local concentration
of sphingolipids is even higher due to chemical asymmetry of the
plasma membrane (lipid bilayer). Such high content of
sphingolipids in the outer leaflet can lead to their transient
clustering and, occasionally, formation of dimpling domains.
Indeed, bilayer asymmetry reduces bending modulus of a
membrane and, thus, facilitates its deformation (22, 35). In
cells, phosphatidylinositol 4,5-bisphosphate (PIP2) molecules
were found to cluster underneath sphingolipid domains during
membrane deformation induced by viral proteins [virion
budding (36, 37)]. PIP2 was also found to accumulate in
microvilli (30). But comprehensive analysis of lipids in
microvilli has not been performed to date (38). Therefore, it is
unclear what is the content of PIP2, sphingolipids and other
lipids (e.g., cholesterol) in these structures.
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The presence of PIP2 in the apical membrane of epithelial
cells, but of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in
basolateral membrane, further supports the involvement of this
lipid in microvilli formation (39). Microvilli can be found only
on the apical surface of epithelial cells. Apical membrane of
polarized cells is also enriched in sphingomyelin and cholesterol
(40). Moreover, PIP2 accumulates in the uropod of motile cells,
whereas PIP3 can be found in the leading edge. Microvilli are
often observed at the back of motile cells, including T cells (17,
41, 42). In analogy to sphingomyelin domains, cholesterol
facilitates clustering of PIP2 (43). Due to its high lateral and
transbilayer mobility (44, 45), cholesterol is expected to freely
access dimpling domains. Interestingly, cholesterol does not
influence bending modulus of synthetic membranes with
diverse lipid composition (46, 47). Thus, cholesterol does not
directly raise the energy required for membrane deformation and
establishment of dimpling membranes, but the effect can depend
on its intramembrane orientation and distribution between the
outer and inner leaflet (45).
LIPID-PROTEIN CROSSTALK IN
MICROVILLAR MORPHOGENESIS
AND FUNCTION

To further highlight the importance of lipids in microvilli
morphogenesis, I will describe three examples where lipid
metabolism determines the function of critical proteins in
microvilli. The examples were selected based on the depth of our
understanding of these regulatory processes. As in the case of
microvilli structure, this knowledge comes from microvilli of
epithelial cells, but similar regulatory mechanisms can be expected
in T-cells.

ERM family proteins (ezrin, radixin, and moesin) tightly
anchor actin-bundles to the membrane of microvilli. This is
facilitated by binding of their FERM domain to PIP2 (48). The
process is regulated by a local lipid environment. Conversion of
sphingomyelin to ceramide and of sphingosine to sphingosine-1-
phosphate negatively and positively, respectively, regulate
membrane-association of ERM proteins and, thus, stability of
microvilli (49, 50). The role of ERM proteins for microvilli is
evidently critical, since their knock-down leads to their reduced
size and number (51, 52).

Podocalyxin-1 accumulates in microvilli of epithelial cells.
Podocalyxin-1 interacts with ERM proteins via EBP50 (53). It
further interacts with phosphoinositide-4-phosphate 5-kinase
(PI5K) b and delivers this critical enzyme to microvilli. The
formation of podocalyxin-1 multiprotein complex with PI5K leads
to a local increase in PIP2 synthesis and stability of microvilli (30).
Interestingly, podocalyxin-1 associates with sphingolipid domains,
probably upon its palmitoylation (54). The crosstalk of diverse lipids
in the regulation of this protein remains unknown.

Another protein associating with sphingolipid domains on
microvilli is prominin-1 [also called CD133 (55)]. Overexpression
of prominin-1 increases a number of microvilli (56). This protein
directly binds cholesterol and GM1 ganglioside (57). These lipid-
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protein interactions were found essential for fine tuning of
microvillar structure. The protein is further regulated by
phosphorylation of its regulatory tyrosines [Y817/Y828 (56)].
Phosphorylation of these tyrosines regulates interaction of
prominin-1 with phosphoinositide 3-kinase (PI3K). In contrast to
PI5K, PI3K locally reduces available PIP2 by its conversion to PIP3
and destabilizes the anchorage of actin bundles to the
membrane (56).
POTENTIAL REGULATORS OF
MICROVILLI IN T CELLS

I have argued above that lipid domains induce curvature in flat
regions of the plasma membrane. Such domains would be transient
in the absence of supporting proteins (Figure 1). The process is well
described for the endocytosis or viral budding (36, 37, 58–61). For
example, matrix proteins (e.g., Gag of HIV-1) form a dome-like
structure under the curved membrane of nascent viral particles.

Proteins stabilizing dimpling domains at the sites of newly
assembling microvilli have not been described yet. A few proteins
(e.g., prominin-1/CD133, podocalyxin-1) reported to regulate
microvilli morphogenesis in epithelial cells (30, 55), are not
expressed in T cells or at highly variable levels in diverse T-cell
subsets. Their role in microvilli morphogenesis in T cells is thus
questionable. Here, I will focus on four proteins (protein families),
which exhibit great potential to induce or stabilizemicrovilli in T cells.

The geometry and chemistry of dimpling domains delineates
properties of potential supporting proteins. These must interact
with negative curvature and anionic lipids. I-BAR domain
proteins exhibit such properties. IRSp53 contains I-BAR
domain and was shown to induce negative curvature and
tubulation in synthetic vesicles (62). IRSp53 localizes to curved
membranes of neuronal cells (63) and filopodia of motile
fibroblasts (64). It supports membrane ruffling and protrusions
in T cells (65). In epithelial cells, it is expressed at the microvilli-
containing apical membrane and functionally associates with
podocalyxin-1 (66). As a protein of countless functions, it will be
important to characterize its specific role in microvilli of T cells.
Alternatively, other I-BAR domain-containing proteins can fulfil
this function in lymphoid cells.

Tetherin (also called CD317) with affinity for ordered,
sphingolipid-rich membranes interacts with BAR domain-
containing RICH family proteins (67). Tetherin/RICH-2 complex
forms a mechanical support of epithelial microvilli (68). Its analog,
RICH-1, is expressed in T-cells (Human Protein Atlas). BAR
domain of RICH proteins can induce positive curvature and
tubulate lipid vesicles containing PIP2 in the absence of tetherin
(69). The potential of tetherin/RICH complex thus lies at the neck
connecting microvilli (or dimpling domains) to membrane base via
a positively curved segment (Figure 1).

Unconventional myosins (e.g., myo1a, myo7b) link actin
fibres to membrane by their interaction with anionic lipids,
PIP2 or phosphatidylserine (70). Myosins also contribute to the
formation of a ‘hole’ in the cortical actin at the site of new
microvillus formation (71). Such local depletion of cortical actin
Frontiers in Immunology | www.frontiersin.org 5
is essential for the initiation of membrane protrusions (72). This
process may be also connected to the formation and stabilization
of dimpling lipid domains.

Members of tetraspanin protein superfamily (TM4SF)
accumulate at the microvilli of diverse cells. CD9, CD81,
CD82, and TSPAN33 were shown to control the size and
shape of microvilli in both, leukocytes and epithelial cells (73–
75). TM4SF proteins (e.g., CD81) require highly curved
membrane for their assembly into virus-like particles induced
by HIV-1 Gag protein (37, 76). The main role of TM4SF is thus
expected for growing or established microvilli with highly curved
tubular membrane.

None of the proteins mentioned in this section was already
determined as a microvilli regulator in T cells. However, I believe
that intense research in this direction may soon offer interesting
discoveries related not only to microvilli, but also to T-cell
signaling and function.
CONCLUSIONS

Recent observations demonstrate that microvilli play essential
role in T-cell activation. Key signalling molecules were found to
accumulate in different parts of these morphological structures.
Theoretical and biophysical studies indicate that sphingolipids
and phosphoinositides in complex asymmetric membranes tend
to generate dimpling domains. In the plasma membrane of T
cells, dimpling domains can be the sites of an onset of microvilli,
as indicated in the presented model. Specific lipids also fine tune
behaviour of critical regulatory proteins in microvilli. These data
substantiate the role of lipids in morphogenesis and function of
microvilli. However, in T cells, the identity of key proteins (and
lipids) in microvilli remains unknown. Future works are required
to discover these important organizers of signalling receptors at
the plasma membrane of T cells. Such research may open new
avenues for treatment of many human diseases, which are
associated with the malfunction of these critical immune cells.
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