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In this study, an automatic control system is developed for the setpoint control of the cell biomass specific 
growth rate (SGR) in fed-batch cultivation processes. The feedback signal in the control system is obtained from 
the oxygen uptake rate (OUR) measurement-based SGR estimator. The OUR online measurements adapt the 
system controller to time-varying operating conditions. The developed approach of the PI controller adaptation 
is presented and discussed. The feasibility of the control system for tracking a desired biomass growth time profile 
is demonstrated with numerical simulations and fed-batch culture 𝐸. 𝑐𝑜𝑙𝑖 control experiments in a laboratory-

scale bioreactor. The procedure was cross-validated with the open-loop digital twin SGR estimator, as well as 
with the adaptive control of the SGR, by tracking a desired setpoint time profile. The digital twin behavior 
statistically showed less of a bias when compared to SGR estimator performance. However, the adaptation—

when using first principles—was outperformed 30 times by the model predictive controller in a robustness check 
scenario.
1. Introduction

The production of target products (pharmaceuticals, enzymes, re-

combinant proteins, stem cells, and mammalian cells) by fed-batch 
cultures at high yields and quality is closely related to the cellular 
biomass-specific growth rate (SGR) [1–3]. Accurate control of the SGR 
improves the reproducibility of cultivation processes, and it is also crit-

ical for optimizing existing biosyntheses, as well as for developing new 
biosyntheses, in producing desirable products.

It should be stressed that the SGR is not directly measured, and 
the adaptation of the system controller to the time-varying dynam-

ics of fed-batch cultivation processes is necessary. Developing reliable 
SGR control systems is not a trivial task, and examples of SGR control 
schemas are rare in industrial applications.

The mainstream approach for SGR control depends on biomass con-

centration observations (see first row, Fig. 1, [4–7,9,10,19]), secreted 
metabolite concentrations (see fifth row, Fig. 1, [21–26]), or off-gas 
analysis-based information (sixth row, Fig. 1, [8,12,15–18]). Histor-

ically, a straightforward SGR control at a desired setpoint has been 
implemented with open-loop control systems. These systems are usu-

ally utilized in a conventional exponential feeding strategy [4,5,27], in 
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which the pattern of the controlled process can be considered, for exam-

ple, by the loss of biomass induced by the foaming [5]. However, these 
systems do not ensure accurate control when there are process-state 
variable deviations that change directions from the desired paths. Ex-

perimental investigations of open-loop control system performance for 
controlling the SGR in recombinant 𝐸. 𝑐𝑜𝑙𝑖 fed-batch cultures show sig-

nificant deviations of 14-19% of the controlled SGR from the setpoints 
at low setpoint values [4].

The biomass concentration estimate-based SGR control systems are 
developed through biomass concentration online estimates, which are 
obtained by using advanced instrumentation such as dielectric spec-

troscopy (Raman) and heat rate measurements. Dielectric spectroscopy 
is sensitive to viable biomass, and the SGR is computed using biomass 
concentration measurements [9,10]. The measurement device must be 
calibrated for each cell strain and culture condition. In control systems 
[9,10], modified feed-forward/feedback control algorithms are dedi-

cated to increasing the system’s performance when under exponential 
biomass growth dynamics. Experimental investigations of the proposed 
heuristic algorithms show limited control precision and noticeable os-

cillations when tracking the SGR setpoint. These control systems can 
be applied for various fed-batch cultures with minor modifications. In 
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Fig. 1. The chronological view of the SGR control progress with a distinct feedback signal per development (row).
[14], a nonlinear bioprocess model was developed to represent the CHO 
mammalian cell fed-batch cultivation process. This model was applied 
for the setpoint control of glucose concentration [20] in bioreactors, and 
this was achieved using the Model Predictive Control (MPC) approach. 
The proposed controller allowed for relatively good results with respect 
to glucose concentration control in the bioreactor. However, because of 
the non-stationary and non-linear relationship between glucose concen-

tration and the specific growth rate, the regulation of the fixed setpoint 
profile of glucose concentration gave different values for the SGR in dif-

ferent cultivation runs. An SGR control system that utilizes a metabolic 
heat rate signal was developed in [11]. The heat rate was used for the 
online estimation of an SGR feedback signal, which was applied in a 
feed-forward/feedback control system with a gain-scheduled PID con-

troller. Such a system was only limited by its applicability in specialized 
bioreactors, in which the heat compensation calorimeter was available. 
Experimental investigations were required to determine the control sys-

tem performance for the control of 𝑃 . Furthermore, pastoris fed-batch 
cultures at a steady setpoint have shown satisfactory results. However, 
the performance of the heat rate-based SGR estimator was not capa-

ble of being illustrated through a comparison of the estimates, and the 
actual SGR time trajectories at a setpoint step changed when transient 
conditions occurred.

Application of the dissolved oxygen concentration (DOC) for the 
SGR setpoint control was proposed in [13]. In such a bioreactor con-

trol system, the DOC is controlled using a cascade control system. In 
addition, the SGR is restricted to a steady setpoint by a model reference 
adaptive controller, the adaptation of which considers the estimated 
biomass concentration and volume of cultural liquid. The working ca-

pacity of the SGR control system was confirmed by fed-batch culture 
𝐵.𝑝𝑒𝑟𝑡𝑢𝑠𝑠𝑖𝑠 simulation and laboratory experiments. In order to avoid 
the oscillatory behavior of the SGR control due to interactions with the 
DOC control system, the controller-tuning parameters need to be cor-

rectly determined.

In the present work, a control system was developed to automati-

cally control fed-batch cultures at desired biomass SGR time profiles, 
thereby requiring no optimum search implementations to control the 
process. In this control system, the OUR-based SGR estimators devel-

oped by the authors were tested for the online calculation of a feedback 
signal [28]. The OUR measurements were also used for the SGR con-

troller adaptation to time-varying operating conditions. The motivation 
was that local concentration-oriented observations and their affordable 
sensors face non-homogeneous media [29,30], or morphological change 
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[31] issues when biomass concentrations are too high or too low.
Section 1 discusses the motives for using an adaptive control system 
with feedback from the SGR; Section 2 analyzes the literature relevant 
to this work; Section 3 describes the details of the bioreactor system, 
SGR estimation procedure, and development of the adaptive control 
system; Section 4 outlines the digital twin model of a cultivation pro-

cess; Section 5 lays out results of the control system and compares them 
with the experimental data; and the final section presents the conclu-

sions of this study.

2. Related works

The trade-off in existing control systems is that estimating the SGR, 
as based on biomass concentration and handling the rapid SGR setpoint 
variations, might become challenging [32]. The proposed partial-state 
feedback controllers with adjustable gains were developed using ten-

dency models of a controlled process, as well as by utilizing the knowl-

edge of process parameters.

The SGR feedback signal was calculated using the Luedeking–Piret-

type relationship [33,34] and the OUR online measurements in these 
systems. In the first control system, a model-based adaptation algorithm 
of the PI controller was developed using a mathematical model devel-

oped for the recombinant 𝐸. 𝑐𝑜𝑙𝑖 cultivation process. This model uses 
the OUR as a gain-scheduling variable. In the adaptation algorithm, 
the steady-state operating condition of the substrate concentration, as 
well as the constant value of the derivative 𝜕𝜇∕𝜕𝑠, were assumed. Such 
assumptions will, however, decrease the accuracy of controller adapta-

tion when greater SGR setpoint changes occur. In the second control 
system, tuning the ANN-based controller parameters requires a suffi-

cient amount of statistical experimental data. The process model-based 
simulations of the control system performance show that such systems 
deliver comparable control performances, and that they are suitable for 
applications that are subjected to growth-limiting substrate conditions. 
However, the simulation results have not yet been qualified by relevant 
laboratory experiments.

This study is a continuation of SGR control developments, in which 
information for SGR control is obtained from an off-gas analyzer. The 
equipment for exhaust gas analysis provides information for the online 
estimation of the oxygen uptakes and carbon dioxide production rates 
(OUR and CPR, respectively) that are used in the SGR control systems 
for the feedback signals [8,16,17,26], controller adaptation [33], and in 
the control of the growth rate at desired time profiles [8,12,15,35]. In 
[8], the control of the SGR was completed by using the generic model 

control (GMC) approach, which requires an accurate model of the con-
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trolled process and reliable online estimates of the following indirectly 
assessed state variables: the SGR, biomass, and the substrate concentra-

tions that are computed using OUR, CPR, and amount of base required 
for pH control. The system provided good results in a pilot bioreactor. 
However, these good results were achieved at the expense of model and 
measurement system development. In [12], the cascade control system 
was developed, which can hold the SGR time profile at a desired pro-

file during the fed-batch processes of recombinant protein production. 
The system directly controls the CPR and the cumulative amount of car-

bon dioxide at predetermined time trajectories, thus keeping the SGR 
and biomass growth trajectories at the desired paths. To apply the con-

trol system, the reference time trajectories of the controlled variables 
are to be determined in advance. In [15], the MPC strategy was applied 
to control the SGR in the animal cell (CHO-cell) suspensions that were 
cultivated for recombinant protein production. In [36], the integration 
of MPCs with a moving horizon estimation (MHE) framework was em-

ployed to enhance 𝐸. 𝑐𝑜𝑙𝑖 growth. This strategy efficiently fine-tuned 
the feeding system, thus yielding the intended outcomes. However, the 
intricate nature of cell metabolism introduces variability in the kinetic 
parameters that exist across diverse cultivation conditions, or can pro-

duce performance issues when optimum search implementations are 
necessary. An optimal SGR was maintained indirectly by manipulating 
the glutamine feed rate and controlling the oxygen consumption at de-

sired time trajectories.

The off-gas based systems were developed for controlling the SGR 
at a steady setpoint. In the control systems, the estimated ratio 𝑅 =
(d𝑂𝑈𝑅∕d𝑡)∕𝑂𝑈𝑅 (d is a differential operator), which asymptotically 
approached the SGR at steady setpoint control conditions, was used 
as a feedback signal in the SGR control loops. Such systems are well-

suited for keeping the SGR at a steady setpoint. However, they fail to 
control the SGR at the desired time-varying trajectories as there is no 
coincidence between the ratio 𝑅 and the SGR at transient conditions. 
Due to this reason, certain oscillations in the control system also occur 
due to controlling the SGR at a steady setpoint [17]. The digital twin 
of this study is a focus object that was obtained by additionally testing 
it with the MPC algorithm. The purpose was to compare two distinct 
candidate control algorithms, as well as to find the trade-offs in both. 
We assumed that our control strategy considered avoiding the overflow 
metabolism by design.

3. Materials and methods

3.1. Cell strains and cultivation conditions

The SGR control system and digital twin models were investi-

gated based on the data from the cultivation process of Escherichia coli

(𝐸. 𝑐𝑜𝑙𝑖) bacteria. A total of two bacterial strains were employed.

∙ 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alfa-5;

∙ 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a.

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alfa-5 bacteria were grown in a mini-

mal mineral medium, and the cultivation process protocol, as described 
in the research of [37], is shown in Table 1. The oxygen concentrations’ 
online measurements, ranging from 0 to 100%, were retrieved using the 
BlueSens BlueInOne Ferm gas analyzer for oxygen uptake rate evalua-

tion. The gas analyzer had an approximately 0.2% error. The airflow 
information data were taken from the Applikon BioBundle bioreactor.

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a bacteria were also grown in a minimal 
mineral medium, and the bioreactor growth protocol, as described in 
prior research [38], is stated in Table 2. To detect the oxygen uptake 
rate, a thermal mass flow controller (Bronkhorst–Mattig) was employed 
with a paramagnetic oxygen sensor (Maihak Oxor 610), and this was 
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then placed in the reactor vent behind the off-gas condenser.
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Table 1

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alfa-5 cultivation details.

Condition State Condition State

Bioreactor volume 7 L Broth volume 3.7 kg

Temperature 37 °C pH 6.8

pO2 20% Feeding start at 5-7 h

Stirrer 800-1200 RPM Induction time at 11-13 h

Table 2

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a cultivation details.

Condition State Condition State

Bioreactor volume 10 L Broth volume 5 kg

Temperature 35 °C pH 7

pO2 25% Feeding start at 4-6 h

Stirrer 100-1400 RPM Induction time at 9-10 h

In this study, the difference in the oxygen concentrations between 
the intake air flow and the bioreactor exhaust gas was used to calculate 
the oxygen uptake rate (OUR) [39]:

𝑂𝑈𝑅(𝑡) =
𝑄(𝑡) ⋅ (𝑂𝑖𝑛

2 (𝑡) −𝑂𝑜𝑢𝑡
2 (𝑡)) ⋅𝑀𝑂2

𝑉𝑚 ⋅𝑊 (𝑡) ⋅ 100
, (1)

where 𝑂𝑖𝑛
2 and 𝑂𝑜𝑢𝑡

2 are the oxygen concentrations of inlet and outlet 
gas flows, %; 𝑄 is the gas flow rate, L/h; 𝑊 is working volume of the 
bioreactor, kg; 𝑉𝑚 is the molar volume, mol/L; and 𝑀𝑂2

is molar mass 
of oxygen, g/mol.

3.2. Specific growth rate estimator

An SGR feedback signal based on the Luedeking–Piret model is es-

sential for developing an SGR automatic control system [40].

𝑂𝑈𝑅 (𝑡) = 𝛼 ⋅ 𝑥′ (𝑡) + 𝛽 ⋅ 𝑥 (𝑡) , (2)

where 𝑥 is the biomass concentration (g kg−1), 𝑡 is the time (h), 𝑂𝑈𝑅

is the oxygen uptake rate (g kg−1 h−1), and 𝛼 ≡ 𝑌𝑜∕𝑥 (g g−1) and 𝛽 (g 
g−1 h−1) are the stoichiometry parameters that determine the growth 
and maintenance properties of biomass. The SGR estimation procedure 
suggested in this study originates from biomass concentration estimates 
that were based on a bioreactor exhaust gas analysis [41,28]. The cho-

sen method exhibited stability in estimating biomass concentrations 
at various cultivation conditions. The estimator evaluates the online 
biomass concentration from the oxygen uptake rate (OUR) estimates, as 
well as providing a feedback signal for a SGR controller. In the research 
of [28], an estimator for biomass concentration was developed and in-

vestigated. The selected model described the evaluation of the process 
as follows:

𝑥𝑖 =
𝑥0 +

∑𝑖
𝑗=1

𝑂𝑈𝑅(𝑡𝑗 )
𝑌𝑜∕𝑥

𝑒

∑𝑗

𝑘=1
𝛽
(
𝑡𝑘
)

𝑌𝑜∕𝑥
△𝑡𝑘

△ 𝑡𝑗

𝑒

∑𝑖
𝑗=1

𝛽
(
𝑡𝑗

)
𝑌𝑜∕𝑥

△𝑡𝑗

, (3)

where 𝑥 is the estimated biomass concentration (g kg−1), and the 
boundary value 𝑥0 is the biomass concentration at inoculation time. In 
the study of [28], the parameter 𝛽 depended on biomass concentration 
rather than the assumed constant.

𝛽
(
𝑡𝑖
)
=
⎧⎪⎨⎪⎩
0, if

∑𝑖
𝑘=1 𝑥

(
𝑡𝑘
)
d𝑡𝑘 ≤ 𝑘𝑐𝑋

𝑚⋅(𝑥
(
𝑡𝑖
)
−𝑥𝑐𝑋 )

𝑥
(
𝑡𝑖
) , otherwise

(4)

where 𝑚 is the biomass maintenance term, and 𝑘𝑐𝑋 is a parameter that 
describes the time moment 𝑡𝑐𝑋 when the stoichiometry parameter 𝛽

is no longer equal to zero, as well as when the biomass concentration 
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𝑥𝑐𝑋 corresponds to the time when the following conditions hold 𝑘𝑐𝑋 ≡∑𝑡𝑗=𝑡𝑐𝑋
𝑗=1 𝑥(𝑡𝑗 ) △ 𝑡𝑗 , 𝑥𝑐𝑋 ≡ 𝑥(𝑡𝑐𝑋 ).
An issue with the stoichiometry parameter 𝛽 was discovered dur-

ing the investigation of the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a strain, which 
is characterized by a high-protein-synthesis capacity. The 𝛽 parameter 
was constructed using 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alpha-5 culture 
strain data, which has a significantly lesser efficacy in protein synthesis 
than the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a strain. Following induction (using, 
for example, isopropyl-d-1-thiogalactopyranoside/IPTG), cells start syn-

thesizing products with the use of more oxygen. Including an additional 
stoichiometry parameter 𝛾 , which reflects the oxygen consumption for 
protein synthesis, is the means through which to adapt the stoichiome-

try parameter 𝛽 (Equation (4)) model to the highest efficiency of protein 
production. The model of protein synthesis yielding 𝛾 was taken from 
the research of [38].

𝛾(𝑥) = 𝑘𝛾 ⋅ (𝑥(𝑡) − 𝑥𝑖𝑛𝑑 ), (5)

where 𝑘𝛾 is the yield of the product synthesis, which is considered con-

stant. 𝑥𝑖𝑛𝑑 is the biomass concentration at induction time moment 𝑡𝑖𝑛𝑑 . 
In order to apply Equation (5) to the stoichiometry parameter 𝛽 (Equa-

tion (4)), the 𝛾 parameter (Equation (5))—which was obtained from the 
research of [38]—was normalized as shown below:

𝛾∗(𝑥) ≡ 𝛾(𝑥)
𝑥(𝑡)

=
𝑘𝛾 ⋅ (𝑥(𝑡) − 𝑥𝑖𝑛𝑑 )

𝑥(𝑡)
, (6)

where 𝛾∗(𝑥) is normalized over the biomass concentration. Hence, the 
product synthesis led to the addition of the protein production compo-

nent 𝛾∗(𝑥) to the model of the stoichiometric parameter 𝛽. Currently, 
the 𝛽 parameter value is based on the bioprocess current state:

𝛽
(
𝑡𝑖
)
=
⎧⎪⎨⎪⎩

0, if
∑𝑖

𝑘=1 𝑥
(
𝑡𝑘
)
d𝑡𝑘 ≤ 𝑘𝑐𝑋,

𝑚(𝑥
(
𝑡𝑖
)
−𝑥𝑐𝑋 )

𝑥
(
𝑡𝑖
) +

{
0, if

∑𝑖
𝑘=1 𝑥

(
𝑡𝑘
)
d𝑡𝑘 > 𝑘𝑐𝑋 and 𝑡 ≤ 𝑡𝑖𝑛𝑑 ,

𝛾∗(𝑥),otherwise,

(7)

where 𝑡𝑖𝑛𝑑 is the induction time. The suggested definition of the sto-

ichiometry parameter 𝛽 in Equation (7) aims to preserve the original 
structure of the biomass concentration estimation model (Equation (3)). 
The specific growth rate values for the SGR control system were ob-

tained in conjunction with the evaluation of the biomass concentration. 
The following equation was used to calculate the SGR for the time in-

terval △𝑡𝑖 ≡ 𝑡𝑖,𝑖−1 = 𝑡𝑖 − 𝑡𝑖−1 [42]:

𝜇(𝑡𝑖) ≡ 𝜇(𝑡𝑖,𝑖−1) =
𝑙𝑛( 𝑥(𝑡𝑖)

𝑥(𝑡𝑖−1)
)

△𝑡𝑖
, (8)

where 𝜇 is the specific growth rate.

3.3. Gain scheduling for the SGR controller adaptation

3.3.1. Adaptive transfer function of the controlled process

Ordinary feedback control systems with fixed-gain PID (PI) con-

trollers cannot handle accurate control challenges for the SGR due to 
significant variations in the controlled process of the dynamics that 
occur throughout the fed-batch biosynthesis. As a result, a controller 
adaptation to time-varying operating conditions is required to increase 
the control system’s performance. The adaptation is based on exploit-

ing a tendency model that describes the essential dynamical features of 
the controlled process as follows:

d𝑠
d𝑡

= 𝜇(𝑠)
𝑌𝑠∕𝑥

𝑥+ 𝑢
𝑠𝑓 − 𝑠

𝑊
, (9)

𝜇(𝑠) =
𝜇𝑚𝑎𝑥 ⋅ 𝑠
𝑠+ 𝑘𝑠

, (10)

where 𝑠 is the substrate concentration; 𝑢 is the feeding rate (manipu-
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lated variable); 𝑠𝑓 is the feeding substrate concentration; and 𝜇𝑚𝑎𝑥, 𝑘𝑠, 
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𝑌𝑠∕𝑥 are the specific constants that are dependent on cell culture. Equa-

tion (9) represents the mass balance for the substrate, and Equation (10)

represents the Monod relationship that relates to a specific growth rate 
for substrate concentration [43].

The linearization of the model’s Equations (9) and (10) at the state 
points of the variables 𝑠 and 𝑢—which were sampled on 𝑡𝑘—lead to the 
following equations:

d(△𝑠)
d𝑡

= −
(

𝑥

𝑌𝑠∕𝑥

𝜕𝜇(𝑠)
𝜕𝑠

+ 𝑢

𝑊

)
𝑡=𝑡𝑘

△ 𝑠+
(
𝑠𝑓 − 𝑠

𝑊

)
𝑡=𝑡𝑘

△ 𝑢, (11)

△𝜇 =
(
𝜇𝑚𝑎𝑥 ⋅ 𝑘𝑠
(𝑠+ 𝑘𝑠)2

)
𝑡=𝑡𝑘

△ 𝑠, (12)

where △𝑠 and △𝑢 denote the small deviations of 𝑠 and 𝑢 from the 
state point values at time 𝑡𝑘.

The linear Equations (11) and (12) describe the controlled process 
dynamics along the process’s trajectory. From the above equations, the 
following transfer function models of the process can be derived:

𝐺△𝑠∕△𝑢(𝑝) =
△𝑠(𝑝)
△𝑢(𝑝)

=
𝐾△𝑠∕△𝑢(𝑡𝑘)

𝑇△𝑠∕△𝑢(𝑡𝑘)𝑝+ 1
, (13)

𝐺△𝜇∕△𝑠(𝑝) =
△𝜇(𝑝)
△𝑠(𝑝)

=𝐾△𝜇∕△𝑠(𝑡𝑘), (14)

where

𝐾△𝑠∕△𝑢(𝑡𝑘) =
𝑠𝑓 − 𝑠(𝑡𝑘)

𝑥(𝑡𝑘)𝑊 (𝑡𝑘)
𝑌𝑠∕𝑥

𝜕𝜇

𝜕𝑠
(𝑡𝑘) + 𝑢(𝑡𝑘)

, (15)

𝑇△𝑠∕△𝑢(𝑡𝑘) =
𝑊 (𝑡𝑘)

𝑥(𝑡𝑘)𝑊 (𝑡𝑘)
𝑌𝑠∕𝑥

𝜕𝜇

𝜕𝑠
(𝑡𝑘) + 𝑢(𝑡𝑘)

, (16)

𝐾△𝜇∕△𝑠(𝑡𝑘) =
𝜕𝜇

𝜕𝑠
(𝑡𝑘) =

𝜇𝑚𝑎𝑥𝑘𝑠(
𝑠(𝑡𝑘) + 𝑘𝑠

)2 , (17)

where 𝑝 is the Laplace operator; 𝐾△𝑠∕△𝑢 and 𝐾△𝜇∕△𝑠 are the gain 
coefficients; and 𝑇△𝑠∕△𝑢 is the time constant of the controlled process.

The transfer function models (13) - (17) representing the first-order 
dynamics of the controlled process should also be supplemented with 
a time-delay term 𝜏𝑝𝑟. This term helps with estimating the delay of 
the SGR’s reaction with respect to the substrate concentration change 
dynamics and other possible delays in the control system elements—

aspects that are not taken into account in the simplified first principles 
model (9), (10).

The resultant transfer function of the controlled process takes the 
form of the first-order plus time delay model:

𝐺△𝜇∕△𝑢(𝑝) =
△𝜇(𝑝)
△𝑢(𝑝)

=𝐺△𝜇∕△𝑠(𝑝) ⋅𝐺△𝑠∕△𝑢(𝑝) ⋅ 𝑒𝑥𝑝(−𝜏𝑝𝑟𝑝) =

𝐾𝑝𝑟(𝑡𝑘)
𝑇𝑝𝑟(𝑡𝑘)𝑝+ 1

𝑒𝑥𝑝(−𝜏𝑝𝑟𝑝),
(18)

where 𝐾𝑝𝑟(𝑡𝑘) is the resultant gain coefficient (𝐾𝑝𝑟(𝑡𝑘) = 𝐾△𝜇∕△𝑠(𝑡𝑘) ⋅
𝐾△𝑠∕△𝑢(𝑡𝑘)); 𝑇𝑝𝑟(𝑡𝑘) is the resultant time constant (𝑇𝑝𝑟(𝑡𝑘) =
𝑇△𝑠∕△𝑢(𝑡𝑘)); and 𝜏𝑝𝑟 is the resultant time delay. The total amount of 
biomass (𝑥𝑉 ) at time 𝑡𝑘 in the relationships (15) and (16) can be indi-

rectly estimated online from the OUR measurements via the following 
relationship:

d(𝑥𝑊 )
d𝑡

≅ 𝑌𝑜∕𝑥𝑂𝑈𝑅, (19)

𝑥(𝑡𝑘)𝑊 (𝑡𝑘) ≅ 𝑌𝑜∕𝑥

𝑡𝑘

∫
𝑡0

𝑂𝑈𝑅d𝑡, (20)

where 𝑌𝑜∕𝑥 is the biomass yield coefficient concerning the oxygen found 

in reference sources, or is estimated from previous experiments.
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For computing the expression (17), the transfer function parameter 
𝐾△𝜇∕△𝑠 and the derivative 𝜕𝜇∕𝜕𝑠(𝑡𝑘) values in the relationships (15), 
(16), and the online measurements of the substrate concentration 𝑠(𝑡𝑘)
are necessary. As the substrate concentration is not directly measured, it 
can be indirectly estimated from the Monod relationship (10) by equat-

ing it to the estimated value of the controlled SGR (𝜇, which is where 
the hat operator is used to denote the estimator or estimated value):

𝑠(𝑡𝑘) =
𝑘𝑠𝜇(𝑡𝑘)

𝜇𝑚𝑎𝑥 − 𝜇(𝑡𝑘)
. (21)

By substituting (20) and (21) into Equations (15)-(17), as well as 
by taking into account the significant distinctions in the term values in 
Equations (15) and (16), 𝑠𝑓 ≫ 𝑠(𝑡𝑘), and 𝑥(𝑡𝑘)𝑊 (𝑡𝑘)

𝑌𝑠∕𝑥

𝜕𝜇

𝜕𝑠
(𝑡𝑘) ≫ 𝑢(𝑡𝑘), the 

transfer function (18) parameters can be roughly assessed from the fol-

lowing relationships:

𝐾𝑝𝑟(𝑡𝑘) ≅
𝑠𝑓 𝑌𝑠∕𝑥

𝑌𝑜∕𝑥 ∫ 𝑡𝑘
𝑡0

𝑂𝑈𝑅 d𝑡
, (22)

𝑇𝑝𝑟(𝑡𝑘) ≅
𝑌𝑠∕𝑥𝜇𝑚𝑎𝑥𝑘𝑠𝑊 (𝑡𝑘)

𝑌𝑜∕𝑥(𝜇𝑚𝑎𝑥 − 𝜇(𝑡𝑘))2 ∫ 𝑡𝑘
𝑡0

𝑂𝑈𝑅 d𝑡
, (23)

where parameters 𝜇𝑚𝑎𝑥, 𝑘𝑠, 𝑌𝑠∕𝑥, and 𝑌𝑜∕𝑥 can be found in reference 
sources, or they can be estimated from previous experiments.

If the dynamic process parameters (22) and (23) are updated online 
with the measured values of the volume, 𝑂𝑈𝑅 and the SGR, the trans-

fer function model (18) follows the time-varying state of the controlled 
process; moreover, they can also be directly applied for the online adap-

tation of the SGR controller parameters.

3.3.2. Controller adaptation

The PI controller was used in the developed SGR control system, and 
this was less sensitive to feedback signal noise than the PID controller.

The transfer function model (18)—which was updated online with 
the estimated values of parameters 𝐾𝑝𝑟(𝑡𝑘) and 𝑇𝑝𝑟(𝑡𝑘)—was directly ap-

plied for the adaptation of the PI controller to the time-varying state of 
the controlled process, and this was achieved using the controller tuning 
rules that were developed for dynamic models. In this way, the con-

troller parameters were recalculated at each control sampling step, and 
the mismatch between the process state and controller settings (which 
occurs in a conventional control system) was avoided.

We applied the Kappa-Tau tuning rules to develop the SGR con-

troller adaptation [44]. In the SGR control system, the PI controller 
tuning rules for a maximum sensitivity of 𝑀𝑠 = 1.4 were used:

𝐾𝑐(𝑡𝑘) = 0.29
𝑇𝑝𝑟(𝑡𝑘)

𝐾𝑝𝑟(𝑡𝑘)𝜏𝑝𝑟
𝑒𝑥𝑝(−2.7𝜏(𝑡𝑘) + 3.7𝜏(𝑡𝑘)2), (24)

𝑇𝑖(𝑡𝑘) = 0.79𝑇𝑝𝑟(𝑡𝑘)𝑒𝑥𝑝(−1.4𝜏(𝑡𝑘) + 2.4𝜏(𝑡𝑘)2), (25)

𝑏(𝑡𝑘) = 0.79𝑒𝑥𝑝(−1.4𝜏(𝑡𝑘) + 2.4𝜏(𝑡𝑘)2), (26)

𝜏(𝑡𝑘) =
𝜏𝑝𝑟

𝜏𝑝𝑟 + 𝑇𝑝𝑟(𝑡𝑘)
, (27)

where 𝐾𝑐 is the controller gain, 𝑇𝑖 is the integral time constant, and 𝑏
is the setpoint weight factor (i.e., the tuning parameter of the modified 
PI control [44]) that was estimated at time 𝑡𝑘.

By substituting the transfer function (18), the parameter values were 
retrieved from Equations (22) and (23) into the tuning rules (24)-(27); 
as such, the formulas for the controller adaptation were derived. The 
trial-and-error technique can improve the controller tuning parameters 
in the above formulas.

The block scheme of the SGR adaptive control system is depicted in 
5789

Fig. 2.
Computational and Structural Biotechnology Journal 21 (2023) 5785–5795

Fig. 2. Block scheme of the SGR adaptive control system.

4. Investigation of the SGR control system performance

4.1. Digital twin

The performance of the SGR control system shown in Fig. 2 was 
initially investigated using numeric simulations. The simulation experi-

ments were simulated in a MATLAB/Simulink environment. In the tests, 
a parametric model (digital twin) of the 𝐸. 𝑐𝑜𝑙𝑖 fed-batch cultivation 
process was used to simulate the controlled biosynthesis as follows:

d𝑥
d𝑡

= 𝜇(𝑠) ⋅ 𝑥(𝑡) − 𝐹 (𝑡) 𝑥(𝑡)
𝑊 (𝑡)

, (28)

d𝑠
d𝑡

= −𝑞𝑠(𝑠)𝑥(𝑡) − 𝐹 (𝑡) 𝑠(𝑡)
𝑊 (𝑡)

+ 𝑢(𝑡)
𝑠𝑓

𝑊 (𝑡)
, (29)

d𝑊
d𝑡

= 𝐹 (𝑡) − 𝐹𝑠𝑚𝑝, (30)

𝐹 (𝑡) = 𝑢(𝑡) + 𝐹𝑏(𝑡) + 𝐹𝑒(𝑡), (31)

𝐹𝑏(𝑡) = 𝑌𝑥𝑏 ⋅ 𝜇(𝑠) ⋅ 𝑥(𝑡) ⋅𝑊 (𝑡), (32)

𝐹𝑒(𝑡) = −𝑘𝑒 ⋅𝑊 (𝑡), (33)

𝜇(𝑠) =
𝜇𝑚𝑎𝑥 ⋅ 𝑠(𝑡)
𝑘𝑠 + 𝑠(𝑡)

, (34)

𝑞𝑠(𝑠) =
⎧⎪⎨⎪⎩
(

𝜇(𝑠)
𝑌𝑥∕𝑠

)
, 𝑡 ≤ 𝑡𝑖𝑛𝑑(

𝜇(𝑠)
𝑌𝑥∕𝑠

+ 𝑌𝑠∕𝑝

)
, otherwise

(35)

𝑂𝑈𝑅 (𝑡) = 𝜇 (𝑠) ⋅𝑥 (𝑡) ⋅𝑌𝑜∕𝑥+

⎧⎪⎪⎨⎪⎪⎩
0, if

𝑡

∫
0

𝑥(𝑡∗)d𝑡∗ ≤ 𝑘𝑐𝑋

𝑚(𝑥 (𝑡) − 𝑥𝑐𝑋 ) +
{
𝛾(𝑥), 𝑡 ≥ 𝑡𝑖𝑛𝑑
0, otherwise

(36)

where 𝑞𝑠 is the specific substrate consumption rate g g−1 h−1, and 𝑌𝑠∕𝑝
is the constant tuning coefficient. 𝐹𝑠𝑚𝑝 is the amount lost during sam-

pling, kg/hr; 𝐹𝑏 is an alkaline solution for pH control, kg/hr; 𝐹𝑒 is the 
evaporation of the medium through the vent line, kg/hr; 𝑌𝑥𝑏 is the pa-

rameter that represents the necessity of the alkali solution to the control 
pH due to the cell growth; and 𝑘𝑒 is the coefficient of the nutritional 
medium evaporation.

Equations (28)-(30) are differential formulas of the main cultivation 
process variables [17,45]. Equation (34) is the same Monod expression 
as in Equation (10), in terms of having its digital twin and observer both 
depending on the identical object model. When the cultivation method 
includes induction (IPTG), Equation (35) is a more suitable version of 
the glucose consumption formula than the classical one [17]. Before 
induction, biomass maintenance is negligibly low or equal to zero; af-

ter product synthesis begins following induction, glucose consumption 
rises rapidly [38]. Equation (36) is taken from the study of biomass es-

timation [28,38], which is when the oxygen consumption maintenance 
term is significant after a specific biomass accumulation 𝑘𝑐𝑋 and when 

the glucose consumption term appears after induction.
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The simulation system includes an additional element through 
which to prevent the model from reaching the unachievable condition 
where the glucose concentration cannot become negative. The element 
is a condition where the glucose consumption cannot exceed the glu-

cose concentration in the bioreactor 𝑞𝑠(𝑠)𝑥(𝑡)d𝑡 ≤ 𝑠(𝑡). In such a case, 
when the glucose consumption is greater than the glucose concentra-

tion, then the specific cell growth rate is recalculated regarding the 
remaining glucose concentration in the bioreactor medium:

𝜇(𝑠) =

⎧⎪⎪⎨⎪⎪⎩

(
𝑠(𝑡) ⋅ 𝑌𝑥∕𝑠
𝑥(𝑡)d𝑡

)
, 𝑡 ≤ 𝑡𝑖𝑛𝑑(

𝑠(𝑡) ⋅ 𝑌𝑥∕𝑠
𝑥(𝑡)d𝑡

)
− 𝑌𝑠∕𝑝𝑌𝑥∕𝑠, otherwise

(37)

Equation (37) is derived from Equation (35) by adding biomass and 
glucose concentrations.

The lag phase term was introduced to the simulation to make it 
more representative by enabling it to function from the start of the cul-

ture process. The cell culture cellular adaption, or lag phase, is when 
the biomass reproduction slowly reaches its total capacity. In the sim-

ulation, the specific growth rate parameter value is set to zero at the 
inoculation moment, and, after that, the cell reproduction slowly in-

creases. An exponential filter defines the slow dynamics of the specific 
growth rate during the lag phase. The proposed expression has input 
values that originate from Equation (34) [46]:

𝜇(𝑡𝑘) = 𝜇(𝑠) ⋅𝑤+ (1 −𝑤) ⋅ 𝜇(𝑡𝑘−1), 𝑡𝑘 ≤ 𝑡𝑙𝑎𝑔 (38)

where 𝑤 is the numeric filter weight and 𝑡𝑙𝑎𝑔 is, approximately, the 
duration time of the lag phase. The weight of the exponential filter 
turns into one when the cultivation time surpasses the lag phase period.

Furthermore, the replication included Gaussian noise (with the per-

centage standard deviation 𝜎 set to 3%), and this was added to the OUR 
signal to make the simulated behavior more descriptive for controller 
verification than is the case for developed digital twin purposes.

4.2. Investigation of the SGR control using first principles

To investigate the performance of the SGR control, the digital twin 
assisted as the object, and the SGR estimator provided the necessary 
feedback signal. The time sampling step of the recursive SGR estimation 
and the discrete PI control was set to △𝑡=0.0166 h in the simulation 
experiments. The control action of the SGR controller at each control 
sampling time point was calculated using the velocity from [47] re-

garding the following discrete PI control algorithm:

𝑢(𝑡𝑘) = 𝑢(𝑡𝑘−1) +△𝑢(𝑡𝑘), (39)

△𝑢(𝑡𝑘) =𝐾𝑐(𝑡𝑘)
(
𝑒𝑏(𝑡𝑘) +

△𝑡𝑘
𝑇𝑖(𝑡𝑘)

𝑒(𝑡𝑘) − 𝑒𝑏(𝑡𝑘−1)
)
, (40)

𝑒𝑏(𝑡𝑘) = 𝑏(𝑡𝑘)𝜇𝑠𝑒𝑡 − 𝜇(𝑡𝑘), (41)

𝑒(𝑡𝑘) = 𝜇𝑠𝑒𝑡(𝑡𝑘) − 𝜇(𝑡𝑘), (42)

where 𝑢(𝑡𝑘) is the control action (feeding rate) at time 𝑡𝑘; △𝑡𝑘 is the 
time sampling step of control actions (△𝑡𝑘 ≡ 𝑡𝑘 − 𝑡𝑘−1); 𝜇𝑠𝑒𝑡(𝑡𝑘) is the 
setpoint value of the specific growth rate at time 𝑡𝑘; 𝜇(𝑡𝑘) is the esti-

mated value of the specific growth rate; and 𝐾𝑐(𝑡𝑘), 𝑇𝑖(𝑡𝑘) and 𝑏(𝑡𝑘) are 
the PI controller parameters, which were determined at time 𝑡𝑘 from 
the Kappa-Tau tuning rules (39)-(42). The controller compatibility with 
SGR estimation algorithms was demonstrated using the methodology 
from Section 3.2 as the feedback signal to the controller.

The values of the parameters that define cell culture essential infor-

mation (28)-(38) are given in Table 3.

The values proposed in Table 3, as well as the initial values (𝑥0=0.5 
g kg−1, 𝑠0=5 g kg−1, 𝑊0=8 kg), were taken from the research works of 
[17,28,42]. The controller parameter 𝜏𝑝𝑟 was manually recalibrated in 
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Table 3

Model parameter values.

Parameters Value Dimension Parameters Value Dimension

𝑠𝑓 637 g kg−1 𝑘𝑠 0.07 g kg−1

𝑚 0.07 g g−1 h−1 𝑌𝑥∕𝑠 0.4 g g−1

𝑌𝑜∕𝑥 0.75 g g−1 𝑘𝑐𝑋 17 g h kg−1

𝜇𝑚𝑎𝑥 0.7 h−1 𝑤 0.02 -

𝑡𝑙𝑎𝑔 4 h−1 𝑘𝛾 0.08 g g−1 h−1

𝑌𝑠∕𝑝 0.035 g g−1 𝑡𝑖𝑛𝑑 11-13 h

𝑌𝑥𝑏 7 ⋅ 10−4 - 𝑘𝑒 5 ⋅ 10−4 h−1

𝜆 0.05 - 𝜏𝑝𝑟 5.5 ⋅ 10−4 -

strain. The calibration result graphs of the controller are presented in 
Fig. 3. The digital twin and controller test performances are shown in 
Fig. 4.

The simulated control system performances are presented in Figs. 3

and 4 (Experiments I and II). The SGR setpoint step-wise change time 
trajectory was used to investigate the controller adaptation at abrupt 
operating conditions. The results presented in Fig. 4 show that the con-

trol algorithm remains stable after Heaviside-like steps in the setpoint 
profile. Overshoot occurs when there is a sudden drop in the setpoint. 
At these types of moments, the algorithm has to cope with a consider-

able deceleration of the SGR.

4.3. Investigation of SGR control when using the MPC

The MPC analysis involved three efforts: digital twin modeling, opti-

mization criteria selection [48,49], and the optimum search implemen-

tation. A digital twin is a prediction tool through which to obtain a 
reference glucose feeding profile (𝐹𝑟𝑒𝑓 ):

𝐹𝑟𝑒𝑓𝑖 =
𝑞𝑠(𝑠𝑖)
𝑆𝑓 − 𝑠𝑖

⋅ 𝑥𝑖−1𝑊𝑖−1𝑒
𝜇𝑠𝑝𝑖△𝑡𝑖 , (43)

where 𝑥0 and 𝑊0 are the initial values in each iteration when assess-

ing the 𝐹𝑟𝑒𝑓 profile, and 𝜇𝑠𝑝 is the SGR value from the reference SGR 
profile. The next part of the MPC was responsible for evaluating the 
optimization criterion, as well as maintaining the reference trajectory 
during the process by minimizing the quadratic cost function, which is 
based on the errors between the reference and the online process value 
with a fixed number of samples 𝑁𝑝 = 10 (where a sampled interval was 
one minute):

Φ=
𝑁𝑝∑
𝑙=1

(𝜇 − 𝜇𝑠𝑝)2 + 𝜆

𝑁𝑝∑
𝑙=1

(𝑢− 𝐹𝑟𝑒𝑓 )2 (44)

where 𝜆 is the control penalty gain. Feed forward optimization was 
necessary for the MPC algorithm to adapt to the process. The convex 
optimization from [34] was chosen as the rational tool for the mini-

mization of the Φ criteria:

𝑚𝑖𝑛Φ(𝜇𝑛, 𝑢𝑛) (45)

In Fig. 5, the MPC test results show satisfactory precision. However, 
in order to run the MPC, a monitoring program should run the digital 
twin with optimum search implementations ready, as makes this ap-

proach more complicated compared to the adaptive PI when using first 
principles.

5. Experimental investigation

The effectiveness and dependability of the SGR estimator and sim-

ulation (digital twin) were investigated with the data from the actual 
𝐸. 𝑐𝑜𝑙𝑖 culture process. Out of all the trials, the growth-limiting feed 
rate experiments were chosen for analysis. The SGR regulation and 
digital twin were explored by a data analysis of the experiments with 

substrate feeding rates that resulted in various growth-limiting depths.
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Fig. 3. Controller parameters: gain (a), integration time constant (b), and the setpoint weighting parameter (c).

Fig. 4. Feeding rate (manipulated variable) (a); the glucose concentration in a bioreactor (b); the SGR controlled value (c).
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Fig. 5. MPC tests. The feeding rate (manipulated variable) (a); the glucose concentration in a bioreactor (b); and the SGR controlled value (c).
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Table 4

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a strain parameters for the digital twin model.

Parameters Value Dimension Parameters Value Dimension

𝑠𝑓 600 g kg−1 𝑘𝑠 0.1 g kg−1

𝑚 0.05 g g−1 h−1 𝑌𝑥∕𝑠 0.75 g g−1

𝑌𝑜∕𝑥 0.75 g g−1 𝑘𝑐𝑋 17 g h kg−1

𝜇𝑚𝑎𝑥 0.75 h−1 𝑤 0.013 -

𝑡𝑙𝑎𝑔 4 h−1 𝑘𝛾 0.38 g g−1 h−1

𝑌𝑠∕𝑝 0.03 g g−1 𝑡𝑖𝑛𝑑 9-10 h

The comparison procedure was carried out in the following order:

1. A setpoint-specific growth rate profile was generated from the ex-

perimental data for each cultivation process test.

2. The initial cultivation conditions (x(0), s(0), and W(0)) of the inoc-

ulation moment were preset with observed values.

3. The SGR control (of this study) started action after receiving the 
first feedback from the digital twin infrastructure. The parameter 
values regarding the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alfa-5 strain’s 
parameters are given in Table 3, and the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) 
pET28a strain’s parameters are presented in Table 4.

4. The SGR described in Section 3.2 was employed as the SGR feed-

back signal to the control system.

5. During the verification of the digital twin and controller repeata-

bility, the system output was matched with the ground-truth data. 
In this check, the feedback signal originated from Equations (34)

and (37). Other system signals also passed the consistency checks.

Setpoint profiles of the specific growth rates were generated using 
the experimental data and the SGR estimation technique (which are 
described in Section 3.2). During the validation tests, the indicator of 
the mean absolute error (MAE) and the normalized root mean square 
error (RMSE) was applied to describe the precision of the digital twin 
and the control of the SGR [50]:

𝑀𝐴𝐸 =
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑦𝑖|
𝑛

, (46)

𝑁𝑅𝑀𝑆𝐸 =

√∑𝑛
𝑖=1(𝑦𝑖−𝑦𝑖)

2

𝑛

𝑚𝑎𝑥(𝑦) −𝑚𝑖𝑛(𝑦)
, (47)

where 𝑛 is the number of samples, 𝑦𝑖 is the estimation and manipulated 
variable result, and 𝑦𝑖 is a value that is measured or manipulated dur-

ing cultivation. The suggested control system precision and the “Digital 
twin”-numeric behavior simulation results were demonstrated using the 
MAE and NRMSE precision criteria. In total, 15 cultivation process ex-

periments were investigated in two different 𝐸. 𝑐𝑜𝑙𝑖 bacteria strains. 
The digital twin model results are shown in Table 5, and the whole sys-

tems that used the SGR estimator and the OUR model prediction are 
shown in Table 6.

Testing experiments that used actual data and two different types 
of feedback were accomplished so as to demonstrate the digital twin 
and controller numeric performances. A feedback outcome from the 
numerical models (Equations (34) and (37)) shows the precision of the 
controller and digital twin. The SGR estimation dictated an excess bias 
to the system response precision.

When comparing the results of the control systems from Table 5 and 
Table 6, the results showed that the SGR control performance was more 
precise when the feedback signal was evaluated in a less complicated 
manner (i.e., directly from the digital twin model, as in Table 5).

The average MAE of both the SGR control systems compared to the 
biomass concentration was 1.154 g kg−1, and the NRMSE was 3.145%. 
The overall average MAE compared with the glucose concentration 
of both the SGR control systems was 0.175 g kg−1, and the NRMSE 
was 4.831%. The average MAE of the OUR was 0.425 g kg−1 h−1, the 
NRMSE was 5.238%, the overall average MAE of the substrate feeding 
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rate was 4.756 g h−1, and the NRMSE was 3.982%.
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Fig. 6 displays experiment test number 3 of the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) 
pET21-IFN-alfa-5 cell strain experiment. Fig. 7 graphically presents the 
results of experiment test number 5 of the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a 
cell strain.

In Figs. 6 and 7, the confidence band values of 𝛼 = 0.01, the error 
bars of a systematic error of 0.2 g kg−1, and a random error of 4% are 
shown. These errors reflect the bounds of the experimentation-related 
errors and device characteristics. The confidence band of the biomass 
was evaluated by comparing the experiment measurements and the es-

timated values. The errors were classified by biomass concentration to 
obtain the following:

𝑒(𝑥) = 5.8 ⋅ 10−4𝑥2 + 9.767 ⋅ 10−3𝑥. (48)

Furthermore, the findings of this study, which were obtained using 
first principles, were also compared with previous MPC outcomes [49]. 
A comparison of the results is shown in Table 7, and this comparison 
proved that an adaption using first principles has a similar bias. How-

ever, there was one noticeable benefit in contrast to the MPC, which is 
that the adaptation of the PI does not require optimum search imple-

mentations in the manner that MPC does.

To compare the robustness of both the MPC and PI adaptations when 
using first principles, the culture-related controller parameters (Table 3

and 4) were randomized, the adaptation parameters were recomputed, 
and both systems were executed. The picked stress test scenario updated 
the inputs of the controller parameter values by artificially appending 
the RAND function 𝑘 = 𝑘 +𝑘 ⋅𝑅𝑎𝑛𝑑(−0.5, 0.5). The purpose was to simu-

late the situation where a less-known cell strain is being cultivated. The 
results of such an experiment were compared with the ground-truth 
process data, which are shown in Figs. 6 and 7. Both controllers man-

aged to deal with the scenario, and the biomass concentration produced 
values that matched the ground truth (expected) information. However, 
the MPC system performed 30 times slower due to the optimum search 
convergence and bias in the 𝐹𝑟𝑒𝑓 reference profile. Such MPC slowness 
was not noticeable in ideal scenarios with no randomization. However, 
the latter, as well as the extremum pursuit routines, were not necessary 
when utilizing an approach that uses first principles. Finally, qualita-

tively speaking, both the adaptive PI that used first principles and the 
MPC produced repeatable outcomes; thus, robustness was confirmed.

6. Conclusions

This paper develops an adaptive control system for the setpoint 
control of the biomass specific growth rate, i.e., SGR, in fed-batch culti-

vation processes (in which a linear PI controller is applied for nonlinear 
process control). The feedback signal for the system controller was ob-

tained from the OUR measurements-based SGR estimator, as well as 
from the digital twin numerical simulation. The controller adaptation 
was based on a first principles model of a controlled process, specifically 
one that is linearized around the current state. The resultant dynamic 
parameters of the linearized model were updated online with the mea-

sured values of the process variables, and these were then directly 
applied for the tuning rules-based adaptation of controller parameters.

The SGR control system was tested using numeric simulation. Over-

all, the SGR control precision was tested by comparing the resulting 
biomass concentration with the experimental data. The following re-

sults were obtained: 1.154 g kg−1 for the MAE indicator and 3.145% 
for the RMSE. The SGR signal tracking errors were negligible. For com-

parison, the MPC controller was also implemented and tested on the 
same digital twin infrastructure. Both methods demonstrated similar 
qualitative outcomes and confirmed their robustness. However, the ran-

domization of the controller parameters caused a convergence slowness 
in the MPC execution. Meanwhile, the adaptive PI that used first prin-

ciples had no performance issues, and it was approximately 30 times 
faster in contrast to the MPC. Therefore, the developed SGR control sys-

tem can be applied to control various fed-batch cultures, i.e., where the 

slowness caused by optimum search implementations is not acceptable. 
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Table 5

Results of the digital twin and control during validation when the feedback was modeled by Equations (34) and (37).

Exp. no.

Biomass conc. Glucose conc. OUR Feeding rate

MAE NRMSE MAE NRMSE MAE NRMSE MAE NRMSE

g kg−1 % g kg−1 % g kg−1 % g kg−1 %

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alfa-5

1 0.895 2.618 0.057 2.317 0.373 5.733 5.392 3.357

2 0.792 1.755 0.068 2.844 0.276 1.648 6.934 4.199

3 0.577 1.348 0.111 4.117 0.582 5.791 5.749 2.728

4 0.467 0.958 0.052 2.221 0.358 3.949 4.609 2.188

5 0.713 1.729 0.052 2.366 0.387 4.617 4.976 2.729

6 0.723 1.669 0.142 3.568 0.312 3.703 4.698 3.169

7 0.538 2.157 0.157 4.551 0.281 5.394 5.155 3.289

8 1.116 3.613 0.286 8.533 0.522 5.449 6.124 3.572

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a

1 0.974 3.921 0.089 2.518 0.416 7.165 2.489 5.185

2 1.321 5.039 0.219 3.819 0.367 6.064 2.941 5.463

3 1.738 6.269 0.339 7.305 0.363 6.204 2.127 5.466

4 1.059 3.999 0.274 5.268 0.527 7.710 4.733 6.507

5 0.813 3.285 0.224 5.215 0.418 6.250 2.810 5.725

6 0.797 3.433 0.181 3.799 0.316 5.557 3.465 6.149

7 2.044 6.313 0.371 12.84 0.632 6.039 2.646 4.751

Table 6

Results of digital twin and control during the validation when the SGR feedback is estimated.

Exp. no.

Biomass conc. Glucose conc. OUR Feeding rate

MAE NRMSE MAE NRMSE MAE NRMSE MAE NRMSE

g kg−1 % g kg−1 % g kg−1 % g kg−1 %

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alfa-5

1 0.598 1.378 0.057 2.313 0.364 5.298 5.606 2.889

2 1.617 3.311 0.068 2.836 0.405 1.848 5.861 3.159

3 0.831 1.976 0.111 4.108 0.393 4.381 7.068 2.872

4 1.380 3.414 0.053 2.221 0.493 5.024 8.696 3.720

5 1.599 3.653 0.052 2.366 0.566 5.957 7.326 3.525

6 1.158 2.805 0.142 3.568 0.325 3.241 5.506 2.932

7 1.041 1.359 0.156 4.550 0.382 2.042 5.475 2.735

8 0.573 1.515 0.285 8.511 0.203 2.225 4.817 2.305

𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a

1 1.444 3.921 0.091 2.517 0.536 7.165 3.434 5.185

2 1.756 5.039 0.215 3.819 0.371 6.064 3.838 5.463

3 2.203 6.269 0.339 7.305 0.361 6.204 3.362 5.465

4 1.254 3.999 0.267 5.268 0.617 7.710 4.959 6.507

5 1.075 3.284 0.244 5.215 0.474 6.250 4.153 5.725

6 1.045 3.433 0.181 3.799 0.399 5.557 4.243 6.149

7 2.464 6.313 0.371 12.84 0.739 6.039 3.475 4.751

Fig. 6. The graphical view of the cultivation process #3 data of the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET21-IFN-alfa-5 strain and of the SGR control system results with the two 
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different types of SGR feedback.
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Fig. 7. The graphical view of the cultivation process #5 data of the 𝐸. 𝑐𝑜𝑙𝑖 BL21 (DE3) pET28a strain and the SGR control system results with the two different 
types of feedback.
Table 7

Comparison of the results of this study when using the MPC [49].

The source
Biomass conc. OUR

NRMSE % NRMSE %

This study (first principles) 3.145 5.238

MPC [49] 9.1 14.4

In the scenarios when computation duration is not an issue and the tar-

get strain culture is well known, the MPC approach is more rational to 
use when less bias is a more considerable preference in the operated 
systems.
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