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A B S T R A C T

Antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) infection. Research seeking to
transform viral suppression into elimination has generated novel immune, chemical and molecular antiviral
agents. However, none, to date, have excised latent integrated proviral DNA or removed infected cells from
infected persons. These efforts included, but are not limited to, broadly neutralizing antibodies, “shock” and
“kill” latency-reversing agents, innate immune regulators, and sequential long-acting antiretroviral nanofor-
mulated prodrugs and CRISPR-Cas9 gene editing. While, the latter, enabled the complete excision of latent
HIV-1 from the host genome success was so far limited. We contend that improvements in antiretroviral
delivery, potency, agent specificity, or combinatorial therapies can provide a pathway towards complete HIV
elimination.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The past thirty-six years has witnessed considerable progress in
the understanding of the pathobiology of human immunodeficiency
virus type one (HIV-1) infection. Impactful advances, in quality and
longevity of life, were made by antiretroviral therapy (ART). These
are undeniable. ART has demonstrated sustained abilities to suppress
viral replication leading to improved immune function and reduced
disease co-morbidities. However, ART still requires life-long daily
administration [1,2]. Even with strict antiretroviral drug (ARV) adher-
ence, latent integrated provirus remains operative and is perpetuated
in CD4+ memory (including central memory and CD45 RA+ T cells),
effector and regulatory T cells, monocyte-macrophages, microglia,
and dendritic cells (DCs) [3�8]. Thus, new efforts are fast emerging to
find a “cure” strategy that extends beyond the two reported cases
[9,10]. A first step underlies an immediate need to deliver ARVs and
other therapeutic or viral elimination cargos to viral tissue reservoir
sites. This is essential in the design of any HIV-1 therapeutic strategy
seeking to eliminate the viral reservoir. Excision of HIV-1 proviral
DNA and/or elimination of infected cells are required as both cannot
be achieved by ARV regimens alone [10�12].

The inabilities to eliminate HIV-1 reflect the prolonged life span of
infected cells [11] and the sustained proliferation of CD4+ T cells to
carry integrated latent virus. Both are operative during HIV persistence
unaffected by ART [12,13]. The half-life of virus-infected cells, mea-
sured in years [14,15], is a major obstacle towards viral elimination.
Notably, based on available data, it would take 73 ART treatment years
to complete a total cell decay [16,17]. A potential means to speed this
process is by boosting innate immune responses, eliciting broadly neu-
tralizing antiviral antibodies, and facilitating cytotoxic T lymphocyte
(CTL) activation. While each and all have been tried, none so far has
been successful in the total elimination of HIV-1 infected cells.

Adherence to ARV regimens, while remaining an obstacle to any
cure effort, can be overcome. Transformation of daily ARV regimens to a
once a month or every other month parenteral holds promise for sus-
tained viral suppression and adherence. Moreover, long-acting (LA)
ARVs may reduce systemic toxicities and ease medicine access [18�22].
Further refinements in current LA ART regimens are underway. They
rest in the development of ARV prodrugs with both lipophilic and
hydrophobic properties. These have advantages in improving ARV entry
into the virus’s target cells and tissue sites of infection that could dimin-
ish the infectious reservoir beyond what can be achieved by current
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ART. The LA ART prodrugs may also facilitate viral excision strategies by
affecting reductions in total proviral DNA [23]. This idea was recently
investigated using LA slow-effective release ART (LASER ART) prodrugs
with the sequential administration of Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) HIV-1 gene editing platform. In
pre-clinical trials completed in infected humanized mice, the combined
regimen proved successful in up to a third of virus-infected animals.
LASER ART elicited maximal virus reductions shown by ARV tissue pen-
etrance. Early efforts to validate HIV-1 excision has seen success in a
range of HIV/AIDS animal models [23�27].

2. Boosting immune responses

2.1. Generating innate and cell-based immune antiretroviral responses

Innate immune antiretroviral responses are controlled, in part, by
mononuclear phagocytes (MPs; monocytes, macrophages and DCs)
serving as the first line of defense against microbial infections [28].
However and paradoxically, MPs also serve as both vehicles and reser-
voirs for HIV-1 infection and can speed viral dissemination [29]. While
a central role of MP in viral surveillance is well accepted, its role in viral
pathogenesis remains openly debated [30]. As per the former, DCs, the
principal antigen-presenting cell (APC), are both widely distributed
within the mucosal and active in surveillance. DCs are the first cells
that encounter HIV, and the cells that are able to induce HIV-1 specific
CTLs and other adaptive antiretroviral immune responses [31,32]. Fol-
lowing early virus-DC interactions, the cells process HIV-1 proteins and
transports them to the cell surface (Fig. 1A). This facilitates antigen pre-
sentation facilitating adaptive immunity [32]. DCs can also modulate
HIV-1 infection. Indeed, following activation with latency reversing
agents (LRAs) for example, (histone deacetylase inhibitors (HDACi)
interactions between infected effector cells and DCs have been shown
to reverse latency affected by phosphoinositol-3-kinase (PI3K) path-
ways [33]. Programmed DCs can also drive antigen-specific elimination
of infected CD4+ T cells [34].

The innate immune system can, by itself, clear viral infection. This
is realized through toll-like receptors (TLRs) that operate by their rec-
ognition of pathogen-associated molecular patterns (PAMPs) [35]
(Fig. 1B). A TLR9 agonist, for example, can facilitate viral clearance
through affecting adaptive immunity [36,37]. Here, TLR9 affects CTL
mediated viral clearance resulting in reductions of integrated HIV-1
DNA [36,37]. Likewise, TLR7 agonists (GS-986 and GS-9620) were
previously shown to control viremia in simian immunodeficiency
virus (SIV) infected and ART suppressed monkeys. During ART inter-
ruption, a subset of infected animals (2/9) remained aviremic after
two years, thereby supporting the idea that TLR7 agonists promote
viral reservoir reductions [38]. However, subsequent studies have
failed to support these initial findings [39,40]. In these studies, the
administration of the TLR7 agonist (GS-9620) to SIV-infected maca-
ques during suppressive ART led to induction of interferon (IFN)-
stimulated genes, immune cell activation, and pro-inflammatory
cytokines. However, no changes in levels of proviral DNA in blood or
tissues were observed [39]. Prior studies tested the therapeutic effi-
cacy of programmed cell death protein 1 (PD1) blockage with a TLR7
agonist in SIV-infected macaques that were virally suppressed for
two years. ART interruption led to viral rebound bringing the SIV res-
ervoir to preART levels [40]. Clearly, follow up studies are needed to
better define the role for TLRs when used in combination with other
antiviral agents in viral elimination strategies.

Further dissection of the interplay between innate and adaptive
immunity may provide pathways towards improving viral clearance.
To this end are studies of natural killer (NK) cell-clearance responses,
antibody-dependent cellular cytotoxicity (ADCC), and CTLs. Each and
all may be harnessed as each alone actively participates in viral sur-
veillance and elimination in the coordination of other immune
responses. For example, b-chemokines can act as ligands for the HIV
chemokine co-receptor 5 (CCR5) and may use NK cells to block HIV-1
cell entry [41]. NK and MPs together can also generate antiretroviral
signals during the early stages of HIV infection resulting in cellular
proliferation, cytolytic activities, cytokine production, and ADCC-
mediated viral surveillance. These cell-based antiretroviral events
potentiate the TLR agonists serving to activate APCs, increase B-cell
maturation, cross-prime T-cells, and enhance NK cell responses
[42,43]. All can promote virus infected cell elimination (Fig. 1A).

Activation of HIV gene expression followed by adaptive immune viral
elimination was first tested as a therapeutic strategy with interleukin-2
(IL-2) [44]. The use of ART and IL-2 in this manner showed to be a multi-
stage regulator for CD4+ T cells. Notably, in this context, IL-7 was shown
to have two effects, one in latency reversal (induction of HIV-1 RNA) and
the second in increasing the numbers of memory CD4+ T-cells (homeo-
static proliferation). Both had subsequent effects on levels of HIV-1 pro-
viral DNA [45]. IFN alpha (IFN-a) also modulates HIV-1 infection
[46�48]. Short-term treatment with exogenous IFN-a lead to viral sup-
pression and a decline in integrated and total HIV-1 DNA in ART-treated
patients [46]. Indeed, some of the first immune-based therapies used to
restrict viral replication came from studies of IFNs and ILs [46,47,49].
While showing no benefits in any long-term control of viral infection,
both IL-2 and IL-7 restored the numbers of CD4+ T-cells [45,50]. How-
ever, IL-2 proved toxic. To date, no studies involving ILs demonstrated
sustained and significant antiretroviral activities. However, they do offer
pathways that could affect latent viral reservoirs [51].

2.2. Broadly neutralizing antibodies (bnAbs) and CTLs

Innate immune responses are operative immediately following
viral infection. Because of its nonspecific nature, HIV-1 can circum-
vent innate antiretroviral activities. Thus, adaptive immunity serves
as the principal clearance mechanism for virus-infected cells during
disease. This arm of the immune system includes bnAbs, CTLs, and
ADCC [52,53]. Persistent antigen exposure during chronic infection
may lead to T cell exhaustion. This is heralded by the expression of
inhibitory receptors, such as PD1, resulting in the progressive loss of
effector functions. Targeting PD1 to boost the antiviral cellular
immune responses has shown inconsistent results [54].

Another promising means to affect viral control is through bnAbs.
They target conserved epitopes of the HIV-1 envelope, enabling them
to circumvent the frequent viral mutations seen during low-level viral
growth. Isolation, cloning, and single-cell antibody techniques have
enabled effective bnAb discovery [55]. BnAbs are produced about two
and half years after initial viral infection and are linked to slow disease
progression. This delay in bnAbs production makes them highly spe-
cific as they undergo multiple iterations of somatic mutations [56,57].
Because of their longer half-lives and achievable effective therapeutic
concentrations, a single infusion of bnAbs results in a rapid decline of
plasma viral load (VL) that has been affirmed in long-term SIV infected
macaques [58]. Moreover, modification of bnAbs by amino acid muta-
tions has increased their half-lives even further and conferred protec-
tion against repeated viral challenges [59].

Bi-specific monoclonal antibodies (mAbs), dual-affinity re-target-
ing and tri-specific bnAbs have been engineered, in recent years, as
antiretroviral therapies. Such antibodies recruit effector cells that are
CD3- or CD16- specific binding to FcgR-bearing cells. Binding to addi-
tional viral epitopes serves to further enhance its potency against
viral infection [60]. Examples include CD4-targeting bnAbs
(3BNC117, VRC01, N6-LS, and VRC07-LS), V3-targeting bnAbs
(10�1074 and PGT121), V1/V2-targeting bnAbs (PGDM1400, PG9,
and PG16), membrane-proximal region-targeting bnAbs (10E8V-LS),
HIV-1 gp120-gp41 interface-targeting bnAbs (PGT151), and finally
HIV-1 gp120’s silent face can be recognized by bnAbs SF12 and VRC-
PG05 [61�65]. Prior animal studies confirmed bnAbs effectiveness
for HIV-1 suppression. Administration of 3BNC117 and 10�1074 to
chronically infected rhesus macaques decreased plasma VL to



Fig. 1. Innate immunity and antiretroviral activities. Upon HIV infection, virus dissemination occurs rapidly from viral sanctuary sites such as memory CD4+ T cells and macro-
phages. Early innate host immune response dictates viral load at the acute phase. While inflammation contributes critically to innate control of infection, it also recruits HIV target
cells during the acute phase, impairs CD4+ T cell recovery, and promotes disease progression and viral latency. The latency can be reversed by several LRAs leading to activation of
quiescent cells and exposure of the viral antigens by APCs rending the subsequent removal of infected cells by CTL mediated immunity (A). To combat HIV, the immune system has
evolved complex and diverse transcriptional signatures, driving differential cellular and humoral responses. These signatures are induced by immune receptors, in this case Toll like
receptors (e.g. TLR2) sensing the pathogen (HIV-1) and by the production of cytokines at the earliest onset of infection. The virus-mediated release of molecules in contact with
TLR7 activate the MyD88 pathway, blocking the function of IRF7 and NF-kB response generally induced by viral signaling and ultimately secretion of cytokines like interferons lead-
ing to a restoration of immune function and viral clearance. This specific nature of immune activation is as critical to HIV-1 clearance as the induction of an adaptive immune
response (B).
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undetectable levels. However, the emergence of viral mutations
proved a limitation [66]. Nonetheless, administration of PGT121 and
PGDM1400 antibodies to rhesus macaques during simian HIV (SHIV)
challenge resulted in complete protection for up to 14 days [67].

In addition, bnAbs also offer opportunities towards a successful
prophylactic HIV vaccine. Indeed, significant research efforts have
been focused on the development of bNAbs to neutralize the majority
of HIV-1 strains. The uses of bnAbs in vaccine research are impeded
by their fast-viral escape, frequent dose requirements, potency, and
rare elite neutralization responses. Nonetheless, when used for treat-
ment, bnAbs offer novel opportunities for viral clearance with addi-
tional limitations. For example, when bnAbs are used in treatment it
may be difficult to discern the origins of viral diversification and
whether it is due to the natural virus evolution or responses to bnAbs
Fig. 2. Broadly Neutralizing Antibodies (bnAbs). To overcome the limitations of using bnAbs
achieved by: (i) Isolation of bNAb clonal lineage antibodies from HIV-1 patients reflecting the
bodies, high-affinity immunogens are designed that can optimally bind to stages of bNAb
immunogens is followed to stimulate bNAb lineage activation. Using techniques such as anti
trated (B and C). This is critical in the design of HIV-1 Env epitopes that can engage the earl
ages. Env epitopes with high binding affinity to the germline B-cell antibody precursors wil
bnAb-producing B cells resulting in neutralization of the virus (D).
themselves. This is highlighted by the presence of Env variants seen
during bnAb treatments. Moreover, bnAb production may be limited
in those infected for longer time periods due to the frequent loss of B
precursor-producing cells. Other bnAbs limitations include the pres-
ence of long-heavy chain third complementarity-determining
regions (HCDR3), high somatic mutations, and poly/autoreactivity to
self-antigens. In all, bnAbs play an important role in future therapeu-
tics; but immune intolerance may pose yet another concern [68].

The rationale of bnAbs in vaccine strategies is based on: (i) ease of
infected donor isolation; (ii) ready classification into mature, inter-
mediate, or unmutated precursors; (iii) deployment of immunogens
with high affinity; and (iv) the abilities of sequential immunization to
activate B-cells. These are all affected by immunogen design
(Fig. 2A�C) and lead to the production of different bnAbs lineages
as vaccine candidates, B-cell lineage immunogen strategies were developed (A). This is
different critical developmental stages of these bnAbs. (ii) Based on these isolated anti-
lineage antibodies. (iii) Eventually, immunization with a series of these high-affinity
body cloning, sequencing, and computational analyses, bnAb staged maturation is illus-
y precursors and elicit their development and maturation into the different bnAb line-
l enhance the lineage development that could boost the immune system to produce its
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[69,70]. The idea is to produce bnAbs using high affinity-binding
immunogens to the naive B-cell receptor, followed by serial boosts to
stimulate affinity maturation. Though polyvalent vaccines show
promising results in rabbits and monkeys, the polyvalent HVTN505
vaccine failed to reduce VL resulting from new infections in human
trials [71]. The International AIDS Vaccine Initiative (IAVI) W001 trial
tested BG505 SOSIP.664 gp140 and showed that bnAbs can be pro-
duced that neutralize the virus. This consisted of glycosylated HIV-1
Env trimers resembling the native virus envelope [72].

In another phase-I clinical trial, VRC01LS remained in circulation
for longer durations yielding potent neutralizing activities [73], with-
out autoimmunity. Administering 10�1074 to healthy and HIV-1-
infected volunteers showed antibody tolerance with half-lives of 12¢8
- 24 days [74]. Shorter half-lives in infected individuals correlated with
the presence of viral neutralizing targets and administered antibodies
demonstrated rendered faster clearance [74]. In a phase II trial, four
infusions of 3BNC117 succeeded in inhibiting the virus for up to 19
weeks [75]; however, viral escape was detected in 50% of cases due to
the emergence of resistant strains. When combined, 3BNC117 and
10�1074 produced suppression in 80% of the participants for 15
weeks [76]. Taken together, the studies confirm bnAbs’ antiviral effects
(Fig. 2D). While existing studies on bnAbs are promising in the scope of
HIV-1 treatment and prevention, progress is hindered by limitations in
their development and tolerance, as sometimes they elicit strong
immune responses that cause their own depletion [68].

Consequently, bnAbs production was higher in people with auto-
immune diseases because of defective tolerance. In a chronic HIV-1-
infected individual who had systemic lupus erythematosus (SLE),
plasma from the SLE patient neutralized 41 out of 42 HIV strains
tested and confirmed the presence of CD4bs-targeted bnAbs; CH98
among others [68]. CH98 was found to have undergone various
mutations and deletions, which played a critical role in its affinity
maturation. Immune responses against bnAbs present considerable
limitations in preventative and treatment regimens demanding the
use of medications to suppress the immune responses and promote
bnAbs generation. Effectiveness of bnAbs requires the involvement of
both immune cellular effectors and the downstream pathways trig-
gered by the binding of Fc fragments of bnAbs to Fcg receptors [77].
This finding was affirmed by 3BNC117 bnAb single infusion which
when administered to HIV1 infected patients demonstrated strong
neutralizing responses. However, this was due to the removal of free
circulating viruses, prevention of new infections, and clearance of
HIV infected cells [78]. These are features of NK cell mediated ADCC.
Moreover, in the context of coordinated therapeutic approaches with
2nd generation bnAbs, there is a strong likelihood of clinical efficacy
independent of the levels of viral infection and HIV-1 strain heteroge-
neity [79]. BnAbs half-life, scale-up production, and safety remain
obstacles for broader use.

CTLs could overcome the limitations for bnAbs and enable viral
control even without ART [80]. Several cure strategies revolve around
altering or expanding CTLs. In trials where CTLs isolated from
infected patients and expanded using HIV-specific peptides and then
reinfused into patients failed to show permanent reductions in VL
[81]. Escape mutants developed. To circumvent this problem, poly-
clonal CTLs were generated by exposing them to multiple HIV epito-
pes but still failed to affect viremia [82]. CTLs may have reduced
activities against non-clade B virus variants but are limited in their
abilities to be scaled-up for clinical use [83]. Nonetheless, harnessing
CTLs abilities to recognize and kill infected cells could prove essential
in any viral elimination strategy [84�86].

Another approach used was engineered T cells with chimeric anti-
gen receptors (CARs) directed against the HIV envelope. However,
this approach has so far failed to improve antiviral adaptive immune
responses in patients [87�90]. Nonetheless, CAR T cells have several
advantages over ex vivo expanded CTLs, as they do not need to recog-
nize their ligands in the context of the major histocompatibility
complex (MHC). Another advantage of CAR T cells over CTLs is that
they are less likely to generate escape mutants as they target highly
conserved regions of the HIV envelope. Though encouraging findings
were observed for CAR T cells to reduce viremia, they are limited in
broader usage. The generation of CD4 z- or single chain variable frag-
ment (scFv)-based chimeric protein containing CARs lacked complete
viral suppression in the absence of ART [87]. The absence of antirviral
CAR T cells in reservoir tissues and their inability to affect latently
infected cells are additional limitations [91�93]. Newer CAR engi-
neering and cellular manufacturing need to be addressed for safe,
efficient, and specific clearance of virus from its reservoirs.

3. Pharmacological approaches to HIV-1 elimination

HIV-1 reservoirs remain latent in ART-treated individuals with
minimal to no viral transcription needed to evade immune surveil-
lance. To expose the footprint of reservoirs, an approach termed
“shock and kill” was developed that implements LRAs. While sus-
tained ART prevents newly produced virus from infecting healthy
cells, these LRAs help in the reawakening of dormant virus (shock)
from latently infected cells and induce viral and/or immune-medi-
ated cell death (kill) (Fig. 3). Currently, there are over 300 chemicals
identified as LRAs that target HIV-1 latency through different mecha-
nisms (epigenetic modification, transcriptional regulation, and
others) [94�96]. However, while inducing transient viral amplifica-
tion, LRAs have not met meaningful clinical outcomes towards reduc-
ing HIV-1 reservoirs and delaying viral rebound. Design
improvements have been proposed [97,98]. Such improvements in
LRA strategies include drug dose, frequency and specificity. If
achieved, the latency-reversing function would be improved with
specific action on infected cells [99]. New generations of small mole-
cules acting on alternative pathways have exhibited partial immune
activation while preserving efficacy for HIV-1 reactivation. Some of
these compounds synergized with current LRAs on viral reactivation
and remain front-runners for clinical trials [96].

HIV-1 reservoirs distinguish themselves from healthy cells
through their apoptosis-resistant characteristics. The co-treatment
with a major apoptotic inducer, the B cell lymphoma 2 (Bcl-2) antag-
onist venetoclax, in aCD3/aCD28-treated cells from virally sup-
pressed patients could induce preferential killing of HIV-1 infected
cells with minimal death of uninfected CD4 T cells. More importantly,
cell-associated viral DNA was reduced significantly upon dual-treat-
ment compared to aCD3/aCD28 treatment alone [100]. This suggests
that priming CD4+ T cells from ART suppressed HIV-1 patients with
BCL-2 antagonist, followed by HIV reactivation, can achieve a reduc-
tion in viral latency. This virus-specific elimination strategy, named
“prime, shock, and kill,” needs further in vivo evaluation. Stochastic
reactivation of HIV-1 latency requires repeated stimulation to shrink
reservoir size [101]; the activation effect may be linked to LRA con-
centrations [99]. These in combination with a high dose frequency
and volume of LRAs can lead to toxicities. Nanotechnology offers a
solution by formulating regimens into nanosuspensions that can pro-
long drug half-lives and reduce dosing frequencies [102]. For exam-
ple, LRAs encased in lipid nanoparticle-encapsulated bryostatin
enhanced HIV-1 latency reversal from J-Lat cells compared to con-
ventional regimens [103,104]. In addition co-delivery of ART and LRA
nanoparticles could reverse HIV-1 latency while preventing viral
spead [104]. Heterogeneity of HIV-1 reservoirs makes it unlikely for a
single LRA to act on all hidden targets. Co-formulation and co-
delivery systems through nanocarriers could also be developed to
simplify treatments.

Another concern for unsuccessful “shock and kill” is suboptimal
“killing” of latently infected cells [105]. Competent CTLs are promi-
nent in HIV-1 surveillance and become functionally exhausted during
chronic infection, featuring an increased expression of immune
checkpoint markers such as PD-1, cytotoxic T lymphocyte antigen 4



Fig. 3. ‘Shock and Kill’ Strategies for HIV-1 Elimination. The idea of ‘shock and kill’ is to induce HIV-1 transcription from latently infected cells using LRAs followed by the virus- or
immune-mediated cell death. Meanwhile, ART maintenance precludes new infections. Thus far, ‘shock and kill’ trials have seen limited success for HIV-1 reactivation and less on
reducing viral reservoir sizes. To address these early failures, apoptosis inducers are being employed to ‘label’ HIV-1 reservoirs that are intrinsically resistant to cellular apoptosis
and are joined with LRAs on selective elimination of infected cells. A combination of LRAs, along with CTLs and ADCCs, and antiretroviral induction could enhance viral elimination
that is currently limited by the results of short drug half-lives, limited tissue penetration, and complex activities of multi-regimens. It is possible that multiple LRAs could be deliv-
ered as a single dosage. By targeting immune checkpoint inhibitors, the ‘kill’ or ultimate removal of reactivated viral reservoirs can be strengthened by therapeutic vaccines, bnAbs,
CAR T cell therapy, and CTLs. HIV-1 reservoirs are less stable prior to ART intervention, likely due to a pro-inflammatory environment that favors T cell activation. Instead of conven-
tional LRAs employed during suppressive HIV-1 infection, co-delivery of LRAs and ART during early infection may further disrupt the establishment of viral latency, minimize initial
reservoir size, and ease viral elimination. These immune-linked events are operative through PI3K, PKC, RIG-1 and Smac pathways.
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(CTLA-4), LAG3, and T cell immunoglobulin mucin receptor 3 (Tim3).
Blockages of PD-1 led to SIV specific T cell expansion and viral reduc-
tion in rhesus macaques [106]. How this approach might affect HIV-1
reservoirs and potential viral cure needs further investigation.

While efforts devoted to developing new LRAs continue, alterna-
tive timing of LRA administration is worth studying. Although HIV-1
latency is established rapidly upon infection, it is relatively unstable,
as shown by a quick turnover of viral DNA before treatment initiates
[107]. This is likely due to a pro-inflammatory environment, along
with a highly expressed viral antigen that favors T-cell activation and
hinders the formation of HIV-1 latency. One can speculate that add-
ing LRA to ART during early HIV-1 infection may further restrain viral
reservoir size compared to ART alone [108]. Notably, “early” ART
intervention may not necessarily be “better” for developing effective
antiretroviral immune responses. Such early intervention blunts the
generation of HIV-1 specific CTLs. This may explain the failure of viral
control when ART was stopped in patients treated early after viral
infection [109]. To overcome this apparent limitation, adjunctive
immune therapies such as bnAbs can be added to LRAs to improve
“shock and kill” outcomes. Combinations of a TLR7 agonist (GS-9620)
and bNAb (PGT-121) were administered to SHIV-infected ART-
treated macaques. The results from 6 out of 11 dual-treated animals
showed viral rebound while all singly treated infected animals pro-
duced virus by 196 days after ART discontinuation [110]. In this
study, ART was started at seven days post-infection, while GS-9620
and PGT121 were administered later when viral reservoirs were
firmly established. It is possible that a higher rate of viral remission
could be achievable if all therapies were applied early in infection.

All cure strategies discussed so far are based upon active tran-
scription or translation of viral products. Another promising candi-
date worth mentioning is the use of a recombinant IL15 or an IL-15
super-agonist (ALT-803) that have demonstrated latency-reversing
properties and enhancement of CTL function [111]. Though adminis-
tration of ALT-803 has shown an early reduction in plasma viremia in
vivo, it was ineffective alone in controlling viral replication for a lon-
ger duration. The lack of CTL inhibition, combined with IL-15 in medi-
ating follicular SIV control by NK cells, makes ALT-803 a promising
candidate as an LRA [112]; however, it remains to be seen what
effects it will have on follicular reservoirs to the cure strategy. Alto-
gether, the use of bnAbs to control HIV-1 infection holds the promise
that a cocktail containing LRA, immunotherapy, and ART can maxi-
mize viral clearance. This can facilitate the elimination of viral reser-
voirs in strains of virus with limited genetic diversity.

4. Viral excision CRISPR therapies for HIV-1 elimination

Over the last decade, several genome-editing methods have been
developed such as transcription activator like-effector nucleases
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(TALENs) [113] and artificial nucleases like zinc finger nucleases
(ZFNs) [113�115] with the prospect of eliminating residual viral
DNA. However, the approaches lacked sensitivity and specificity and
as such, led to the use of the CRISPR system [27,116]. The mechanism
is based on bacterial and archaeal microorganisms that incorporates
fragments of foreign DNA into a CRISPR locus present in their genetic
material, enabling recognition and elimination of infections. Other
applications of genome editing include, but are not limited to, tar-
geted gene regulation, generation of knock-out and knock-in animals,
cell-lines, epigenetic modulation, and chromatin manipulation
[23,27,116]. However, attempts to eradicate HIV-1 reservoirs based
on CRISPR strategies alone to shock then activate latent virus, knock
out receptors and genes, block integration, affect transcriptional
silencing, or effect excision of the proviral DNA from the host proved
incomplete [117].

A first success for purging latent HIV was achieved using the Cas9
catalytic domain (deactivated or death Cas9, dCas9), working in tan-
dem with guide RNA (gRNA). To activate the viral transcription,
dCas9 proteins were targeted to the HIV-1 long terminal repeat (LTR)
promoter that is known to affect chromatin modifying and transcrip-
tion activating factors [118]. While this strategy does not damage
DNA, it may produce off-target effects of gene activation events.
Another dCas9 system, dCas-VP64 protein, enabled activation of HIV-
LTR driven gene expression in latently infected cells. Prior studies
identified NF-kB binding sites as the most promising target and the
suitable position of the gRNA in the LTR promoter. Multiple gRNAs
with non-overlapping targets of dCas9-VP64 were shown to enhance
the activation of viral gene expression [119]. “Synergistic activation
mediator” that uses a modified gRNA termed MS2-p65-HSF1 had
shown promising results of reactivation of latent cells that include
the dCas9-SunTag system and was proven successful in reactivation
of latent HIV-1 [120]. The advantages of CRISPR-based reactivation
are high sequence-specificity and reactivation potency to induce viral
production and death of targeted cells. These approaches, nonethe-
less, must avoid off-target effects and should be effective in the deliv-
ery of dCas9 and gRNAs to infected and latent cells.

The working model of CRISPR-Cas9 uses a gRNA sequence in com-
plex with the Cas9 endonuclease [27]. The gRNA has two components,
the ~20 bp protospacer sequence that binds to the complementary
sequence of target DNA and the scaffold component that allows bind-
ing of the gRNA to the Cas9 endonuclease. The binding of Cas9 enzyme
to a protospacer adjacent motif (PAM), generally an “NGG” sequence,
follows gRNA recognition of complementarity sequences, a double-
stranded break (DSB) then excision of the viral DNA target. By merely
changing the sequence composition of the 50 end of gRNA [27], the tar-
get site specificity can be programmed (Fig. 4).

The classic route of HIV-1 entry is considered to be through the
engagement of the CD4 receptor and CCR5 and C-X-C chemokine
receptor type 4 (CXCR4) coreceptors. Thus, current research efforts are
targeted on two curative strategies, functional and sterilizing cures,
the latter being more attractive, which entails the removal of provirus
from the latent reservoir cells [121]. The two successful reported cases
of HIV-1 sterilization cures targeted transplantation of CCR5D32
hematopoietic progenitor stem cells (HSPCs) from allogenic donors
[122]. Though the results are encouraging, the question remains
whether HIV-1 is being eradicated from all latent reservoirs or if both
are cases of “functional cure” where the genetically modified func-
tional immune system adequately controlled the latent reservoir.

With the requirement of single sgRNA to “program” the location
of the cleavage site with improved on-target specificity, CRISPR-Cas9
technology was used to disrupt CCR5 [123]. By combining CRISPR-
Cas9 with a PiggyBac transposon donor sequence to generate natu-
rally occurring CCR5D32 deletions in induced pluripotent stem cells
(iPSCs), the cells were found to be resistant to HIV-1 after challenge
[124]. Lentiviral vectors expressing Cas9 and CCR5-targeted sgRNAs
that were used to engineer CD4+ T cells showed promising CCR5
gene disruption in cell lines but resulted in toxicities in primary T
cells [125], possibly due to innate immune reaction of T cells to the
foreign DNA [126]. Using CRISPR-Cas9 and dual gRNAs, another study
targeted CCR5 and the clinically relevant gene B2 macroglobulin
(B2M) in CD4+ T cells and CD34+ progenitor cells demonstrating bial-
lelic CCR5 disruption [127].

In spite of an allogeneic stem cell transplantation with donor cells
lacking the CCR5 coreceptor, a recent study showed that the presence
of a highly replication-competent CXCR4-tropic minor variant
resulted in viral rebound in the absence of ART [128]. If CCR5 is lost
during stem cell therapy, infection could continue by use of alternate
receptors; in this scenario, targeting CCR5 may not always work in
patients [128]. Nonetheless, in conjunction with long-acting ART,
CRISPR-Cas9 mediated co-receptor editing could be developed as a
complementary therapeutic approach in viral cure strategies [129].

In a little less than five years, CRISPR-Cas9 gene-editing technol-
ogy has become a cornerstone of translational genetic research. The
question now posed is whether it can be used with ART to eliminate
HIV-1 [2]. Initial testing was done to determine whether CRISPR-Cas9
based genome editing could successfully excise fragments of inte-
grated HIV-1 proviral DNA. Sequential treatment of ART in the form
of LASER ART and CRISPR-Cas9 targeting of the LTR-Gag region was
applied for proof-of-concept studies to infected humanized mice
[130]; this resulted in the complete elimination of HIV-1 in a subset
of infected humanized mice. Thus, by employing combinatorial treat-
ments complete HIV-1 elimination could be achieved [23]. Success
was affirmed by the absence of proviral DNA from viral compart-
ments two months after cessation of ART. The result was further con-
firmed using multiple highly sensitive nucleic acid detection
methods and viral outgrowth assays. These results open up the possi-
bility that viral sterilization is possible.

5. Concluding remarks

Improved antiretroviral drug biodistribution into infectious reser-
voirs will have better treatment outcomes. To address this, pharma-
ceutical companies and independent research programs have invested
considerable efforts to transform the current daily antiretrovirals into
LA ART that can be administered monthly or at longer intervals
[131,132]. Using other transforming agents into LASER ART [102] has
improved reservoir targeting, adherence, and reduced dosing frequen-
cies. LASER ARTs are characterized by poor water-solubility, slow
drug-dissolution, increased bioavailability, decreased toxicities, and
enhanced pharmacokinetic and pharmacodynamic profiles [102] of
existing United States Food and Drug Administration approved antire-
troviral drugs [102]. The advantage of nanomedicines lies in the fact
that immune responses are not elicited against these drugs. However,
viral resistance may develop, leading to viral escape as they cannot
eliminate latently infected cells from infectious reservoirs [102]. The
significant advantage of using LASER ART lies in its abilities to reach
latent reservoir sites. There, native drug(s) is released at substantial
levels facilitating complete suppression of plasma viremia. We posit
that this underlies our abilities to effectively use CRISPR-Cas9 to effec-
tively eliminate integrated proviral HIV-1 DNA. Neither the single
LASER ART nor CRISPR-Cas9 treatments alone could totally eliminate
the virus from the infected animals [23].

Future efforts to increase elimination rates will include better lon-
ger-acting LASER ART formulations lasting six months and beyond
and will target more than one conserved region of HIV genome using
CRISPR-Cas9 multiple guide RNAs at different stages of infection.
With the combination of therapeutic strategies, long-term toxicities
need to be assessed before testing in humans. Although no adverse
responses of LASER ART formulations or CRISPR-Cas9 were observed
in early animal studies, more extensive assessments again are
required before these therapies can be considered for human testing.
The use of multimodal therapies such as LASER ART, bnAbs, and



Fig. 4. Sequential LASER ART and CRISPR-Cas9 for HIV-1 Elimination. Viral entry and fusion require CD4 receptor and CCR5 and CXCR4 coreceptors at the cell surface. Upon entering
into virus susceptible CD4+ cells, viral RNA is reverse transcribed into double-stranded circular DNA and integrated into host chromosomal DNA. This provirus can remain quiescent
in memory effector T cells. ART drug combinations serve to inhibit virus production at various stages of the HIV life cycle. LASER ART can improve levels of viral restriction by sus-
taining high drug levels at reservoir sites. Highly specific gRNA based CRISPR-Cas9 targets integrated proviral DNA. The CRISPR-Cas9 utilizes ~100 bp of gRNA to facilitate the Cas9
endonuclease activities at viral integration sites. This made complex then recognizes and cleaves a 20 bp double-stranded DNA target site (known as protospacer DNA) that is com-
plementary to the 50 end of the gRNA. The double-strand break excises the HIV-1 DNA from the host genome, which gets repaired by non-homologous end-joining to restore the
break. This combination of LASER ART and CRISPR-Cas9 has so far achieved viral elimination from a subset of HIV infected animals.
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CRISPR-Cas9, we believe, will ultimately lead to complete viral elim-
ination. (Fig. 5). The next steps include the development of a
CRISPR-Cas9 delivery system that specifically targets viral reser-
voirs, uncover the best combination strategies to achieve complete
success for viral elimination, and limit any adverse effects of the
developed strategies. The off-target effects of CRISPR-based strate-
gies, long-term effects on tissues of long-acting drugs, and bnAbs
are the most important side-effects that need to be assessed before
moving into humans.

While HIV-1 cure strategies hold significant promise, a consider-
able hurdle rests in the virus’ abilities to rapidly mutate and develop
resistance. Thus, for any or all of the listed approaches, viral heteroge-
neity may be a limiting factor in ultimate success. While several of
the functional cure approaches have already reached phase I and II
clinical testing, none have yet to achieve the final goal of complete
HIV cure. If ultimately successful that would change the landscape of
the disease and end the epidemic in an ultimate dramatic fashion.
With the rapid pace of the science and the multiple approaches
already put to bear, one could predict that an HIV cure is seen within
the next decade [129].

5.1. Search strategy and selection criteria

Data for this review were identified by searching in PubMed using
the following search terms: HIV cure, Innate and MP cell-based
immune response to HIV infection, ART, latency reversing agents,



Fig. 5. Combination Therapies Leading to an HIV Cure. CD4+ T cell activation promotes active viral growth. Systemic infection occurs in lymph nodes, spleen, genitourinary, brain,
and gut tissues. While ART is administered early after viral infection, it serves only to restrict viral replication by blocking various steps of the viral life cycle that affect spreading
infection. Improvements are made in the levels of viral restriction through the use of lipophilic, hydrophobic drug crystals (coined as LASER ART). These also serve to improve the
biodistribution and potency of antiretroviral agents. Neither conventional nor LASER ART can eliminate proviral DNA from the human genome and as such, viral latency is easily
established in infectious cell and tissue reservoirs. After ART discontinuation virus always rebounds. The elimination of HIV-1 thus requires depletion of cells harboring infectious
virus and/or the removal of integrated proviral DNA. This can be achieved through multimodal immune or genetic approaches that begin with ART or LASER ART, bnAbs, boosted
CTLs, and HIV-1 DNA excision mediated by CRISPR-Cas9. The process would start through the implementation of LASER ART to optimally provide effective antiretroviral drug con-
centrations in viral tissue reservoirs. LASER ART strategies serve to maximize viral suppression in reservoirs of infection. A putative next step needs to target the viral reservoirs by
either preventing new infections or engaging adaptive antiretroviral defenses through bnAbs. Alternatively, “shock and kill” or CCR5 receptor modifications can be employed as
well as other “anti-latency agents.” Any or all strategies would require a final pathway that would target latently infected cells and can be achieved through CRISPR-Cas9 based edit-
ing to excise latent proviral DNA from the host genome. The specific and efficient excision of HIV-1 DNA fragments would in a final pathway can lead to HIV-1 elimination from its
infected human host.
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broadly neutralizing antibodies, long acting slow effective release
antiretroviral therapy; HIV-1 tissue reservoirs; CRISPR-Cas9 gene
editing. Only articles published in English were included.

5.2. Outstanding questions

Can improved ARV biodistribution into viral reservoirs affect
“cure” treatment outcomes?

Can LASER ART facilitate viral gene excisions?
Can multimodal therapies enhance treatment outcomes?
If toxicities emerge from combinatorial approach, can they be

reversed?
Which are the most likely schemes to elicit an HIV cure and which

of these are scalable?
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