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Abstract

Purpose

Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient

(ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lympho-

vascular invasion, and pleural invasion.

Materials and methods

We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI)

was performed in the axial plane using a navigator-triggered single-shot, echo-planar imag-

ing sequence with prospective acquisition correction. The ADC maps were generated, and

we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using

the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percen-

tiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor

grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating

characteristics (ROC) analysis to assess the diagnostic performance of histogram parame-

ters for distinguishing different pathologic features.

Results

The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differ-

ences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles

were significant histogram parameters between high- and low-grade tumors. The ROC anal-

ysis between high- and low-grade tumors showed that the 95th percentile ADC achieved

the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with

the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis

achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness,

with the AUC of 0.648.
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Conclusions

ADC histogram analyses on the basis of the entire tumor volume are able to stratify

NSCLCs’ tumor grade, lymphovascular invasion and pleural invasion.

Introduction

Lung cancer is the most common malignant tumor and has become the main cause of cancer

mortality [1]. From a clinical point of view, it is important to predict tumor aggressiveness in

order to select the proper treatment strategy. Positron emission tomography using 18F-fluoro-

deoxyglucose (18F-FDG PET) has been used for evaluating the tumor aggressiveness of non-

small cell lung cancer (NSCLC) [2,3], but 18F-FDG PET is not widely used because of its high

cost. The use of lung magnetic resonance (MR) imaging is gradually increasing in clinical

practice, not only because of its lower cost, but also due to its easy applicability for various

pathologic conditions.

Recent developments in diffusion-weighted imaging (DWI) have addressed its potential

advantages and applications for the characterization of lung cancer [4,5]. The diffusion coeffi-

cient of water in living tissue calculated by an MR examination is expressed as the apparent

diffusion coefficient (ADC). Some studies have suggested that the ADC could be used to dem-

onstrate the histological characteristics of lung cancers, and that it may be useful for distin-

guishing the degree of cell differentiation [6–11]. However, the averaged mean ADC is

calculated from the largest slice of a tumor, and thus the mean ADC may not represent the full

spectrum of histology within a tumor.

Theoretically, an ADC histogram can display ADC values and their distribution within a

whole tumor, and such a histogram could be used to analyze the ADC voxel by voxel, thereby

providing more precise information than the mean ADC [12]. To the best of our knowledge,

there has not been a study that assessed the value of ADC histograms for predicting the aggres-

siveness of lung cancer. On the other hand, DWI of the lung is technically challenging and not

always feasible due to shortcomings such as motion artifacts associated with air-tissue inter-

faces [4]. Respiratory triggering by the navigator-echo method has recently been explored

[13]. The use of the navigator-echo enables decrease number of ghosting and artifacts, and

improves the quality of DW images [14].

The purpose of the present study was to investigate the diagnostic accuracy of histogram

analyses of ADC values acquired by respiratory triggering and the navigator-echo method for

determining the tumor grade, lymphovascular invasion and pleural invasion of NSCLC.

Materials and methods

Patients

The institutional ethics committee of Kanazawa Medical University approved this retrospec-

tive study and waived the requirement for informed consent (approval number 1003). Between

January 2012 and December 2014, 166 patients with NSCLC underwent DWI followed by sur-

gical resection. Of these, tumors measuring�10 mm in diameter (n = 21), tumors with pre-

dominant ground-glass opacity (GGO) (n = 15), tumors with large cystic change or necrosis

(n = 9), and tumors with obstructive pneumonia or air- containing cavity (n = 51) based

on their computed tomography (CT) appearance were excluded from the analysis (S1 Fig).

Patients whose DW images showed poor image quality resulting from motion or a severe mag-

netic susceptibility artifact (n = 10) were also excluded from the data analysis.
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As a result, 60 patients (37 males and 23 females, mean age 75.7 years, age range 56–88

years) were enrolled in this study. Table 1 shows the patient and tumor characteristics, includ-

ing patient age, tumor size, histologic type, pathological grade, lymphovascular invasion, and

pleural invasion.

DWI

All MR examinations were performed using a 1.5-T system (Magnetom Avanto, Siemens,

Erlangen, Germany) with a 45 mT/m gradient strength, and a 32-channel body phased-array

coil. DWI was acquired using a free-breathing navigator-triggered single-shot, echo-planar

imaging sequence with prospective acquisition correction (PACE) in the axial plane as

described in detail previously [14]. The data were acquired in the end-expiratory phase. The

sequence parameters were as follows: TR 4000–6000 ms (equal to the respiratory cycle of the

patient), TE 65 ms, acquisition matrix 128 × 96 (interpolated to 256 × 192), field of view 262 ×
350 mm, section thickness of 6-mm with a 2-mm intersection gap, 35 slices by four concatena-

tions, four averages, 144 EPI factors, spectral fat-suppression, parallel imaging with the acceler-

ation factor of 2, and tridimensional gradients with b-values of 0 and 800 s/mm2. The

acquisition time for PACE DWI was approx. 4–5 min depending on the respiratory cycle.

Image analysis

The ADC maps were generated automatically from each DW image by the MR system soft-

ware. Regions of interest (ROIs) were manually traced just inside the outer edge of the tumor

on all slices of low-b value (b = 0 s/mm2) DW images using Ziostation 2 (Ziosoft, Tokyo) by

two radiologists (N.T. and M.D., with 5 and 10 years’ experience in chest MR imaging). The

data acquired from each slice were summed to generate volumes of interest (VOIs). The con-

tours of each VOI were automatically copied to the exact same location of the corresponding

Table 1. NSCLC Patient and Tumor Characteristics.

Characteristics (n = 60) Value

Age (yr)

Mean (±SD) 75.7 (7.0)

Range 56–88

Tumor size (mm)

Mean (±SD) 34.9 (14.4)

Range 12–57

Histologic type

Squamous cell carcinoma 21

Adenocarcinoma 38

Large cell carcinoma 1

Pathological grade

Grade 1 15

Grade 2 30

Grade 3 15

Lymphovascular invasion

Positive 49

Negative 11

Pleural invasion

Positive 30

Negative 30

doi:10.1371/journal.pone.0172433.t001
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ADC maps. In this way, more accurate VOIs can be obtained compared to those drawn

directly on ADC maps. An example of the process of extracting the VOI of a tumor is shown

in Fig 1.

All ADC values within the VOI were used to compute the average ADC within the tumor.

The ADC values were then binned to construct the ADC histogram. The following parameters

were calculated from the ADC histogram: (a) mean ADC; (b) 5th, 10th, 25th, 50th, 75th, 90th,

and 95th percentiles of the ADC values; (c) skewness; (d); and kurtosis. The nth percentile

was the point at which n% of the voxel values from that histogram were observed on the left.

Fig 1. A 67-year-old woman with adenocarcinoma of the right upper lobe. The outline of the tumor is drawn on the axial low-b value DW image (b = 0 s/

mm2) (A). The tumor’s boundaries are meticulously identified with reference to the coronal and sagittal reformatted DW images (B, C). The data acquired from

each slice are summed to generate volumes of interest (VOIs) (D). The contours of the VOI are automatically copied to the exact same location of the

corresponding ADC maps.

doi:10.1371/journal.pone.0172433.g001
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Skewness reflects the shift of the median of the distribution from the mean value, and positive

skewness indicates that the right tail of the distribution is flatter or longer than the left tail [12].

Kurtosis reflects the peakness of the histogram distribution, and high kurtosis tends to have a

distinctive peak near the mean, and to decline rather rapidly and have heavy tails [12].

Statistical analyses

All statistical analyses were done with PASW statistical software (ver. 23.0, SPSS, IBM, Chi-

cago, IL). A p-value<0.05 was considered to indicate a significant difference. All measure-

ments were correlated, and the concordance of the interobserver variability was tested by

calculating Spearman and interclass correlation coefficients (ICCs). Agreement was inter-

preted according to the ICC as: > 0.8, excellent; 0.6–0.8, good; 0.4–0.6, moderate; and<0.4,

poor concordant. We used the Jonkheere-Terpstra test to correlate the histogram parameters

with the pathological grades of the tumors (grades 1–3). The Mann-Whitney test was used to

compare the histogram parameters between high-grade (grade 3) and low-grade (grades 1 and

2) tumors. We also used the Mann-Whitney test to examine the correlations between the pres-

ence or absence of lymphovascular invasion and pleural invasion with each histogram parame-

ter. We performed a receiver-operating characteristics (ROC) curve analysis to assess the

diagnostic performance of histogram parameters for distinguishing different pathological fea-

tures when appropriate.

Results

Reproducibility of the ADC measurements

Based on the ICC, the interobserver variability in the ADC measurements showed good to

excellent agreement (0.78–0.99).

Differentiation of the pathological grade of NSCLC using ADC histogram

parameters

The mean and the 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC values showed sig-

nificant differences among the three pathological NSCLC grades (p = 0.000, 0.013, 0.001,

0.000, 0.000, 0.000, and 0.000, respectively) (Table 2).

Table 2. ADC Histogram Parameters of Pathologic Grades of NSCLC.

Parameter Grade 1 Grade 2 Grade 3 p-value

(n = 15) (n = 30) (n = 15)

Mean 1411.4 (194.1) 1244.0 (154.3) 1121.0 (237.0) 0.000*

5th percentile 900.7 (192.8) 830.5 (173.4) 778.4 (199.6) 0.067

10th percentile 994.7 (182.8) 912.3 (150.8) 849.1 (202.6) 0.013*

25th percentile 1183.8 (186.7) 1035.9 (146.1) 960.2 (203.6) 0.001*

50th percentile 1379.1 (213.4) 1188.1 (148.4) 1090.8 (223.6) 0.000*

75th percentile 1606.1 (217.4) 1404.0 (177.4) 1251.2 (286.7) 0.000*

90th percentile 1881.3 (239.9) 1656.5 (260.2) 1445.3 (356.5) 0.000*

95th percentile 2041.1 (268.3) 1855.4 (314.5) 1571.0 (385.3) 0.000*

Skewness 0.56 (0.82) 0.93 (0.67) 0.76 (0.68) 0.309

Kurtosis 1.48 (2.65) 2.48 (2.93) 2.32 (2.34) 0.16

Values presented as mean (±SD)×10−6 mm2/sec).

*p<0.05 (Jonkheere-Terpstra test).

doi:10.1371/journal.pone.0172433.t002
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Other histogram parameters, including the 5th percentile of ADC, skewness, and kurtosis

were not significantly different among the pathological grades.

Differentiation of high- and low-grade NSCLC tumors using ADC

histogram parameters

The mean and the 50th, 75th, 90th, and 95th percentiles of ADC proved to be significant histo-

gram parameters for differentiating high-grade (n = 15) from low-grade (n = 45) NSCLC

tumors (p = 0.004, 0.029, 0.006, 0.002, 0.002, and 0.002, respectively) (Table 3).

Other histogram parameters, including the 5th, 10th, and 25th percentiles of ADC, skew-

ness, and kurtosis were not significantly different between the high-and low-grade tumors.

ROC analysis of ADC histogram parameters for predicting high-grade

NSCLC

The results of our ROC analysis of the histogram parameters between high- and low-grade

tumors showed that the area under the curve (AUC) of the mean, 50th, 75th, 90th, and 95th

percentiles of ADC were 0.706, 0.688, 0.713, 0.730, and 0.740, respectively. The 95th percentile

ADC achieved the highest AUC, with a cut-off value of 1634.1 × 10−6 mm2/sec, 84.6% sensitiv-

ity, and 66.7% specificity (Fig 2).

Differentiation of the presence or absence of lymphovascular invasion

and pleural invasion using ADC histogram parameters

The presence of lymphovascular invasion was associated with the mean, 50th, 75th, 90th, and

95th percentiles of ADC, skewness, and kurtosis (p = 0.046, 0.033, 0.002, 0.003, 0.007, 0.02,

and 0.001, respectively) (Table 4). Other histogram parameters, including the 5th, 10th, and

25th percentiles of ADC were not significantly different between the high- and low-grade

groups. The presence of pleural invasion was associated only with skewness (p = 0.048)

(Table 4). All of the other histogram parameters were not significantly different between the

two groups.

Table 3. ADC Histogram Parameters of High- and Low-Grade of NSCLC.

Parameter Low Grade High Grade p-value

(n = 45) (n = 15)

Mean 1299.8 (184.5) 1121.0(211.7) 0.004*

5th percentile 853.9 (181.0) 778.4 (199.6) 0.235

10th percentile 939.7 (164.8) 849.1 (202.6) 0.114

25th percentile 1085.2 (173.6) 960.2 (203.6) 0.029*

50th percentile 1251.8 (194.4) 1090.8 (223.6) 0.006*

75th percentile 1471.4 (212.3) 1251.2 (286.7) 0.002*

90th percentile 1731.6 (272.9) 1445.3 (356.5) 0.002*

95th percentile 1917.3 (309.7) 1571.0 (385.3) 0.002*

Skewness 0.81 (0.74) 0.81 (0.74) 0.791

Kurtosis 2.15 (2.85) 2.32 (2.71) 0.463

Values presented as mean (±SD)×10−6 mm2/sec).

*p<0.05 (Mann-Whitney test).

doi:10.1371/journal.pone.0172433.t003
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ROC analysis of ADC histogram parameters in predicting lymphovascular

and pleural invasion

The ROC curve of the histogram parameters between the presence and absence of lymphovas-

cular invasion showed that AUC values of the mean, 50th, 75th, 90th, and 95th percentiles of

ADC, skewness, and kurtosis were 0.694, 0.707, 0.796, 0.788, 0.763, 0.726, and 0.809, respec-

tively. Kurtosis achieved the highest AUC at 0.809, with a cut-off value of 1.0815 × 10−6 mm2/

sec, with 61.2% sensitivity and 90.9% specificity (Fig 3).

For the skewness, according to the ROC curve, a cut-off value of 0.824 × 10−6 mm2/sec was

associated with pleural invasion (AUC 0.648), with 60.0% sensitivity and 73.3% specificity

(Fig 4).

Discussion

DWI combined with ADC mapping has been investigated for use in lung cancer cases includ-

ing mass-lesion detection, characterization, and to assess the patient’s treatment response [6–

11,15]. However, there are two problems to be addressed when considering DWI. First, the

ADC values reported in these previous studies were obtained from a large ROI placed only on

the largest lesion slice, and this may not reflect the characteristics of the entire tumor. Second,

the mean ADC value was the only parameter that most studies adopted for lung cancer analy-

sis. In the present study, we used the VOI encompassing the entire tumor to take into account

the lesion texture and heterogeneity, using a histogram analysis.

Fig 2. ROC curves of percentiles of ADC in predicting high-grade. The AUC was highest for the 95th percentile

ADC (AUC = 0.74, cut-off value of 1634.1 × 10−6 mm2/sec, sensitivity 84.6%, specificity 66.7%).

doi:10.1371/journal.pone.0172433.g002
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To the best of our knowledge, no study has assessed the utility of ADC histograms for pre-

dicting the aggressiveness of lung cancer. The DWI of the lung has some problems, including

(1) a low signal-to-noise ratio of the inherently low lung proton density, (2) distortion of the

image due to cardiac and respiratory motion, and (3) magnetic susceptibility effects of the air-

filled lung tissue subjected to large magnetic field gradients [4,5]. Two approaches have been

used for DWI of the lung: breath-hold scanning and free-breathing scanning. Breath-hold

scanning requires only a short examination time, but the signal-to-noise ratio is compromised

especially at higher b-values, and this approach provides limited spatial resolution. Image

acquisition during free breathing may be combined with cardiac triggering and/or respiratory

triggering. Cardiac triggering is useful for avoiding pulsation artifacts, but is time-consuming

[4]. The use of respiratory triggering improves the quality of DW images compared to the

quality obtained using breath-hold imaging [16].

Various techniques have been used for monitoring the respiration such as a strain gauge,

elastic breathing belts, and temperature monitoring using face masks, as well as navigator ech-

oes [13,14,16]. The major advantage of the navigator-echo method is that no additional hard-

ware is needed and the patient set-up is easier [13]. Taouli et al. reported that the use of a

navigator-echo to trigger a single-shot EPI DWI sequence for the liver improves image quality

and liver lesion conspicuity with more precise ADC measurement [14].

Table 4. ADC Histogram Parameters of Lymphovascular Invasion and Pleural Invasion of NSCLC.

Lymphovascular Invasion

Parameter Positive Negative p-value

(n = 49) (n = 11)

Mean 1227.1 (209.3) 1379.9 (182.2) 0.046*

5th percentile 839.4 (183.5) 815.6 (210.3) 0.474

10th percentile 916.0 (176.8) 921.8 (190.2) 0.841

25th percentile 1037.4 (180.0) 1127.6 (213.2) 0.293

50th percentile 1180.6 (197.0) 1349.5 (231.1) 0.033*

75th percentile 1371.3 (245.6) 1617.3 (155.1) 0.002*

90th percentile 1611.4 (325.9) 1876.6 (158.0) 0.003*

95th percentile 1780.2 (373.0) 2055.5 (170.5) 0.007*

Skewness 0.91 (0.69) 0.31 (0.67) 0.020*

Kurtosis 2.61 (2.83) 0.34 (0.69) 0.001*

Pleural Invasion

Parameter Positive Negative p-value

(n = 30) (n = 30)

Mean 1253.4 (201.3) 1256.7 (225.1) 0.584

5th percentile 878.8 (155.7) 791.2 (207.3) 0.062

10th percentile 953.1 (152.7) 881.0 (195.4) 0.169

25th percentile 1064.1 (170.7) 1043.8 (206.0) 0.773

50th percentile 1202.7 (197.0) 1220.4 (229.2) 0.636

75th percentile 1397.9 (243.4) 1434.8 (258.6) 0.329

90th percentile 1642.2 (325.8) 1677.8 (315.2) 0.28

95th percentile 1804.1 (359.9) 1857.3 (364.3) 0.28

Skewness 0.97 (0.67) 0.62 (0.74) 0.048*

Kurtosis 2.49 (2.62) 1.90 (2.82) 0.069

Values presented as mean (±SD)×10−6 mm2/sec).

*p<0.05 (Mann-Whitney test).

doi:10.1371/journal.pone.0172433.t004
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Fig 3. ROC curves of percentiles of ADC (A), kurtosis and skewness (B) in predicting lymphovascular invasion. The AUC was highest for the

kurtosis (AUC = 0.809, cut-off value of 1.0815×10-6mm2/sec, sensitivity 61.2%, specificity 90.9%) in predicting lymphovascular invasion.

doi:10.1371/journal.pone.0172433.g003

Fig 4. ROC curve of skewness in predicting pleural invasion. The AUC of the skewness was 0.648 (cut-

off value 0.824×10−6 mm2/sec, sensitivity 60.0%, specificity 73.3%) in predicting pleural invasion.

doi:10.1371/journal.pone.0172433.g004
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Similar to other studies of various types of malignant tumors [17–21], our present findings

showed that all histogram-derived percentiles of the ADC based on the entire volume de-

creased as the tumor grade increased. All of the ADC percentile values except the 5th percen-

tile significantly differentiated high- from low-grade tumors. Our ROC analysis revealed that

the 95th ADC percentile is the most beneficial parameter for distinguishing high- from low-

grade tumors (AUC 0.740). In addition, the AUCs of the mean, 75th, and 90th percentiles of

ADC were >0.700.

The results of previous studies of the value of the percentile ADC in the differentiation of

high- and low-grade malignancies have been controversial. In the studies of uterine cervical

cancer, endometrial cancer, prostate cancer, bladder cancer, and brain glioma, low-percentile

ADCs proved to be significant for differentiating high-grade from low-grade malignancies

[18–20,22,23]. They stated that the low-percentile ADCs are correlated with highly cellular

components in the tumor and is expected to decrease with higher grade, because high-grade

tumors have higher cellularity and subsequently deceased extracellular space and diffusivity of

water molecules.

On the contrary, in our present investigation, the high-percentile ADCs showed better

diagnostic performance compared to that using low-percentile ADCs. Although the reason for

this discrepancy remains unclear, one possible explanation is that high-grade lung cancers

have much mucinous fluid, microhemorrhage, tissue disorganization—all of which contribute

to reduce motion of water—and lower ADC values compared to low-grade lung cancers. As a

result, these parts could be represented to a greater extent by high-percentile ADCs than by

low-percentile ADCs.

A histogram-based analysis yields additional diffusion parameters regarding the distribu-

tion of ADC values, such as skewness and kurtosis [12]. Our present findings showed that the

mean and the 50th, 75th, 90th, and 95th percentiles of ADC as well as skewness and kurtosis

can be used to discriminate the presence of lymphovascular invasion. Among these parame-

ters, kurtosis proved to be the most beneficial parameter in the ADC histogram (AUC 0.809).

On the other hand, skewness was the only parameter that could discriminate the presence of

pleural invasion (AUC 0.648). These results suggest that higher kurtosis and positive skewness

are promising predictors of lymphovascular invasion and pleural invasion, respectively.

Apart from the intrinsic limitations of the retrospective nature of our study, several other

limitations should be mentioned. First, the study population was relatively small. Further

investigations that include larger populations are warranted to strengthen the statistical power

of the results. Second, our study population did not include patients with predominant GGO,

because the signal intensity of GGO was sometimes weak and could not be detected even in

low-b value DWI [24,25]. Third, our study was performed using a 1.5-T MR system with two

b-values (b = 0, 800 s/mm2) to acquire the DWI. The possibility of differing results using a

higher magnetic field and a different number and magnitude of b-values cannot be excluded.

In conclusion, ADC histogram analyses on the basis of the entire tumor volume using respi-

ratory triggering by the navigator-echo method are able to stratify the NSCLC’ tumor grade,

lymphovascular invasion and pleural invasion. The 95th percentile ADC was the most promis-

ing parameter for the differentiation of high- from low-grade NSCLCs. The kurtosis and skew-

ness were the predictive parameters for the presence of lymphovascular invasion and pleural

invasion, respectively.

Supporting information

S1 Fig. Flowchart of patient selection process.

(TIF)
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