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Abstract

Background: Apolipoprotein A-I (apoA-I), the major protein for high density lipoprotein, is essential for reverse cholesterol
transport. Decreased serum levels of apoA-I have been reported to correlate with subcortical infarction and dementia, both
of which are highly related to white matter lesions (WMLs). However, the association between apoA-I and WMLs has never
been investigated. In this study, we sought to investigate the association between apoA-I and the presence of WMLs in
middle-aged and elderly subjects.

Methods: Consecutive patients aged 50 years and older of our department were prospectively enrolled in this study
(n = 1282, 606 men and 676 women, 65.969.4 years). All participants underwent MRI scans to assess the presence and
severity of WMLs. Multivariate logistic regression analyses were performed to examine the association of apoA-I with WMLs.

Results: Patients with WMLs were older and showed significantly higher proportion of male sex, hypertension, diabetes
mellitus, previous stroke, and coronary heart disease whereas levels of total cholesterol, high density lipoprotein cholesterol,
and apoA-I were lower. After adjustment for potential confounders, the lowest apoA-I quartile was independently
associated with an increased risk of WMLs (odds ratio: 1.87, 95% confidence interval: 1.29–2.72). In sex-specific analyses, this
relationship was observed only in women.

Conclusions: Our findings demonstrated that apoA-I was inversely associated with the presence of WMLs in middle-aged
and elderly subjects. This results suggest that therapies which increase apoA-I concentration may be beneficial to reduce
the risk of WMLs, dementia and stroke.
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Introduction

Cerebral white matter lesions (WMLs), also known as leukoar-

aiosis, are frequently observed on brain magnetic resonance

imaging (MRI) in older individuals. Accumulating evidence

suggests that WMLs have substantial clinical impact through

associations with dementia, disability, depression, stroke, and

mortality [1,2]. WMLs reflect multiple pathologic changes,

including loss and deformation of myelin sheath, changes in vessel

wall permeability, disruption of the blood-brain barrier, hypoper-

fusion attributable to altered cerebrovascular autoregulation, fluid

shift from the ventricles and gliosis [3,4]. Whereas advanced age

and hypertension are the most widely accepted risk factors for

WMLs, the current understanding of other risk factors for WMLs

remains less clear. The role of lipids in the pathogenesis of WMLs

is controversial in former studies. Some studies have shown that

low levels of high density lipoprotein (HDL) cholesterol and

hypertriglyceridemia may increase the risk of WMLs [5,6].

However, other authors have not consistently shown similar

associations [7,8].

Apolipoprotein A-I (apoA-I) is the major protein component of

HDL and plays an important role in transporting excess

cholesterol from peripheral cells to the liver [9]. Besides the

atheroprotective effect, apoA-I also manifests anti-inflammatory

and antioxidant effects [10]. Recently, decreased serum apoA-I

levels have been reported to increase the risk of deep subcortical

infarction [11], which often coexists with WMLs in brains [12].

Furthermore, the Honolulu-Asia aging study has found an inverse

relation between apoA-I and dementia [13]. However, the

association between apoA-I and the presence of WMLs has never

been investigated.

Thus, in the present cross-sectional study, we aimed to evaluate

the association of apoA-I with the presence of WMLs in middle-

aged and elderly subjects. This could improve our understanding

of the pathophysiology underlying this highly prevalent cerebro-

vascular disease.
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Methods

Ethics Statement
The study protocols were approved by Institutional Review

Board of the Third Military Medical University and performed in

accordance with the Declaration of Helsinki. All participants

provided written informed consent prior to their inclusion in the

study.

Study population
Consecutive inpatients admitted to the department of neurology

of Daping Hospital in the city of Chongqing from June 2012 to

June 2013 were prospectively enrolled in this study. All patients

were proposed to undergo brain MRI scans. Inclusion criteria

were (1) aged 50 years and older; (2) ability to understand the aim

of the study and provide written informed consent. The following

patients were excluded: (1) patients with leukoencephalopathy of

nonvascular origin (immunological-demyelinating, toxic, infec-

tious, other); (2) patients with brain tumors, dementia, psychoses;

(3) patients who had contraindications for MRI scans or refused to

undergo cerebral MRI; (4) patients who had been using lipid-

lowering medications before admission; (5) patients who refused to

undergo lipids tests.

Clinical information collection
Every participant underwent a standardized clinical examina-

tion and interview using a detailed questionnaire survey to obtain

information including demographic data, past medical history,

current cigarette smoking status, and the use of antihypertensive

medications, lipid-lowering medications, and oral hypoglycemic

agents or insulin. Body mass index was calculated as the weight

divided by the square of the height (kg/m2). Blood pressure was

determined using an aneroid sphygmomanometer with the

patients in a sitting position after relaxing for at least 10 minutes,

and the mean of two measurements was used. Blood samples were

drawn in the morning after an overnight fast and sent to the

clinical laboratory of Daping Hospital for the measurement of

serum indices. The levels of fasting blood glucose (FBG), total

cholesterol (TC), triglyceride, HDL cholesterol, and low density

lipoprotein cholesterol were measured by standard enzymatic

techniques. The levels of apoA-I and apoB were measured by the

immunoturbidimetric method using a DxC800 chemistry analyzer

(Beckman Coulter Inc., Brea, California, United States). The

intra- and inter-assay coefficient of variation for apoA-I were 1.9%

and 2.3%, respectively. Hypertension was defined as systolic/

diastolic blood pressure measures greater than 140/90 mmHg, or

current treatment with antihypertensive medications. Diabetes

mellitus was defined as FBG $7.0 mmol/L or current treatment

with hypoglycemic agents or insulin. In addition, a physician’s

diagnostic report of cardiovascular disease, including coronary

heart disease (CHD) or previous stroke, was gathered for each

participant.

MRI scans and WMLs grading
MRI was performed following a standard protocol including

T1- (TR/TE: 450/8.9 ms) and T2- (TR/TE: 5000/87 ms)

weighted and fluid attenuated inversion recovery (FLAIR, TR/

TE: 8500/88 ms, inversion time: 2000 ms) sequences using a

1.5 T magnet (Signa EXCITE HD 1.5T, General Electric, USA).

The degree of WMLs severity was rated on FLAIR by two trained

investigators (Yin and Cui) who were blind to the clinical data,

using the modified visual scale of Fazekas et al [14]. Disagreements

of imaging analysis were resolved by consensus. Taking into

account only deep and subcortical white matter, lesions were

classified into three categories: mild = single lesions must be more

than 3 mm and smaller than 10 mm, areas of grouped lesions

must be smaller than 20 mm in any diameter; moderate = single

lesions between 10 and 20 mm, areas of grouped lesions more

than 20 mm in any diameter, no more than connecting bridges

between individual lesions; severe = single lesions or confluent

areas of hyperintensity 20 mm or more in any diameter [15].

Statistical analyses
Demographic data were expressed in percentages for categor-

ical variables and compared using the chi-square test. Continuous

variables were expressed as mean 6 SD and compared with a

Student t test for factors with a normal distribution or expressed as

median and interquartile range and compared with the Mann-

Whitney U test for factors that were not normally distributed. The

relationship between apoA-I quartiles and severity of WMLs was

evaluated by chi-square linear-by-linear association test. Multi-

variate logistic regression analyses were performed to determine

whether the decreased serum apoA-I levels were independently

associated with WMLs after adjustment for the potential

confounders. The baseline variables having p,0.10 for the

presence of WMLs in univariate analyses were selected to enter

the multivariate models. Finally, we repeated all analyses

excluding participants within the acute period of stroke

(n = 220). Odds ratios (ORs) with 95% confidence intervals (CIs)

were calculated. All p values were two-tailed, and values of p,0.05

were considered statistically significant. All statistical analyses were

performed using SPSS18.0 for Windows (SPSS Inc., Chicago IL).

Results

1509 consecutive patients aged 50 years and older were

admitted to the department of neurology of Daping Hospital

from June 2012 to June 2013. We excluded 101 individuals who

had contraindications for MRI scans or refused to undergo brain

MRI, 14 who were with leukoencephalopathy of nonvascular

origin, 35 who were diagnosed with brain tumors, dementia, or

psychoses, 45 who had been using lipid-lowering medications

before admission, and 32 who refused to undergo lipids tests.

Finally, a total of 1282 patients were enrolled in the study. Among

the 1282 patients, 587 complained of non-specific neurological

symptoms (e.g., dizziness, vertigo, numbness and other symptoms),

220 of acute stroke, 102 of headache, 81 of sleep disorders, 65 of

movement disorders, 125 of peripheral neuropathy and 102 of

other neurological conditions.

The mean age of the study population was 65.969.4 years;

47.3% were men. Among the 1282 participants, mild WMLs was

found in 486 (37.9%), moderate WMLs in 147 (11.5%), and severe

WMLs in 91 (7.1%). Demographic characteristics of the study

population are shown in Table 1. Patients with WMLs were older

(p,0.001) and more likely to be male (p,0.001) in comparison

with those without WMLs. Moreover, patients with WMLs

showed significantly higher proportion of hypertension, diabetes

mellitus, previous stroke, and CHD whereas levels of TC, HDL

cholesterol, and apoA-I were lower.

Serum apoA-I levels ranged from 0.62 to 2.40 g/L for women

and 0.47 to 2.22 g/L for men. They were higher for women than

men (1.4660.24 vs. 1.2960.23 g/L; p,0.001). As shown in

Figure 1, in women, those with WMLs had lower levels of apoA-I

than those without WMLs (1.4060.24 vs. 1.5160.23 g/L; p,

0.001). However, this difference was not observed between the two

groups in men (1.2860.24 vs. 1.3060.22 g/L; p = 0.321). Patients

were stratified into quartiles according to the serum apoA-I levels

by sex. The sex-specific quartiles were #1.30, 1.31 to 1.46, 1.47 to
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1.60, and $1.61 g/L for women while #1.13, 1.14 to 1.26, 1.27

to 1.42, and $1.43 g/L for men. As shown in Figure 2, patients

with lower apoA-I quartiles were likely to have higher prevalence

and severity of WMLs (p for trend ,0.001).

Table 2 shows the results of the multivariate logistic regression

model and the OR for each factor. After adjustment for age, sex,

history of stroke, CHD, hypertension, and diabetes, patients with

the lowest apoA-I quartile were approximately 1.9 times more

likely to have WMLs, compared with those with the highest apoA-

I quartile. When the apoA-I concentration entered the model as a

continuous variable, this inverse relationship between apoA-I and

WMLs remained significant (OR: 0.40, 95% CI: 0.23–0.70). In

addition, age, previous stroke and hypertension were indepen-

dently associated with an increased risk of WMLs (p,0.001 for all

variables). In sex-specific analyses, the lowest apoA-I quartile still

predicted higher prevalence of WMLs in women (OR: 3.46, 95%

CI: 2.08–5.76), but not in men (Table 3). When the apoA-I

concentration was added to the multivariate models as a

continuous variable, the sex difference still existed (OR: 0.17,

95%CI: 0.08–0.36 for women; OR: 1.20, 95%CI: 0.52–2.77 for

men).

Furthermore, we repeated the multivariate adjusted logistic

regression analyses after excluding 220 patients within the acute

period of stroke, and found that the lowest apoA-I quartile

remained an independent predictor for WMLs (OR: 2.13, 95%

CI: 1.42–3.20). In addition, the effects of HDL cholesterol on

WMLs were similar to those of apoA-I in multivariate logistic

regression analyses (data not show). The Akaike information

criterion (AIC) was used to compared the goodness of fit between

the two models (one including apoA-I and the other including

HDL cholesterol). As a result, the model with apoA-I showed a

slightly better fit than the model using the HDL cholesterol levels

(1441 vs. 1447 of the AIC value, respectively).

Discussion

In the current study carried out on middle-aged and elderly

subjects, we investigated the associations of lipid profiles and

apolipoproteins with the presence of WMLs, and found that

patients with the lowest apoA-I quartile had approximately a 1.9

times increased risk for WMLs. This association was independent

of age, sex, and vascular risk factors. Further analyses showed that

this relationship existed only in women. These findings did not

change after excluding 220 patients within the acute period of

stroke. To the best of our knowledge, we first demonstrated that

apoA-I was inversely associated with an increased risk of WMLs.

This might provide a partial explanation of the previously

observed association between decreased serum levels of apoA-I

and dementia in elderly adults [13,16].

Dyslipidemias are widely recognized as a risk factor for stroke

[17,18], and lipid-lowering therapies have demonstrated benefits

in stroke prevention and prognosis [19,20]. However, the

association between serum lipids and WMLs remains inconsistent

in former studies. For instance, Crisby et al. [6] reported that HDL

cholesterol was inversely related to the risk of WMLs, in accord

with our study. In contrast, a study investigating the association

between metabolic syndrome components and WMLs found that

hypertriglyceridemia, but not low level of HDL cholesterol, was an

independent risk factor for WMLs [21]. Likewise, hypertriglycer-

idemia was significantly related to severe WMLs in a recent study

Table 1. Clinical characteristics of subjects with or without cerebral white matter lesions.

Clinical characteristicsa All subjects (n = 1282)
Subjects without WMLs
(n = 558) Subjects with WMLs (n = 724) P value

Age (years) 65.969.4 61.667.7 69.269.1 ,0.001

Men (%) 606 (47.3) 231 (41.4) 375 (51.8) ,0.001

Current smoking (%) 223 (17.4) 103 (18.5) 120 (16.6) 0.378

Previous stroke (%) 158 (12.3) 23 (4.1) 135 (18.6) ,0.001

Coronary heart disease (%) 177 (13.8) 43 (7.7) 134 (18.5) ,0.001

Hypertension (%) 621 (48.4) 176 (31.5) 445 (61.5) ,0.001

Diabetes (%) 228 (17.8) 83 (14.9) 145 (20.0) 0.017

Use of antihypertensive agents (%) 466 (36.3) 125 (22.4) 341 (47.1) ,0.001

Use of anti-diabetic agents (%) 145 (11.3) 52 (9.3) 93 (12.8) 0.048

Body mass index (kg/m2) 23.663.4 23.463.3 23.763.5 0.205

Systolic blood pressure (mmHg) 135.4617.2 131.6616.1 138.4617.5 ,0.001

Diastolic blood pressure (mmHg) 81.7610.1 80.569.8 82.6610.3 ,0.001

Fasting plasma glucose (mmol/L) 5.05 (4.60–5.78) 5.01 (4.61–5.63) 5.05 (4.59–5.89) 0.386

TC (mmol/L) 4.8961.04 5.0161.04 4.8061.04 ,0.001

Triglyceride (mmol/L) 1.23 (0.89–1.76) 1.27 (0.89–1.81) 1.21(0.90–1.74) 0.208

HDL cholesterol (mmol/L) 1.2160.33 1.2660.34 1.1760.32 ,0.001

LDL cholesterol (mmol/L) 2.6760.73 2.7160.74 2.6460.73 0.105

ApoA-I (g/L) 1.3860.25 1.4360.25 1.3460.25 ,0.001

ApoB (g/L) 0.9260.22 0.9360.23 0.9160.22 0.150

Abbreviation: WMLs, white matter lesions; TC, total cholesterol; HDL, high density lipoprotein; LDL, low density lipoprotein; ApoA-I, apolipoprotein A-I; ApoB,
apolipoprotein B.
aResults are expressed as mean 6 SD for variables with a normal distribution, as median and interquartile range for variables with a skewed distribution, or as number
with percentage for categorical variables.
doi:10.1371/journal.pone.0097113.t001
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[5]. This relationship, however, was not observed in our study.

Furthermore, TC was an independent risk factor for WMLs in

some studies [22,23], but was protective against WMLs in two

cohorts [24]. We found that subjects without WMLs had higher

levels of TC, which suggested a protective role of TC against

WMLs. However, this relationship between TC and WMLs was

no longer significant after adjustment for potential confounding

variables.

ApoA-I is essential for reverse transport of cholesterol from

peripheral tissue to the liver [9]. It also has antioxidant and anti-

inflammatory effects [10]. In contrast, apolipoprotein B (apoB) is a

major structural protein for very low density-low density

lipoprotein spectrum and reflects atherogenic potential [9]. The

apoB/apoA-I ratio is increasingly recognized as a better predictor

of cardiovascular disease than other traditional cholesterol

measures [25,26]. Very few reports from the literature are

available to compare with our findings regarding apolipoproteins

and WMLs. Cross-sectional data from the community-dwelling

Austrian Stroke Prevention Study demonstrated that participants

with microangiopathy-related cerebral damage had lower levels of

apoA-I. However, decreased apoA-I concentration did not enter

the final multivariate model [27]. In the present study, we

observed that patients with WMLs had lower levels of apoA-I,

compared with those without WMLs. The apoB levels, however,

did not show significant difference between the two groups. These

findings are consistent with a recent study, which reported that

levels of apoA-I, but not apoB, were associated with deep

subcortical infarction [11]. These results indicate that the effects

of apolipoproteins on cerebral small vessel disease might differ

from those on large vessel disease. Anti-inflammatory effects of

apoA-I may play a more important role in preventing WMLs

formation, than atheroprotective effects.

Although the exact mechanism underlying the inverse relation-

ship between apoA-I and WMLs remains to be elucidated, there

are some plausible explanations. First, the interaction of apoA-I

with ATP-binding cassette transporter A1 (ABCA1) activates

signal transducer and activator of transcription 3, which suppresses

the production of inflammatory cytokines and ultimately inhibits

the inflammatory response [28]. Biomarkers of inflammation such

as interleukin-6, intercellular adhesion molecule, and C-reactive

protein have been reported to be associated with the presence or

progression of WMLs in population-based studies [29–31]. In

animal model, neuroinflammation has also proved to be an

important mechanism of white matter damage [32]. Second,

apoA-I binds amyloid b (Ab) and prevents Ab-induced neurotox-

icity [33], and apoA-I deficiency increases levels of deposited Ab in

the brain vessels [34]. These results suggest that apoA-I attenuates

cerebral amyloid angiopathy, which is not only a hallmark of

Alzheimer’s disease [12], but also a predictor for WMLs [35,36].

Third, apoA-I promotes reverse cholesterol transport through the

macrophage ABCA1 and protects large vessels from atheroscle-

rosis [37], which has been related to WMLs in several studies

[38,39]. Furthermore, apoA-I may directly protect small vessels

from microatheroma which is a manifestation of arteriolosclerosis,

the primary pathological feature of small vessel disease [12].

Additionally, we found that the lowest apoA-I quartile was

associated with WMLs only in women. Similarly, a longitudinal

study has found that higher HDL cholesterol predicted better

maintenance of cognitive abilities in women, but not in men [40].

The mechanisms underlying the sex differences are unknown. We

cannot rule out a possible effect modification of sex hormones in

the association. Sex differences should be considered in future

studies of the effect of lipids on cerebral small vessel disease.

Figure 1. Box-plots of apoA-I values and their association WMLs in men and women. ApoA-I, apolipoprotein A-I; WMLs: white matter
lesions.
doi:10.1371/journal.pone.0097113.g001
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The present study has several limitations. First, the present

study was cross-sectional and could not determine the exact

causality between decreased serum apoA-I concentration and

WMLs. Second, the study population was composed of hospital-

based patients and appeared to have more vascular risk factors

than community-based cohorts, which would restrict the gener-

alization of our results.

In summary, we demonstrated that serum apoA-I levels were

inversely associated with the presence of WMLs in middle-aged

and elderly subjects. This association was observed only in women.

Apart from HDL cholesterol, traditional serum lipid levels were

Figure 2. Presence and severity of WMLs according to apoA-I quartiles. Values are percentages of patients. As levels of apoA-I increased, the
presence and severity of WMLs increased (P for trend ,0.001). ApoA-I, apolipoprotein A-I; WMLs: white matter lesions.
doi:10.1371/journal.pone.0097113.g002

Table 2. Multivariate analyses of white matter lesions determinants.

Variables OR (95% CI) P value

Age 1.10 (1.08–1.11) ,0.001

Sex, male 1.28 (0.99–1.65) 0.059

Previous stroke 2.74 (1.67–4.52) ,0.001

Coronary heart disease 1.22 (0.80–1.87) 0.359

Hypertension 2.47 (1.89–3.23) ,0.001

Diabetes 0.78 (0.54–1.11) 0.166

ApoA-I quartilesa

First 1.87 (1.29–2.72) 0.001

Second 1.22 (0.85–1.73) 0.279

Third 1.11 (0.78–1.58) 0.568

Fourth Reference

P for trend 0.001

Abbreviation: ApoA-I, apolipoprotein A-I.
aRanges for sex-specific quartiles were #1.30, 1.31 to 1.46, 1.47 to 1.60, and $1.61 g/L for women while #1.13, 1.14 to 1.26, 1.27 to 1.42, and $1.43 g/L for men.
doi:10.1371/journal.pone.0097113.t002
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not independently associated with WMLs. Although further

longitudinal studies are needed to confirm the conclusions and

to elucidate the mechanisms for the association, our results suggest

that therapies which increase apoA-I concentration may be

beneficial to reduce the risk of WMLs, dementia and stroke.
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