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ABSTRACT Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteri-
aceae have become widespread in hospitals and the environment. Here, we describe
a blaKPC-2-carrying plasmid called pCRE3-KPC, which was recovered from a clinical
multidrug-resistant Citrobacter braakii CRE3 strain in China. The complete nucleotide
sequence of pCRE3-KPC was determined by combining MiSeq and MinION sequenc-
ing and then compared with those of three related plasmids. Plasmid conjugal trans-
fer and electroporation tests, modified carbapenem inactivation method, and bacte-
rial antimicrobial susceptibility test were carried out. We compared this plasmid with
three related plasmids to verify that the backbone of pCRE3-KPC was composed of
the backbones of the IncR plasmid and IncP6 plasmid. Further bioinformatics analy-
sis showed that pCRE3-KPC carried two resistance-related regions (the blaKPC-2 gene
cluster and the aacC2-tmrB-related region). The aacC2-tmrB-related region included
two novel insertion sequences (ISCfr28 and ISCfr16).

IMPORTANCE Reports of human-pathogenic C. braakii strains, especially of strains
showing resistance to carbapenems, are rare. To the best of our knowledge, our re-
sults represent the first detection of carbapenemase gene blaKPC-2 in C. braakii
strains. In addition, we have studied detailed genetic characteristics of the novel
IncR/IncP6 hybrid plasmid pCRE3-KPC, which was isolated from a clinical multidrug-
resistant Citrobacter braakii CRE3 strain. Our results may provide further insight into
the horizontal transfer of multidrug resistance genes in bacteria and into the
genomic diversity and molecular evolution of plasmids.
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Klebsiella pneumoniae strains that produce K. pneumoniae carbapenemase (KPC)
were initially identified in the United States in 2001 (1). Citrobacter braakii, as a

member of the Citrobacter freundii complex, was identified in 1993 (2) and has rarely
been reported as a human pathogen (3–6). The blaKPC-2 gene, as a subtype of KPC
genes, has widely spread in Enterobacteriaceae, such as K. pneumoniae (1), Citrobacter
freundii (7), C. portucalensis (8), and Escherichia coli (9) strains. However, the blaKPC-2

gene had not previously appeared in C. braakii strains. Moreover, it has been found to
be carried on several plasmids to date, namely, IncR, IncP, IncFII, IncL/M, IncN, IncA,
IncC, and IncX plasmids (10–12). As of 22 May 2019, 54 plasmids containing both the
IncR replicon and the blaKPC-2 gene and 16 plasmids containing both the IncP6 replicon
and the blaKPC-2 gene had been documented in the GenBank database, and there was
no documented instance of an IncR/IncP6 hybrid plasmid (see Table S1 and S2 in the
supplemental material).
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The IncR replicon was first described in 2009 (13); since then, IncR plasmids have
been increasingly reported in Enterobacteriaceae isolates (14). IncR replicons have
also been found either as single replicons or as parts of multireplicon plasmids,
which includes associations with IncA/C, IncF, IncFIIk, or nontypeable backbones
(15). On the basis of prevalence statistics of plasmids containing both the IncR
replicon and the blaKPC-2 gene (Table S1), we found that these plasmids usually
contain multiple replicons. The blaKPC-2-carrying plasmid unnamed3 (GenBank ac-
cession no. CP027150) contains one IncR replicon from the K. pneumoniae AR_0363
strain, which was that initially reported.

IncP6 plasmids have a broad host range (16), and to date the blaKPC-2-carrying IncP6
plasmids have been found in Pseudomonas aeruginosa (16), K. oxytoca (GenBank
accession no. KY913901), Enterobacter cloacae (GenBank accession no. CP018968), and
C. freundii (17). Both blaKPC-2-carrying IncP6 plasmid pCOL-1 (GenBank accession no.
KC609323) (18) and p10265-KPC (GenBank accession no. KU578314) (16) were recov-
ered from P. aeruginosa strains.

In this work, we have reported the first isolation of a blaKPC-2-positive C. braakii
strain. In addition, we determined the whole genomic sequence of a blaKPC-2-carrying
plasmid that we have named pCRE3-KPC, which was isolated from a clinical multidrug-
resistant C. braakii CRE3 strain. We compared this plasmid with the following three
related plasmids: plasmid unnamed3 (GenBank accession no. CP027150), p10265-KPC
(GenBank accession no. KU578314), and pCOL-1 (GenBank accession no. KC609323).
Interestingly, we found that plasmid pCRE3-KPC contains both an IncR replicon and an
IncP6 replicon belonging to a novel IncR/IncP6 hybrid plasmid. To the best of our
knowledge, this is the first report of an IncR/IncP6 hybrid plasmid. Our results may offer
insight into the horizontal transfer of resistance genes and provide an overview of
plasmid diversity and evolution.

RESULTS AND DISCUSSION
Characterization of C. braakii CRE3. PCR screening revealed that the multiple

antimicrobial resistance genes present in C. braakii CRE3 include blaKPC-2, blaTEM-1B,
blaOXA-1, blaCMY-83, qnrB10, and aacC2. Plasmid pCRE3-KPC failed to transfer to E. coli
EC600 through conjugation experiments but was successfully transferred to E. coli
DH5� by electroporation to generate the blaKPC-2-positive electroporant CRE3-KPC-
DH5�. This result illustrates that pCRE3-KPC is a nonconjugative but mobilizable
plasmid. The antimicrobial susceptibility tests showed that both the C. braakii CRE3 and
E. coli electroporant CRE3-KPC-DH5� strains were highly resistant to ampicillin, piper-
acillin, cefuroxime, ceftriaxone, aztreonam, imipenem, meropenem, and gentamicin
(Table 1). Moreover, carbapenemase was produced in both of the strains mentioned
above, as revealed by the modified carbapenem inactivation method (mCIM) (19).

Overview of plasmid pCRE3-KPC. The circular DNA sequence of pCRE3-KPC is
62,673 bp in length, with mean G�C content of 56%. Furthermore, it contains 71
predicted open reading frames (ORFs) and two distinct replicons (IncR replicon repA
and IncP6 replicon repB) (Table 2) (Fig. 1).

Linear comparisons of plasmid pCRE3-KPC with three related reference plasmids,
namely, blaKPC-2-carrying IncR plasmid unnamed3 (GenBank accession no. CP027150),
p10265-KPC (a blaKPC-2-carrying IncP6 plasmid first reported in China) (16), and pCOL-1
(a blaKPC-2-carrying IncP6 plasmid, initially identified in Colombia) (18), were conducted.
The detailed comparisons revealed that the overall structure of plasmid pCRE3-KPC is
highly mosaic and can be divided into the following three distinct modules (Fig. 1 and
2; see also Fig. S1 in the supplemental material): (i) a first module (�20.5 kb) that is high
homologous (�98.6% identity) to plasmid unnamed3 from the K. pneumoniae AR_0363
strain reported in the United States and extends from the resolution site (res) of
ΔTn1722 to gene vagD (virulence-associated gene); (ii) a second module (�27.8 kb) that
shares �99.9% identity with plasmid p10265-KPC (16) from P. aeruginosa strain 10265
isolated in China and extends from the blaKPC-2 gene cluster to ΔTn5563; (iii) a third
module comprising the other accessory modules (�13.8 kb) with two novel insertion
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sequences (ISCfr28 and ISCfr16), the truncated aacC2-tmrB region, ISEc21, and ΔISEc15.
On the basis of the study of the hybrid plasmids p675920-1 (20, 21) and pKP1034 (22),
the majority of the backbone and accessory regions of unnamed3 and p10265-KPC
were found to be present in pCRE3-KPC, so pCRE3-KPC may represent a combination
resulting from plasmids like these. Compared to the backbone of unnamed3 and
p10265-KPC, pCRE3-KPC lost part of its backbone genes (orf711 of unnamed3, Δorf1
and kfrA, and a fragment extending from mobE to orf5 of p10265-KPC) during the
recombination process, suggesting that these genes may not be necessary in these
plasmids. The gene functions of these plasmids are annotated in detail (see Data Set S1,
S2, S3, and S4 in the supplemental material).

Genomic comparison of the backbone regions from pCRE3-KPC and related
plasmids. The backbone of each plasmid was further divided into the replication genes
and the plasmid maintenance genes, without the conjugal-transfer genes, such that the
hybrid pCRE3-KPC plasmid comprised the IncR and IncP6 backbones. The resultant
backbone includes two replication genes (IncR replicon repA and IncP6 replicon repB)
and two sets of partitioning system parAB genes (Fig. 1).

The IncR backbone from pCRE3-KPC was compared with plasmid unnamed3 (an
IncR plasmid; GenBank accession no. CP027150), and their backbones were found to
consist of the replication genes (IncR replicon and its iterons) as well as plasmid
maintenance genes (parAB, umuCD, and vagDC). However, two differences in their
backbones were identified as follows: (i) the orf711 gene (hypothetical protein) is
deleted in pCRE3-KPC but complete in plasmid unnamed3 and (ii) the orf258 gene
(hypothetical protein) is interrupted into two parts by the insertion of the aac(6=)-Ib-
cr-related region in plasmid unnamed3 (Fig. 1 and 2; see also Fig. S1).

Furthermore, p10265-KPC (16) and pCOL-1 (18) can be assigned to the IncP6
incompatibility group, according to replicon-based schemes. The IncP6 backbone of
pCRE3-KPC was compared with those of both of the plasmids named above, and the

TABLE 1 Antimicrobial susceptibility profiles

Antibiotic

MIC (mg/liter)/antimicrobial susceptibilitya

C. braakii CRE3 Electroporant CRE3-KPC-DH5� E. coli DH5�

Ampicillin �32/R �32/R �2/R
Piperacillin �128/R �128/R �4/S
Cefuroxime �64/R �64/R 4/S
Ceftriaxone �64/R �64/R �1/S
Ceftazidime �64/R 4/S �1/S
Cefepime �64/R �1/S �1/S
Aztreonam �64/R �64/R �1/S
Imipenem �16/R �16/R �1/S
Meropenem �16/R �16/R �0.25/S
Amikacin 32/I �2/S �2/S
Gentamicin �16/R �16/R �1/S
Tobramycin �16/R 2/S �2/S
Ciprofloxacin �4/R �0.25/S �0.25/S
Levofloxacin 4/I �0.25/S �0.25/S
Nitrofurantoin 128/R �16/S �16/S
aThe interpretation is derived from the Clinical and Laboratory Standards Institute guidelines (CLSI, 2018)
(S, sensitive; R, resistant; I, intermediately resistant).

TABLE 2 Major features of plasmids in this work

Plasmid
Accession no.
or source Species

Inc
group

Country of
origin

Total
length (bp)

Total no.
of ORFs

Mean G�C
content (%)

Accessory module(s)
(resistance genes harbored)

unnamed3 CP027150 K. pneumoniae IncR United States 65,684 72 55 MDR region, Tn4401a,
aac(6=)-Ib-cr-related region

pCRE3-KPC This study C. braakii IncR-P6 China 62,673 71 56 blaKPC-2 gene cluster,
aacC2-tmrB-related region

p10265-KPC KU578314 P. aeruginosa IncP6 China 38,939 46 58 blaKPC-2 gene cluster
pCOL-1 KC609323 P. aeruginosa IncP6 Colombia 31,529 34 60 Tn4401b
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backbones were found to comprise the replication genes (IncP6 replicon and its
iterons) and plasmid maintenance genes (kfrA, parABC, the mob gene cluster, the
msrB-msrA-yfcG-corA-orf8 gene cluster, and paeR7IR). Three differences were notable
among them (Fig. 1 and 2; see also Fig. S1): (i) pCRE3-KPC has lost genes (Δorf1 and kfrA)
and a fragment extending from mobE (auxiliary protein) to orf5 (hypothetical protein);
(ii) the numbers of copies of the 17-bp tandem repeat (GCGCCTGCCTTTGAGTA) within
the iterons were 11 in pCRE3-KPC, 6 in p10265-KPC, and 12 in pCOL-1; and (iii) the
Δorf8-corA-yfcG-msrA-msrB gene cluster was found to be inverted in pCOL-1.

Genomic comparison of the blaKPC-2 gene region from pCRE3-KPC with those
from related plasmids. The blaKPC-2 gene is associated with the core blaKPC platform
(Tn3-ISKpn27-blaKPC-ΔISKpn6) in most Chinese Enterobacteriaceae strains (23–25). This
core platform is integrated into a ΔISEc33-associated blaKPC-2 cluster, which was initially
discovered in the p10265-KPC plasmid from a P. aeruginosa strain (16). In the blaKPC-2

gene cluster of p10265-KPC, the primary genetic structure, Tn3-ISKpn27-blaKPC-2-
ΔISKpn6-korC-orf6-klcA-ΔrepB, may have undergone two evolutionary events (16): (i)
insertion of a ΔblaTEM-1 gene between ISKpn27 and the Tn3 IRR (right inverted repeat)
and (ii) disruption of the tnpA gene (transposase) from Tn3, resulting in its becoming
two separate parts, an event caused by insertion of a composite transposon, ISApu1-

FIG 1 Schematic maps of plasmid pCRE3-KPC. Genes are denoted by arrows, and the backbone and accessory module regions are
highlighted in black and in color, respectively. The innermost circle presents GC-skew [(G � C)/(G�C)], with a window size of 500 bp and
a step size of 20 bp. The next-to-innermost circle represents GC content.

Dong et al.

March/April 2020 Volume 5 Issue 2 e00891-19 msphere.asm.org 4

https://msphere.asm.org


orf7-ISApu2. The blaKPC-2-carrying pCRE3-KPC plasmid was detected in an inpatient at a
tertiary care hospital in China, and the BLASTN analysis of it showed that the surround-
ing genetic environment of the blaKPC-2 gene in pCRE3-KPC is highly similar to that in
p10265-KPC. The ΔISApu1-orf7-ISApu2 composite transposon is also present in pCOL-1,
but it has not been inserted into Tn3 and occurs downstream of ΔTn5403. Furthermore,
the blaKPC-2 gene cluster is located downstream of ΔTn1722. Tn1722, a Tn3-family
transposon, consists of an IRL (left inverted repeat), tnpA, tnpR (resolvase), res, mcp
(methyl-accepting chemotaxis protein), and an IRR (26). ΔTn1722 contains an IRR, tnpA,
tnpR, and res in pCRE3-KPC, which is also present in plasmid unnamed3 (GenBank
accession no. CP027150) (Fig. 3).

However, the Tn3-family Tn4401 transposon has contributed to the rapid dissemi-
nation of the blaKPC-2 gene in Europe and the Americas. A number of previously
reported isoforms of Tn4401, which differ by a 100-to-200-bp sequence upstream of
blaKPC-2, are currently known (27–29). For example, Tn4401b, which is a Tn4401 isoform,
contains IRL, tnpR, tnpA, ISKpn7, blaKPC-2, ISKpn6, and IRR. Plasmid pCOL-1 (18) and
plasmid unnamed3 (GenBank accession no. CP027150) originated from Colombia
and the United States, respectively. The blaKPC-2 genes carried by plasmid pCOL-1 and
plasmid unnamed3 are embedded in Tn4401b and Tn4401a, respectively. Compared
with the complete Tn4401b, Tn4401a in plasmid unnamed3 (GenBank accession no.
CP027150) has lost a 135-bp sequence upstream of blaKPC-2 (Fig. 3).

Genomic comparison of the aacC2-tmrB-related region from pCRE3-KPC with
those from related plasmids. The aacC2-tmrB-related region from pCRE3-KPC is
composed of ΔTn5563, two novel insertion sequences (ISCfr28 and ISCfr16), the trun-
cated aacC2-tmrB region, ISEc21, and ΔISEc15. The Tn5563 element is organized se-
quentially with an IRL, tnpR, orf2 (hypothetical protein), pilT (PilT domain-containing
protein), tnpA, merP (mercuric transport protein periplasmic component), merT (mer-
curic transport protein), merR (mercuric resistance operon regulatory protein), and an
IRR. In p10265-KPC (16), Tn5563, which is located upstream of two consecutive back-
bone genes (Δorf1 and kfrA), differs from the prototype Tn5563 from pRA2 (30) with a
286-bp insertion occurring between merP (mercuric transport protein periplasmic
component) and merT (mercuric transport protein). However, ΔTn5563 has undergone
the deletion of a fragment extending from merT to the IRR in pCRE3-KPC (Fig. 2 and 3).

In addition, two novel insertion sequences (ISCfr28 and ISCfr16) are inserted down-
stream of ΔTn5563. ISCfr28, containing two transposase genes, tnpA and tnpB, and a
Tn3 family element, is bordered by 13-bp IRs (IRL, GTCAGCCAAGAAG; IRR, CTTCTTGG
CTGAC) (Fig. 4). The 1,025-bp ISCfr16 insertion sequence, a Tn3 family element, is made
up of a transposase gene (tnpA) and 13-bp IRs (IRL, TAAGCTGCGAGCG; IRR, CGCTCGC
AGCTAA). The aacC2 (aminoglycoside resistance)-tmrB (tunicamycin resistance) region

FIG 2 Linear comparison of pCRE3-KPC with related plasmids. A linear comparison was carried out for the complete DNA sequences of plasmids unnamed3
(GenBank accession no. KC609323), pCRE3-KPC (this study), p10265-KPC (GenBank accession no. KU578314), and pCOL-1 (GenBank accession no. KC609323).
Genes are denoted by arrows. Genes, mobile elements, and other features are colored based on functional classification. Shading indicates regions of homology
(�95% nucleotide identity). MDR, multidrug resistant.
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is derived from transposon Tn2, and Tn2 has undergone the following molecular
evolutionary changes (31, 32): (i) the tnpR-res-tnpA segment of Tn2 has been replaced
by the aacC2-tmrB-orf192-orf228-orf1182-ISCfr1 module and (ii) the IS26 insertion se-
quence has been inserted at the right-hand end of Tn2. The complete aacC2-tmrB
region was discovered in pEl1573 from E. cloacae (33), and its truncated forms have
been integrated into transposon Tn6411 from the chromosome of P. aeruginosa 12939

FIG 3 The blaKPC-2 gene region from pCRE3-KPC and comparison with the related plasmids. Genes are denoted by arrows. Mobile elements, genes, and other
features are colored based on functional classification. Numbers in parentheses denote GenBank numbers and the nucleotide positions within the
corresponding plasmids. Shaded regions show shared DNA regions of homology (�95% nucleotide identity). For reference, the accession number of Tn1722
is X61367.

FIG 4 The aacC2-tmrB-related region from pCRE3-KPC and comparison with related plasmids. Genes are
denoted by arrows. Genes, mobile elements, and other features are colored based on functional
classification. Numbers in parentheses denote GenBank numbers and the nucleotide positions within the
corresponding plasmids. Shaded regions indicate shared DNA regions of homology (�95% nucleotide
identity). For reference, the accession number of the aacC2-tmrB region is JX101693.
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(34). Because ISEc21 had inserted upstream of ISEc15, this may have led to the
truncation of ISEc15 (Fig. 4).

MATERIALS AND METHODS
Bacterial isolates and identification. The clinical C. braakii CRE3 strain was isolated from a drainage

sample from a patient at a tertiary care hospital in China on 5 May 2018. Bacterial identification was
carried out using a Vitek compact-2 automated system (bioMérieux, France) and was confirmed by 16S
rRNA sequencing (35). The genes encoding extended-spectrum �-lactamase (36), carbapenemase (37),
fluoroquinolone (38), and aminoglycoside (39) were detected by PCR. All the PCR amplicons were
sequenced on an ABI 3730 platform (Applied Biosystems, USA).

Plasmid conjugal transfer. The pCRE3-KPC plasmid was recovered from a clinical multidrug-
resistant C. braakii CRE3 isolate. Conjugation experiments were carried out with cells of rifampin-resistant
Escherichia coli strain EC600 as the recipient cells, and the transformation experiments were conducted
using cells of E. coli DH5� Electro-Cells (TaKaRa, China) as the recipient cells for the plasmid electropo-
ration. Plasmid pCRE3-KPC was extracted from the cells using a Qiagen Plasmid Midi kit (Qiagen,
Germany). The plasmid conjugal transfer and electroporation tests were performed as described previ-
ously (40, 41).

Antimicrobial susceptibility and carbapenemase activity detection. Antimicrobial susceptibility
testing was conducted using a Vitek compact-2 automated system (bioMérieux, France). The results were
interpreted according to the CLSI (Clinical and Laboratory Standards Institute) 2018 performance
standards (42). Carbapenemase activities were detected using mCIM (19).

Sequencing and sequence assembly. The bacterial genomic DNA extracted from the CRE3 isolate
using a Wizard Genomic DNA purification kit (Promega, USA) was sequenced on the MiSeq (Illumina,
USA) and the MinION (Oxford Nanopore, United Kingdom) platforms. The DNA library was constructed
in accordance with a NEB Next Ultra II DNA Library Prep kit for Illumina, and the Illumina sequencing read
length used was 300. The library preparations for the MinION platform were performed by the use of a
rapid barcoding sequencing kit (SQK-RBK004) according to the protocol of the manufacturer (Oxford
Nanopore Technologies), and the results were then loaded into the flow cell (FLO-MIN106D, Oxford
Nanopore Technologies) for sequencing. Short Illumina reads were trimmed to remove poor-quality
reads using Trimmomatic, and the contigs were assembled using Newbler3.0 (43). The long reads from
MinION were combined with the short Illumina reads, which were subjected to hybrid assembly using
SPAdesv3.11.1 (44). The hybrid assembly produced several scaffolds, and further bioinformatics analysis
verified that the scaffold of the pCRE3-KPC plasmid was successfully cyclized by our in-house script. The
correctness was then demonstrated by mapping the Illumina reads to the cyclized scaffold using CLC
Genomics Workbench 9.0 (CLC Bio, Denmark), with an average level of read mapping coverage of 817�.
The final consensus sequence obtained from CLC Genomics Workbench 9.0 was considered to represent
the complete sequence of plasmid pCRE3-KPC.

Sequence annotation and genome comparisons. Annotation of open reading frames (ORFs) and
pseudogenes was performed using RAST2.0 (45) combined with BLASTP/BLASTN searches against the
UniProtKB/Swiss-Prot (46) and RefSeq (47) databases. Resistance genes, mobile elements, and other
features were predicted using ResFinder3.2 (48), INTEGRALL (49), ISfinder (50), and PlasmidFinder2.1 (51)
online databases. Paired-sequence comparisons and multiple-sequence comparisons were carried out
using BLASTN and MUSCLE 3.8.31 (52), respectively. Gene organization diagrams were drawn in Inkscape
0.48.1 (https://inkscape.org/en/).

Accession number(s). The complete sequence of pCRE3-KPC was submitted to GenBank and
deposited under accession number MH919378.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, DOCX file, 1.2 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.02 MB.
DATA SET S1, XLSX file, 0.02 MB.
DATA SET S2, XLSX file, 0.02 MB.
DATA SET S3, XLSX file, 0.02 MB.
DATA SET S4, XLSX file, 0.02 MB.
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