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Abstract

Purpose: The interplay effect between dynamic pencil proton beams and motion of

the lung tumor presents a challenge in treating lung cancer patients in pencil beam

scanning (PBS) proton therapy. The main purpose of the current study was to inves-

tigate the interplay effect on the volumetric repainting lung plans with beam deliv-

ery in alternating order (“down” and “up” directions), and explore the number of

volumetric repaintings needed to achieve acceptable lung cancer PBS proton plan.

Method: The current retrospective study included ten lung cancer patients. The

total dose prescription to the clinical target volume (CTV) was 70 Gy(RBE) with a

fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized on all ten

phases in the 4DCT data set. The Monte Carlo algorithm was used for the 4D

robust optimization, as well as for the final dose calculation. The interplay effect

was evaluated for both the nominal (i.e., without repainting) as well as volumetric

repainting plans. The interplay evaluation was carried out for each of the ten differ-

ent phases as the starting phases. Several dosimetric metrics were included to eval-

uate the worst-case scenario (WCS) and bandwidth based on the results obtained

from treatment delivery starting in ten different breathing phases.

Results: The number of repaintings needed to meet the criteria 1 (CR1) of target

coverage (D95% ≥ 98% and D99% ≥ 97%) ranged from 2 to 10. The number of

repaintings needed to meet the CR1 of maximum dose (ΔD1% < 1.5%) ranged from

2 to 7. Similarly, the number of repaintings needed to meet CR1 of homogeneity

index (ΔHI < 0.03) ranged from 3 to 10. For the target coverage region, the number

of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 3 to 10,

whereas for the high-dose region, the number of repaintings needed to meet CR1

of bandwidth (<100 cGy) ranged from 1 to 7. Based on the overall plan evaluation

criteria proposed in the current study, acceptable plans were achieved for nine

patients, whereas one patient had acceptable plan with a minor deviation.

Conclusion: The number of repaintings required to mitigate the interplay effect in

PBS lung cancer (tumor motion < 15 mm) was found to be highly patient depen-

dent. For the volumetric repainting with an alternating order, a patient-specific

interplay evaluation strategy must be adopted. Determining the optimal number of
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repaintings based on the bandwidth and WCS approach could mitigate the interplay

effect in PBS lung cancer treatment.
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1 | INTRODUCTION

Lung cancer treatment using pencil beam scanning (PBS) proton

therapy presents two major challenges. First, the proton beam needs

to transverse inhomogeneities, and the accuracy of the proton dose

calculation algorithm in predicting the dose in the lung becomes

paramount. Published literature has reported that the analytical pen-

cil beam algorithms over-estimate the dose in the lung.1 Monte Carlo

dose calculation engines are becoming available in the commercial

treatment planning systems (TPSs). Researchers are advocating the

use of the Monte Carlo for dose calculations if the proton beam

encounters low- and high-density interfaces in its path, such as in

the case of lung cancer treatment,1–4 as well as if the proton beam

traverses a range shifter, which creates an air gap between the distal

end of the range shifter and patient body.5–7 The second challenge

in treating lung cancer with the PBS proton beam is the interplay

effect between dynamic pencil proton beams and motion of the lung

tumor.8–19 To mitigate the interplay effect in proton therapy, several

strategies have been proposed. These strategies include breath-hold,

abdominal compression, gating, and repainting.8,12,20

Repainting (also referred to as rescanning) allows the energy lay-

ers of the proton beam to be delivered more than once to achieve

statistical averaging of motion effects.12,17,18 Volumetric repainting is

delivered by repetitive scanning through the whole target volume,

whereas in layered repainting, the energy layer is rescanned more

than once before switching to the next energy layer.12,17,18 A benefit

of volumetric and layered repainting over gating and breath-hold is

the lack of external equipment that could require patient coopera-

tion.19 Several studies4,12,14,17 have investigated the potential use of

volumetric repainting in lung cancer and compared the volumetric

repainting against layered repainting, providing contradictory conclu-

sions. For instance, Seco et al.17 showed that the volumetric repaint-

ing produced better results than layered repainting, whereas

Grassberger et al.14 showed that layered repainting is superior or

equal to volumetric repainting. Engwall et al.12 found that offline

breath-sample layered repainting is superior to simple layer repaint-

ing and volumetric repainting. In offline breath-sample layered

repainting strategy, the layer rescans for each energy level are

spread uniformly over the breathing cycle.12 Recently, Wang et al.4

reported that a total of four volumetric repaintings were found to be

optimal on ProteusPLUS proton system (Ion Beam Applications, Lou-

vain-la-Neuve, Belgium) when they examined it on a moving

anthropomorphic lung phantom. Wang et al.4 demonstrated the fea-

sibility of delivering volumetric repainting plans in a clinical setting.

To take advantage of the volumetric repainting technique in miti-

gating interplay in lung cancer, the proton delivery system needs to

have a faster layer switching mechanism.18,19 However, the volumet-

ric repainting technique is manufacturer specific, and volumetric

repainting capability may vary among different proton machines from

the same manufacturer.19 The above-mentioned volumetric repaint-

ing studies4,12,14,17 on the lung cancer were conducted with beam

delivery sequence in “down” direction only such that the proton

beam is delivered from the deepest layer (highest energy) to the most

proximal layer (lowest energy), and then scans are repeated (i.e., from

the highest energy to the lowest energy). Figure 1 At Miami Cancer

Institute, ProteusPLUS proton therapy system with a PBS dedicated

nozzle is employed.21,22 Recently, in an effort to decrease the layer

switching time, a magnetic field regulation feature has been imple-

mented on the proton delivery system.23,24 For magnetic field regula-

tion mode, Hall probes are mounted inside specific groups of

magnets in the beamline. This allows the reduction in beam stabiliza-

tion delays and layer switching time in both “down” and “up” direc-

tions.23,24 The “up” direction means the proton beam is delivered

from the most proximal layer (lowest energy) to the distal layer (high-

est energy). Figure 1 The use of magnetic field regulation has

decreased the layer switching time to ~ 0.9 s in the “down” direction

and ~ 1.3 s in the “up” direction.23,24 This provides the feasibility of

delivering volumetric repainting using an alternating order with beam

delivery sequences in “down” and “up” directions as shown in Fig. 1.

The availability of faster energy layer switching in PBS proton

therapy has generated a renewed interest in utilizing volumetric

repainting in a clinical environment. In the current study, the authors

aim to investigate the interplay effect on the volumetric repainting

lung plans that are generated using an alternating order (“down” and

“up” directions), and explore the number of volumetric repaintings

needed to achieve acceptable lung cancer PBS proton treatment

plan. For a volumetric repainting plan with beam delivery sequence

in “down” direction only, the beamline needs to be switched from

the lowest energy to the highest energy of the given treatment field

when scans are repeated in depth. Such a delivery technique with

big energy steps in magnetic field regulation mode may lead to

destabilization of the magnets. It has been reported that big energy

steps (of the order of the full energy range) can cause the beam

positioning displacements of 1 to 3 mm.25 A faster layer switching
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time in both “up” and “down” directions in magnetic field regulation

mode provides the choice in terms of delivering a volumetric

repainting plan, that is, repainting in both “up” and “down” direc-

tions. To date, previous volumetric repainting studies4,12,14,17 on the

lung cancer utilized beam delivery in “down” direction only. In the

current study, the authors investigated the volumetric repainting

technique with an alternating order (“up” and “down” directions) with

a focus on several key items that are relevant for its clinical imple-

mentation: (i) the interplay effect evaluation on 4D robustly opti-

mized volumetric repainting plans with an alternating order, (ii) the

worst-case scenario (WCS) evaluation based on ten different breath-

ing phases from 4D computed tomography (4DCT) as the starting

phases, and (iii) a method to determine the number of volumetric

repaintings needed for an acceptable PBS lung cancer treatment

plan.

2 | METHODS AND MATERIALS

2.A | Patient cohort

The current retrospective study includes ten lung cancer patients.

The selection of the patients was made based on the following crite-

ria:

I. 4DCT data set includes all ten phases.

II. Tumor motion is greater than 3 mm but less than 15 mm.

III. Tumor is not attached to the mediastinum.

IV. Clinical target volume (CTV) is less than 200 cc.

The location of the CTV in all ten patients is provided in Fig. 2.

The dimension of the CTV ranged from 22.10 cc to 181.03 cc. The

tumor motion ranged from 3.8 mm to 13.2 mm. The overall tumor

motion was calculated from the magnitude of a 3D vector in the left–-
right (LR), anterior–posterior (AP), and superior–inferior (SI) directions.

2.B | Contouring, registration, and treatment
planning

In this retrospective study, gross tumor volume (GTV) was contoured

in all ten phases of the 4DCT. The CTV was then generated by an

isotropic margin of 5 mm around the GTV in all ten phases. Deform-

able registration was performed between the average intensity pro-

jection CT and ten phases from the 4D CT data set using

ANAtomically CONstrained Deformation Algorithm (ANACONDA)

within RayStation TPS.11

In the current study, the total dose prescription to the CTV was

70 Gy(RBE) with a fractional dose of 2 Gy(RBE). PBS plans were

generated in RayStation TPS (v9B; RaySearch Laboratories, Stock-

holm, Sweden) using the beam model of an IBA ProteusPLUS PBS

machine that has an in-air one sigma spot size of 3 mm (at the

isocenter) for the highest energy of 226.5 MeV.26,27 All treatment

plans were robustly optimized (patient setup uncertainty = 5 mm;

range uncertainty = 3.5%) on all ten phases in the 4D data set.

Specifically, 4D robust optimization11,28 was performed with the goal

of 99% of the CTV receiving at least 99% of the prescription dose.

The organs at risk (OARS) such as the heart, spinal cord, normal lung,

F I G . 1 . Examples of beam delivery
directions in nominal VR1 (no repainting)
and volumetric repainting plans with an
alternating order; VR2 = 2 repaintings,
VR5 = 5 repaintings, VR8 = 8 repaintings;
Note: beam delivery starts from the distal
energy layer to the proximal energy layer,
and then follows an alternating order.
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and esophagus were included in the 4D optimization. The robust

objective was applied to the CTV only. All treatment plans were

based on the single field uniform dose (SFUD) technique utilizing

two to three proton fields. The layer spacing was set by default in

RayStation using automatic with scale 1. The layer spacing is calcu-

lated based on the Bragg peak width between the proximal 80% and

distal 80% of each layer.29 The spot spacing was also set by default

in using automatic with scale 1. The spot spacing varies as a function

of depth.29 The Monte Carlo algorithm was used for the 4D robust

optimization (10,000 ions/spot), as well as for the final dose calcula-

tion (statistical uncertainty of 0.5%) with a grid size of 3 mm. Treat-

ment plans were then normalized, such that 99% of the CTV

received 6930 cGy(RBE). These plans are referred to as nominal

plans (VR1) with beam delivery in “down” direction only.

2.C | Volumetric repainting

For each patient, the VR1 plan is used to generate volumetric repaint-

ing plans with an alternating order, as shown in Fig. 1. The scripting

environment within RayStation was utilized to generate the volumet-

ric repainting plans. Engwall et al.11,12 has detailed the method to gen-

erate the volumetric repainting plans using a script in RayStation TPS.

A minimum monitor unit (MU) of 0.015 as the spot weight was

applied for all volumetric repainting plans to ensure the deliverability

of the spots on the machine. If the alternating order includes X paint-

ings, the plan is denoted as a VRX plan. For instance, the plan with

five paintings with an alternating order is denoted as a VR5 plan.

2.D | Interplay effect

The interplay effect study was also performed within the RayStation

scripting environment.11,12 The interplay effect was evaluated for

both the nominal VR1 plan (i.e., without repainting) as well as volu-

metric repainting plans (VRX) that have X paintings in alternating

order. For the time structure of the proton beam delivery on the

machine, the following parameters were used: motion speed between

spots = 250 cm/s; spot delivery time = 4.0 ms/MU; minimum spot

weight of the machine = 0.015 MU; energy layer switching time =

1.0 s. For more details on the interplay evaluation process, the read-

ers are recommended to refer to the publications by Engwall

et al.11,12 and Pfeiler et al.30 The interplay evaluation was carried out

for each of the ten different phases as the starting phases.

2.E | Worst-case scenario analysis

For each treatment plan (VR1 and VRX) of a given patient, the

results were obtained for each phase including the starting phase.

The following metrics were used to evaluate the WCS values and

DVH bandwidths from the results of treatment delivery starting in

ten different phases.

a Target coverage: D95% and D99%.

b Hot spot: D1%

c Homogeneity Index: D99%/D1%

d DVH bandwidths

2.F | Criteria for acceptable plan

Currently, there is no consensus on acceptable interplay effect eval-

uation criteria for lung proton therapy. The acceptance criteria used

in the current study are provided in Table 1. If a given treatment

plan with X number of repaintings met the criteria 1 (CR1) of all

seven metrics, it was considered “acceptable.” However, if X number

of repaintings did not meet the CR1 of all seven metrics, the number

of repaintings was increased until CR1 of each metric was fulfilled.

The maximum allowable repainting was set to 10. If a final plan met

F I G . 2 . The location of the CTV (red contour) in ten lung patients in the current study. The CTV ranged from 22.10 cc to 181.03 cc,
whereas the tumor motion ranged from 3.8 mm to 13.2 mm

TAB L E 1 Metrics to evaluate the WCS and bandwidth based on
the results obtained from treatment delivery starting in ten different
breathing phases. Each phase is considered as one scenario.

Metric Criteria 1 (CR1) Criteria 2 (CR2)

D95% ≥98% (6860 cGy(RBE)) 97%≤ × < 98%

D99% ≥97% (6790 cGy(RBE)) 96%≤ × < 97%

ΔD1% <1.5% 1.5%≤ × < 2.5%

ΔDavg. <2% 2%≤x < 2.5%

ΔHI <0.030 0.030 < × <0.040

BWavg. for target

coverage

<100 cGy <150 cGy

BWavg. in high-dose

region

<100 cGy <150 cGy
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CR1 of at least five metrics but met criteria 2 (CR2) of all metrics, it

was considered “acceptable with a minor deviation.”

ΔD1% ¼ðDWCS
1% �DNominal

1% Þ
DNominal
1%

�100 (1)

ΔHI¼ðHINominal�HIWCSÞ (2)

ΔDavg ¼ðΔD95%þΔD96%þΔD97%þΔD98%þΔD99%Þ
5

(3)

ΔDX% ¼ðDNominal
X% �DWCS

X% Þ
DRx

�100 (4)

where, DRx is prescription dose; and X = 95%, 96%, 97%, 98%, and

99%.

BWavg for target coverage¼

ðBW at D95%þBW at D96%þBW at D97%þBW at D98%þBW at D99%Þ
5

(5)

where, BW = bandwidth of all ten scenarios from the DVHs at dose

to the X% of the CTV; X = 95%, 96%, 97%, 98%, and 99%.

DVH BWavg for high Dose¼

ðBW at D1%þBW at D2%þBW at D3%þBW at D4%þBW at D5%Þ
5

(6)

where, BW = bandwidth of all ten scenarios from the DVHs at dose

to the X% of the CTV; X = 1%, 2%, 3%, 4%, and 5%.

3 | RESULTS

3.A | Target coverage

Figures 3(a) and 3(b) show the WCS results for the CTV D95% and

D99%, respectively. The maximum number of repaintings needed to

meet the target coverage varied among patients. The number of

repaintings needed to meet the CR1 (D95% ≥ 98% and D99% ≥ 97%)

ranged from 2 to 10. Another observation made for the target cov-

erage was that if X number of repaintings meets the CR1 for D95%,

the same number of repaintings may not always meet the CR1 for

D99%. For instance, in patient 1, four repaintings were not sufficient

F I G . 3 . TheWCSCTV (a) D95%, (b) D99%, (c) DVHBWavg., and (d)ΔDavg. for the target coverage in ten patients. Note: CR1 = Criteria 1, CR2 = Criteria
2; VR1 = Nominal planwith no repaintings, VRX = Volumetric repaintingwith an alternating order where X is the number of repaintings.
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to meet the CR1 for D99% but were able to satisfy the CR1 for

D95%. Figure 3(d) shows the WCS results for the CTV ΔDavg. The

number of repaintings needed to meet the CR1 (ΔDavg < 2%) ranged

from 2 to 10. One patient (#8) did not meet the CR1 of D99% and

ΔDavg. but met the CR2 of these metrics.

3.B | Homogeneity and hot spot

Figure 4(a) shows the WCS results for the CTV ΔHI. To meet the

CR1 (ΔHI < 0.03), the following observations were made: three

repaintings in patients #9 and #10, four repaintings in patients #1,

#2, #3, and #5, nine repaintings in patients #4 and #6, and ten

repaintings in patients #7 and #8. Figure 4(b) shows the WCS results

for the CTV ΔD1%. The observation for ΔD1% was similar to the one

for ΔHI. The number of repaintings needed to meet the CR1

(ΔD1% < 1.5%) ranged from 2 to 7. Two out of ten patients needed

more than five repaintings to achieve ΔD1% < 1.5%.

3.C | DVH Bandwidth

The evaluation of the average DVH bandwidth (BWavg.) is illustrated

in [Figs. 3(c) and 4(c)]. As shown in [Eqs. (5) and (6)], the BW at a

given dosimetric parameter was obtained by calculating the widths

of DVHs from ten scenarios. For the target coverage region [Fig. 3(

c)], the number of repaintings needed to meet CR1 (<100 cGy) ran-

ged from 3 to 10. For the high-dose region [Fig. 4(c)], the number of

repaintings needed to meet CR1 (<100 cGy) ranged from 1 to 7.

3.D | Overall plan evaluation

Based on the criteria described in section 2.6, the final plan evalua-

tion showed that acceptable plans were achieved for nine patients,

whereas one patient had an acceptable plan with a minor deviation.

Figure 5 shows the chart of each patient displaying if the metric has

met CR1 and CR2. Figures 6 and 7 illustrate the interplay DVHs for

F I G . 4 . The WCS of CTV (a) ΔHI, (b) ΔD1%, (c) DVHBWavg.in high-dose region, and (d) expected beam delivery time per treatment field in
the nominal plan (VR1) and selected volumetric repainting plans (VRX) with an optimal number (X) of repaintings in alternating order. The
selection of VRX plans is illustrated in Fig. 4. Note: CR1 = Criteria 1, CR2 = Criteria 2; VR1 = Nominal plan with no repaintings,
VRX = Volumetric repainting with an alternating order where X is the number of repaintings.
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treatment delivery starting in ten different phases, an average of

interplay DVHs, and nominal DVH in all ten patients.

• For patient #10 (CTV = 103.92 cc; tumor motion = 4.7 mm),

three repaintings were sufficient to achieve acceptable plans.

• For patients #3 (CTV = 26.46 cc; tumor motion = 8.1 mm) and

#9 (CTV = 63.26 cc; tumor motion = 3.8 mm), four repaintings

were sufficient to achieve acceptable plans.

• For patients #1 (CTV = 36.45 cc; tumor motion = 7.2 mm), #2

(CTV = 34.22 cc; tumor motion = 5.8 mm), and #5 (CTV =

24.37 cc; tumor motion = 4.8 mm), five repaintings were suffi-

cient to achieve acceptable plans.

• For patient #4 (CTV = 26.05 cc; tumor motion = 10.1 mm), nine

repaintings were sufficient to achieve acceptable plans.

• For patients #6 (CTV = 39.25 cc; tumor motion = 10.2 mm) and

#7 (CTV = 22.10 cc; tumor motion = 8.8 mm), ten repaintings

were sufficient to achieve an acceptable plan.

• For patient #8 (CTV = 181.03 cc; tumor motion = 13.2 mm), ten

repaintings were needed to achieve acceptable plan with a minor

deviation.

3.E | Layers and Spots

For nominal plans (VR1), the number of layers per beam ranged from

13 to 28, whereas the total spots per beam ranged from 598 to

2150. For acceptable plans, the number of layers per beam ranged

from 61 to 213, and the number of spots per beam ranged from

F I G . 5 . A chart displaying a selection of an optimal number of repaintings based on the criteria described in section 2.6; VR1 = Nominal
plan with no repaintings, VRX = Volumetric repainting with an alternating order where X is the number of repaintings.
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F I G . 6 . Patients 1–5; Interplay DVHs
(red lines) for treatment delivery starting in
ten different phases, an average of
interplay DVHs (blue dashed line), and
nominal DVH (black line). The left panel
displays the results for the nominal plan
(VR1) without repaintings, and the right
panel shows the results for the selected
volumetric repainting plans (VRX) with an
optimal number of repaintings.
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F I G . 7 . Patients 6–10; Interplay DVHs
(red lines) for treatment delivery starting in
ten different phases, an average of
interplay DVHs (blue dashed line), and
nominal DVH (black line). The left panel
displays the results for the nominal plan
(VR1) without repaintings, and the right
panel shows the results for the selected
volumetric repainting plans (VRX) with an
optimal number of repaintings.
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2519 to 4886. For an acceptable plan with minor deviation, the

number of layers per beam ranged from 171 to 233, and the number

of spots per beam ranged from 5961 to 6490.

3.F | Treatment Delivery Time

The expected treatment delivery times for the nominal plans without

repainting (VR1) and selected volumetric repainting plans (VRX) with

an optimal number of repaintings of each patient are provided in

[Figure 4(d)]. For acceptable plans, treatment delivery time per beam

varied from 1.22 min (VR5 in patient #2) to 3.87 min (VR10 in

patient #6). For an acceptable plan with minor deviation, treatment

delivery time per beam varied from 3.42 min (VR10 in patient #4) to

4.49 min (VR10 in patient #8).

4 | DISCUSSION

The current study evaluated the interplay effect of 4D robustly opti-

mized volumetric repainting lung cancer plans. We have presented

the volumetric repainting technique with an alternating order, which

was not explored in previous studies4,12,14,17 on lung cancer.

Recently, Rana et al.23 performed an experimental study quantifying

the impact of magnetic field regulation in conjunction with the volu-

metric repainting technique (alternating order) on the spot positions

and range in PBS protons. Rana et al.23 demonstrated the feasibility

of delivering volumetric repainting QA plans with an alternating

order on the clinical proton machine. While the study by Rana

et al.23 was focused on the machine QA, the current study was per-

formed on the 4DCT data set of lung cancer to investigate the miti-

gation of interplay effect by using an alternating order in volumetric

repainting technique.

The volumetric repainting is not clinically implemented at many

proton centers. One of the reasons could be due to longer treatment

time because of slower energy layer switching. In the current study,

we approximated the layer switching time of 1 s for both “down”

and “up” directions based on the findings by Rana et al.,23 although

layer switching time could slightly vary from 1 s when plans are

delivered on the machine. The simulated treatment delivery time for

the cohort of patients in the current study showed the feasibility of

delivering volumetric repainting plans mitigating the interplay effect.

The average time per beam to deliver the acceptable plans, as well

as acceptable plans with minor deviation, was 2.2 min (range,

1.2 min–4.5 min). These estimated beam times could slightly vary

during the actual delivery of the volumetric repainting plans on the

proton machine.

Since the current study was primarily focused on the interplay

effect, the robustness of the lung plans was not investigated. How-

ever, treatment plans were generated with the objective of achieving

clinically acceptable and deliverable robust plans. To achieve this,

the current study was performed using a 4D robust optimization fea-

ture available in the RayStation TPS. As described in Engwall’s

papers,11,12 the 4D optimization ensures the entire treatment

volume is encompassed in each breathing phase if the proton beam

delivery was instantaneous and resulting distortions are purely

caused by the interference between the tumor motion and the

dynamic proton beam delivery. The addition of robust objective to

the CTV with respect to the setup 5 mm and range uncertainties

(3.5%) during 4D robust optimization can make treatment plans

more robust, especially for the lung tumor volume that has large

density variations in the beam path. Such dosimetric benefit comes

at the cost of decreasing computational efficiency if robust optimiza-

tion process includes all ten breathing phases from 4DCT data set.28

Currently, there is no consensus in the proton therapy commu-

nity regarding which metrics can be used to evaluate the interplay

effect. In the current study, we included metrics such as D95%, D1%,

and HI. Literature31 has shown the importance of achieving homoge-

neous dose distribution within the target volume. To create homoge-

nous dose distributions in the treatment plan, the current study used

the SFUD technique utilizing two to three beams. D99% was included

in the evaluation process since this metric could be correlated with

the clinical outcome in lung cancer patients.32 For the evaluation of

these metrics, we utilized the WCS approach based on the results of

beam delivery, starting in ten different breathing phases. Each indi-

vidual phase was considered as one scenario. During the lung cancer

treatment, treatment beam delivery could start at any breathing

phase, and this can be considered as a random variable. In general,

the increase in the number of volumetric repaintings improved the

WCS value of given metric and allowed us to mitigate the interplay

effect and meet the criteria provided in Table 1. Additionally, we

measured the average DVH bandwidths by evaluating dose at sev-

eral dosimetric parameters that are relevant in the target coverage

and high-dose regions. In general, the DVH bandwidths became tigh-

ter with an increase in the number of repaintings. For patients #4

and #8, there was no clear trend showing the increase in repaintings

resulting in an improvement in bandwidths after five repaintings.

The results presented in the current study demonstrated that the

interplay effect for lung cancer was highly patient dependent. This

observation is in alignment with previously published studies on the

PBS proton therapy for lung cancer.8,10–15,20,33 For ten patients in

the current study, it was not possible to determine the exact correla-

tion between the number of repaintings vs tumor size, tumor loca-

tion, and tumor motion. Although a larger tumor motion seems to

require a higher number of repaintings in the current study, more

data with varying tumor motion are necessary to establish the corre-

lation between the number of repaintings and tumor motion. Hence,

for the volumetric repainting with an alternating order, instead of

applying a fixed number of repaintings across all lung cancer

patients, a patient-specific interplay evaluation strategy must be

adopted. This will yield an optimal number of volumetric repaintings

for an individual lung cancer patient.

The current study was focused on the volumetric repainting

technique with an alternating order. We did not investigate other

repainting strategies such as layer repainting and volumetric repaint-

ing technique in the “down” direction only. These are the limitations

of our study. One of the goals of the current study was to
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demonstrate the feasibility of mitigating the interplay effect using a

volumetric repainting technique with an alternating order rather than

to make a comparison against the layer repainting. The use of layer

repainting to mitigate the interplay effect cannot be ignored. In the

next study, we will make the direct comparison between the volu-

metric repainting (with alternating order) and layer repainting by pro-

viding the dosimetric and radiobiological results.

On the IBA ProteusPLUS machine, if the current regulation fea-

ture is employed, the energy layer switching time in the “up” direc-

tion can take up to 6 s.23,24 Such a large energy switching time is

not clinically acceptable. However, the use of magnetic field regula-

tion feature on the IBA ProteusPLUS machine can reduce the energy

layer switching time in the “up” direction from ~ 6 s to ~ 1.3 s.23,24

Such a decrease in the energy layer switching time demonstrates the

feasibility of delivering the volumetric repainting plan with an alter-

nating order and improve the beam delivery efficiency. Another

important point to note is that the current study was performed

with an assumption of proton beam delivery using magnetic field

regulation on the IBA ProteusPLUS machine. In this scenario, Hall

probes in the beamline measure the magnetic field in real time and

remove the requirement of cycling of the magnets at each set range

in the “up” direction.23,24 This has led to a decrease in the energy

layer switching time and making it feasible to deliver the field in

smaller energy steps in the “up” direction.23,24 Pedroni et al.25

reported up to 3 mm in beam positioning displacements for big

energy steps (of the order of the full energy range). In the magnetic

field regulation mode, big energy steps in the treatment field may

cause destabilization of the magnets and a greater fluctuation in Hall

probe readings, thus potentially producing errors in spot positions.23

The utilization of the “up” direction in the treatment plan can elimi-

nate the need to switch from the lowest energy (proximal layer) to

the highest energy (distal layer) of the given treatment field when

volumetric scans are repeated. In the magnetic field regulation mode

on the IBA ProteusPLUS machine, we recommend delivering a volu-

metric repainting plan with smaller energy steps (5 MeV or less).

More technical details on the magnetic field and current regulation

features and volumetric repainting technique on the IBA Pro-

teusPLUS machine can be found in previous publications.23,24

The interplay effect results presented herein are more relevant

for an IBA ProteusPLUS PBS machine, which employs magnetic field

regulation feature, but not for the current regulation feature. The

readers must be aware of the fact that the proton beam delivery

systems are machine- and manufacturer specific, and performance of

repainting can vary among different PBS proton machines.34 An

independent machine-specific validation for the repainting tech-

niques can provide more accurate estimations of the interplay effect.

We acknowledge that the experimental measurements for the inter-

play effect were not performed in the current study. In the near

future, we aim to perform an experiment using a moving phantom

simulating different magnitudes of motion and investigate the com-

puted vs measured doses of repainting plans (layer and volumetric).

At present, to the best of our knowledge, an interplay evaluation

module is not currently available in the clinical versions of the

proton TPSs. The implementation of interplay evaluation within TPS

would not only give us the confidence in using the volumetric

repainting technique in the clinical environment but also provides a

tool to the clinicians to select the optimal number of repaintings.

This can result in homogenous dose distributions and maintain target

coverage leading to a better clinical outcome for PBS lung cancer

patients.

5 | CONCLUSION

The interplay effect was evaluated on the 4D robustly optimized

lung cancer plans (tumor motion < 15 mm) for the volumetric

repainting technique with an alternating order. The number of

repaintings required to mitigate the interplay effect was found to be

patient dependent. Determining the optimal number of repaintings

based on the bandwidth and WCS approach from DVHs of ten

breathing phases could mitigate the interplay effect in PBS lung can-

cer treatment. It is recommended to perform patient-specific inter-

play evaluation for PBS lung cancer plans.
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