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Abstract
During neural circuit formation, axons need to navigate to their target cells in a
complex, constantly changing environment. Although we most likely have
identified most axon guidance cues and their receptors, we still cannot explain
the molecular background of pathfinding for any subpopulation of axons. We
lack mechanistic insight into the regulation of interactions between guidance
receptors and their ligands. Recent developments in the field of axon guidance
suggest that the regulation of surface expression of guidance receptors
comprises transcriptional, translational, and post-translational mechanisms,
such as trafficking of vesicles with specific cargos, protein-protein interactions,
and specific proteolysis of guidance receptors. Not only axon guidance
molecules but also the regulatory mechanisms that control their spatial and
temporal expression are involved in synaptogenesis and synaptic plasticity.
Therefore, it is not surprising that genes associated with axon guidance are
frequently found in genetic and genomic studies of neurodevelopmental
disorders.
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It’s all about networks
Networks are an important aspect of our daily lives. But I am not 
talking about social networks. I am talking about the networks that 
make us who we are and what we do: neural networks. Neural 
connectivity currently is a buzz word in neuroscience. Clearly, we 
need to understand the formation and function of neural networks 
in order to explain the pathology of neurodevelopmental and neu-
ropsychiatric disorders. Disorders such as intellectual disability, 
autism spectrum disorders, or schizophrenia have their roots in 
aberrant neural circuit formation1–4. But neural circuit formation 
is a multi-step process starting with cell differentiation and migra-
tion, involving axon guidance and synaptogenesis, and ending with 
synaptic maturation or pruning, a process that is not fundamentally 
different from the one ensuring synaptic plasticity in the adult nerv-
ous system. Therefore, we still struggle to understand the molecu-
lar mechanisms of neural circuit formation. In this review, I will 
concentrate on only one aspect of neural circuit formation: the 
navigation of axons to their target cells.

Guidance molecules are conserved between different 
parts of the nervous system
During the last 25 years, we have learned a lot about the molecu-
lar mechanisms underlying the process of neural circuit formation. 
Initial studies focused on muscle innervation5–7 and wiring of the 
visual system8,9. Soon, dorsal commissural neurons in the spinal 
cord became the prime model for axon guidance studies because 
molecular mechanisms can best be studied in a simple system with 
clear readouts. Subsequently, the molecular mechanisms identified 
in these neurons have been tested in the establishment of more com-
plex neural circuits in the brain10–16.

Axons that have to form long-distance connections are cutting 
down their pathfinding into manageable steps; that is, they use 
intermediate targets on their way to the final target. These interme-
diate targets, or choice points, are crucial for axonal navigation by 
providing guidance cues. Guidance cues are molecules deposited 
in the extracellular matrix or expressed on cells along the pathway 
of navigating axons. They can be subdivided into short- and long-
range guidance cues. Long-range guidance cues indicate the overall 
direction of growth but do not specify the actual pathway. This is 
done by short-range guidance cues. Both types of guidance cues 
can be subdivided into attractive and repulsive molecules.

Commissural axons are a useful model for axon 
guidance
For the dI1 subpopulation of commissural neurons in the spinal 
cord17,18, we know axon guidance cues and their receptors for 
all four categories. At the lumbar level of the spinal cord, dI1 
commissural axons have a very stereotypic trajectory. Axons 
extend ventrally toward the floor plate, the ventral midline of the 
spinal cord. They cross the midline and then turn rostrally along 
the contralateral floor-plate border. At least some of these axons 
target the cerebellum19. Long-range guidance cues guide them to 
their intermediate target, where short-range guidance cues take 
over to make sure that axons cross the midline before turning into 
the longitudinal axis. First, dI1 axons are guided ventrally by long- 
range repellents derived from the roof plate, the cells at the 
dorsal midline: BMP720–22 and Draxin23. At the same time, axons 
are attracted toward the ventral midline, the floor plate, by Netrin1 

binding to Dcc and Neogenin24–27. In addition, axons are attracted 
toward the floor plate by Shh binding to Patched and Boc28,29. 
Axons enter the floor plate, mediated by interactions between 
Contactin2 and NrCAM30,31. Based on screens in flies, the repul-
sive midline-associated guidance cues, the Slits and their receptors 
(the Robos) were then identified as the reason why axons leave 
the intermediate target and why they never turn back32–38. In addi-
tion to Slit, class 3 Semaphorins repel post-crossing commissural 
axons and prevent them from re-crossing39–42. Finally, morpho-
gens were identified as the guidance cues directing post-crossing 
commissural axons toward the brain43–48.

So, case closed? Do we know everything about axonal navigation 
of the midline? Actually, far from it. Despite the identification of 
all of these molecules, we still do not fully understand how axons 
cross the midline and why they turn rostrally. This is not only 
because additional guidance cues for the navigation of the spinal 
cord midline were identified40,49,50 but also because the regulation 
of the different receptors is not clear. Axons do not linger at the 
midline before they move on. Thus, the switch from attraction to 
repulsion has to be timed very precisely. Obviously, if axons were 
not attracted to the intermediate target, they would not get there; 
but if they did not start to be repelled upon arrival, they would not 
leave and move on. At the same time, they have to be equipped with 
receptors for the detection of guidance cues for the longitudinal 
axis. These receptors are not supposed to react to the guidance cues 
for the longitudinal axis on the ipsilateral side of the floor plate, 
despite the presence of the gradients of guidance molecules on both 
sides of the midline. So how is this precise timing of responsiveness 
achieved? Are similar mechanisms responsible for the formation of 
more complex circuits in the brain? Why so many cues for a seem-
ingly rather simple decision at a choice point?

Do we need more axon guidance cues to understand 
midline crossing?
In the beginning of the molecular era of axon guidance, the focus 
was on the discovery of new families of axon guidance cues and 
their receptors51–53. This has clearly changed. In recent years, the 
discovery of new guidance cues has been a rare event, but it has 
still happened. For instance, lyso-phosphatidyl-Β-D-glucoside, 
a glycerophospholipid, has been identified as a subpopulation- 
specific guidance cue for sensory afferents in the dorsal spinal 
cord54. PRG2/Lppr3 (plasticity-regulated gene-2), a molecule inter-
acting with lysophosphatic acid, was shown to regulate guidance 
of thalamocortical axons55. But clearly, the focus in axon guidance 
research today is on the characterization of regulatory mechanisms. 
Axons are not guided by static interactions between guidance cues 
and their receptors on the growth cone. Rather, the responses of 
axons to their environment are induced by dynamic changes 
of these interactions. At the level of guidance cues, changes can 
lead to the synergistic activation of signaling pathways, as shown, 
for instance, for Netrin and Ephrin signaling during hindlimb 
innervation56. Pre-crossing axons are attracted to the floor plate 
by a co-operation between Shh and Netrin57.

The interaction between receptors can result in silencing or 
enhancement of a response. For example, in contrast to commis-
sural axons, which are attracted by floor-plate-derived Netrin1, 
motoneurons are repelled by Netrin158. Netrin1 is attractive for 
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axons expressing Dcc but repulsive for axons expressing both Dcc 
and Unc5. Furthermore, the interaction between Dcc and Robo1 in 
commissural axons was shown to silence the attractive response of 
Netrin on post- compared with pre-crossing axons59. More recently, 
many more of these receptor interactions in the plane of the growth 
cone membrane have been identified as important regulators of 
growth cone behavior (see “Some guidance receptors are regulated 
at the protein level” section).

Axons at choice points switch their responsiveness 
in a precisely timed fashion
Another problem that has become, and still is, a focus of axon guid-
ance research is the aspect of timing. Precise timing of the switch 
from an attractive to a repulsive behavior is, of course, required at 
any choice point, but again it is best illustrated with the example of 
midline crossing. Clearly, the switch in axonal behavior is caused 
by a change in the expression of guidance receptors on the growth 
cone surface. This is a seemingly simple change, but the abun-
dance of possibilities that is actually found is surprising (Figure 1). 
Theoretically, expression of guidance receptors on the growth cone 
surface can be modified by changes in gene transcription, transla-
tion, or protein transport as well as protein stability. In fact, all of 
these possibilities have been confirmed experimentally to occur in 
axons crossing the midline either in the spinal cord or in the visual 
system.

Some guidance receptors are regulated at the 
transcriptional level
Transcriptional changes have been demonstrated to account for 
the switch in responsiveness to Shh, an attractive guidance cue for 
pre-crossing commissural axons28 but repulsive for post-crossing 
axons44,60. This switch in responsiveness is due to the expression of 
Hhip (Hedgehog-interaction protein) on post- but not pre-crossing 
axons. Interestingly, the transcription of Hhip is triggered by Shh 
itself in a Glypican1-dependent manner60.

Some guidance receptors are regulated at the RNA level
Translation was shown to regulate the responsiveness of retinal 
ganglion cell axons to repulsive class 3 Semaphorins in the visual 
system of frogs61. Class 3 Semaphorins bind to receptor complexes 
formed by PlexinAs and Neuropilins62. The expression of Neuropi-
lin1 was found to be regulated by microRNAs which bind to the 
3′ untranslated region of target mRNAs and regulate their transla-
tion. In retinal ganglion cells of Xenopus tadpoles, mi125 prevents 
the expression of Neuropilin1 and therefore regulates the onset of 
axonal sensitivity to Semaphorin3A61.

Regulation at the RNA level has also been postulated in a mecha-
nistically distinct manner. Local translation of mRNA in the growth 
cone could influence axon guidance behavior, although it is not 
yet clear how timing is controlled63. RNA-binding protein IMP2 is 
required for commissural axon guidance in the spinal cord. IMP2 
is enriched in axons and could be responsible for local translation 
of axon guidance cues64. Furthermore, the RNA-binding protein 
Nova2 was implicated in Dcc regulation in the spinal cord65 and in 
the regulation of several axon guidance molecules in the cortex66.

Stability of mRNA can be used as a regulatory means. Colak and 
colleagues described nonsense-mediated decay as a mechanism 
to modulate the stability of mRNA and thus to influence the level 
of protein synthesis67. A direct effect on protein stability was also 
demonstrated as a means to regulate axonal responsiveness (see the 
following section). 

Some guidance receptors are regulated at the protein level
Axonal sensitivity to axon guidance cues can be regulated by 
ectodomain shedding. In particular, ADAM family members (also 
known as α-secretases) have been implicated in the cleavage of 
axon guidance receptors. In turn, these proteases are regulated by 
a variety of interactions with axon guidance molecules, such as 
Secreted frizzled-related proteins (Sfrps)68. The complexity of these 
regulatory mechanisms was demonstrated in a recent study from 
the Pasterkamp lab69. Lrig2 was shown to regulate axonal sensitiv-
ity to RGMa, a repulsive axon guidance cue. This was achieved 
by ADAM17-mediated cleavage of Neogenin, the RGMa receptor, 
whereas ADAM17 activity was regulated by Lrig2.

Another receptor shown to be regulated by proteolytic activity is 
PlexinA1, a component of the receptors for repulsive class 3 Sema-
phorins. On pre-crossing axons, levels of PlexinA1 are low because 
PlexinA1 is cleaved by Calpain140. Upon midline contact, Calpain 

Figure 1. Growth cones change their responsiveness to the 
intermediate target upon arrival. The intermediate target is 
attractive for axons before contact. However, upon contact with the 
intermediate target, the growth cone changes its surface receptors. 
The expression of new receptors allows for the perception of  
previously undetectable guidance cues associated with the 
intermediate target. The alterations in surface expression of guidance 
receptors can be due to changes in transcription, translation, 
trafficking, or clustering of receptors in the growth cone membrane.
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is inactivated by floor-plate-derived NrCAM and Gdnf, resulting in 
the expression of PlexinA1 on post-crossing commissural axons. 
The stability of PlexinA1 is regulated also by the cooperation of 
GDNF and NCAM40,42.

Regulated proteolytic cleavage is not restricted to receptors. 
Proteolytic cleavage of ligands has been demonstrated to affect 
midline crossing of commissural axons. Slit has long been known 
to be cleaved into an N- and a C-terminal fragment70. However, 
only recently, it has been shown that both fragments affect midline 
crossing albeit by distinct receptors71. PlexinA1, a component of 
the receptor for class 3 Semaphorins, was found to bind to the 
C-terminal part of Slit. The well-known receptors for Slit are 
the Robos37,38. Thus, Slit repulsion is mediated not only by Robo 
receptors (via the N-terminal part of Slit) but also by PlexinA171.

The sensitivity of axons to Slit not only is determined by the expres-
sion of Robo1 but is regulated by the expression of Robo337,72, a 
divergent Robo family member73. In contrast to Robo1 and Robo2, 
mammalian Robo3 does not bind Slit but rather regulates attractive 
responses to Netrin by binding to Dcc73. This mechanism extends or 
replaces the model of a previous study, in which the expression of 
Robo3.1 was suggested to prevent premature sensitivity of Robo1 
to midline-derived Slit72. According to this study, Robo3.1, the 
splice isoform of Robo3 expressed on pre-crossing axons, would 
interact with Robo1 in cis (that is, in the plane of the growth cone 
membrane) and thus prevent its interaction with Slit. Post-crossing 
axons would express a different isoform of Robo3, Robo3.2, which 
would not be capable of cis-interaction with Robo1.

Finally, an additional level of regulation at the protein level that is 
experimentally very difficult to study is the role of direct protein-
protein interaction or clustering on the growth cone surface. Initial 
observations that protein-protein interactions can determine the 
responsiveness of growth cones to individual guidance molecules 
were made many years ago. More recently, many more of these 
cis-interactions were identified: Semaphorin6B interacting with 
PlexinA2 in cis on pre-crossing commissural axons was shown 
to prevent premature sensitivity to floor-plate-derived class 3 
Semaphorins50. In this case, it was hypothesized that the avail-
ability of PlexinA2 for a response to midline-associated class 
3 Semaphorins would be restored by the competition between 
Semaphorin6B/PlexinA2 cis-interactions versus trans-interactions 
between growth cone Semaphorin6B and floor-plate PlexinA2. 
Thus, although the details differ, both PlexinA1 (40, see above in 
this section) and PlexinA250 appear to be regulated at the protein 
level.

Similarly, protein-protein interactions as a regulatory means 
for midline crossing have been reported for the visual system74. 
Contralaterally projecting retinal ganglion axons depend on 
complexes between NrCAM, PlexinA1, and Semaphorin6D for 
midline crossing. Semaphorin6D alone is repulsive, but in combi-
nation with PlexinA1 and NrCAM, the repulsion is converted to a 
growth-promoting effect.

A regulatory effect of specifc protein-protein interactions in the 
plane of the membrane (cis-interactions) on the selection of trans-
binding partners has been found for sensory afferents. When they 
enter the dorsal spinal cord in the dorsal root entry zone, axons sort 
depending on their subtype. The formation of homo- versus hetero- 
philic cis-interactions between SynCAMs has been demonstrated 
to regulate their choice of trans-binding partners and thus affects 
sorting and pathfinding of sensory afferents in the spinal cord which 
express a specific set of SynCAMs75.

In the formation of thalamocortical connections, Flrt3 has been 
identified as a co-receptor for Robo1 that can modulate axonal 
responsiveness to Netrin76. Robo1/Flrt3 cis-interactions resulted in 
the upregulation of Dcc on rostral thalamocortical in contrast to 
intermediate thalamocortical axons. The observed upregulation of 
Dcc, the receptor that mediates attraction to Netrin1, could explain 
why rostral thalamocortical axons were attracted to an area of their 
intermediate target, the corridor cells, where Slit was expressed. 
Thus, different populations of thalamocortical axons responded 
distinctly to the molecular guidance cues found in the envi-
ronment: Netrin and Slit. Slit binding to Robo1/Flrt3 receptor 
complexes primed axons to be sensitive to Dcc, explaining the 
previously recognized requirement of both Netrin and Slit for 
correct pathfinding of thalamocortical axons77,78.

Similar ‘co-operations’ of guidance cues have been identified in 
studies looking at hindlimb innervation56. Motor axons integrate 
signals derived from Netrin and Ephrin. Careful quantification of 
the effects of loss of function of one or both guidance cues allowed 
for the distinction between additive and synergistic effects of these 
guidance cues. For a detailed explanation of the difference between 
the additive and synergistic interactions of guidance cues, the reader 
is referred to a recent review79.

Selective trafficking of guidance receptors can 
regulate axonal responsiveness at choice points
Endo- and exo- cytosis of guidance receptors have been demon-
strated to be required for a growth cone’s response to repulsive or 
attractive guidance cues, respectively80–83. However, beyond these 
mechanistic aspects, specific changes in trafficking of guidance 
receptors have been shown to be involved in the temporal control of 
receptor expression84. First demonstrated in flies, the expression of 
Robo on the growth cone surface was demonstrated to be dependent 
on specific trafficking in a Commissureless-dependent85–87 but Rab-
independent88 manner. In vertebrates, a Commissureless ortholog is 
not found, but trafficking as a means to control surface expression 
of Robo is nonetheless maintained in vertebrates38,89. In fact, the 
possibility to transport guidance receptors to the growth cone sur-
face by shuttling them wrapped in subpopulations of vesicles not 
only provides specificity but also allows for an efficient change of 
the repertoire of guidance receptors, as large numbers of molecules 
can be inserted upon a stimulus that triggers the fusion of a specific 
subset of vesicles. A recent study has demonstrated the presence 
of Robo1 and Frizzled3 guidance receptors in different subpopula-
tions of vesicles that were trafficked in a Calsyntenin1-dependent 
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manner89. Calsyntenin1 acts as a linker between the vesicles with 
specific cargo and the kinesin motor. RabGDI appears to be part 
of the stimulus that regulates the timing of vesicle trafficking, but 
only for those vesicles carrying Robo1 as cargo. The vesicles con-
taining Frizzled3, the receptor for Wnt signaling regulating antero- 
posterior guidance of post-crossing commissural axons, also 
depend on Calsyntenin1 for transport, but RabGDI is not required 
for the delivery of Frizzled3 to the growth cone surface.

Where do we go?
Although we may know most axon guidance molecules today, we 
still need to learn much more about axon guidance mechanisms 
before we can explain how neural circuits form. This is even true 
for simple circuits, such as those formed by spinal cord interneu-
rons! In particular, we will need to understand how the interactions 
of guidance receptors with their ligands trigger specific intracel-
lular signals and how they are translated into changes in growth 
cone behavior. While we start to understand individual signaling 
pathways, we do not have a clear idea how they interfere with 
each other. Furthermore, temporal changes in signaling are poorly 
understood. We have identified roles for individual molecules 
during different developmental processes contributing to the 
formation of neural circuits1–3, but it is still unclear how binding 
partners or the downstream signaling (or both) change over time. 
So we will need not only to test molecules and mechanisms 

identified in simple circuits in complex brain circuits but also to 
conceptually and experimentally integrate different signaling 
pathways to understand the behavior of growth cones and axons 
during neural circuit formation. The analysis of single-gene 
knockouts is not sufficient to understand the dynamic role of a 
protein during neural circuit formation. Eventually, we will have 
to study neural circuit formation at the protein level. This remains 
a challenge because tools are not yet available to visualize protein 
function in vivo. We can follow molecules in isolated cells in vitro 
with sophisticated high-resolution imaging methods. We can also 
image neuronal activity in vivo in actively behaving animals. But 
there is a huge gap in between that needs to be closed before we 
understand formation and function of neural circuits. However, 
the development of new tools and the refinement of existing 
technology will allow us to tackle some of these open questions in 
a variety of model systems and thus to assemble more and more 
pieces of the puzzle.
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