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Embryos devoid of autonomic innervation suffer sudden cardiac death. However,
whether autonomic neurons have a role in heart development is poorly understood. To
investigate if sympathetic neurons impact cardiomyocyte maturation, we co-cultured
phenotypically immature cardiomyocytes derived from human induced pluripotent
stem cells with mouse sympathetic ganglion neurons. We found that 1) multiple
cardiac structure and ion channel genes related to cardiomyocyte maturation were
up-regulated when co-cultured with sympathetic neurons; 2) sarcomere organization
and connexin-43 gap junctions increased; 3) calcium imaging showed greater transient
amplitudes. However, sarcomere spacing, relaxation time, and level of sarcoplasmic
reticulum calcium did not show matured phenotypes. We further found that addition of
endothelial and epicardial support cells did not enhance maturation to a greater extent
beyond sympathetic neurons, while administration of isoproterenol alone was
insufficient to induce changes in gene expression. These results demonstrate that
sympathetic neurons have a significant and complex role in regulating cardiomyocyte
development.
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INTRODUCTION

The heart is densely innervated by sympathetic nerves, which extend from cell bodies housed in
the sympathetic ganglia derived from trunk neural crest cells (Kimura et al., 2012). Sympathetic
activity provides critical regulation of cardiac function, increasing beat rate, relaxation,
contractile force, and conduction velocity (Hasan, 2013; Vegh et al., 2016). In cardiac
pathologies, altered innervation density and sympathetic dysfunction are associated with
heart failure, hypertension, arrhythmogenesis, and sudden cardiac death (Chen et al., 2007;
Kimura et al., 2007; Florea and Cohn, 2014; Shen and Zipes, 2014; Fukuda et al., 2015).
Furthermore, in pediatric patients, sympathetic defects have been linked to sudden infant death
syndrome, certain congenital heart defects, cardiac arrhythmic death, and hypertension (Kahn
et al., 2003; Crump et al., 2011; Ohuchi et al., 2011). These innervation disorders may have
foundations in the interactions between cardiomyocytes (CMs) and sympathetic neurons (SNs)
during development. Understanding the function of the cardiac sympathetic nervous system in
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the embryo and its role in heart development
would give valuable insight into fetal, pediatric, and adult
heart disease.

Neuronal projections first appear in the dorsal mesocardium
at embryonic day (E) 10.5 in mice (Hildreth et al., 2009). At this
point, embryonic CMs are already responsive to adrenergic
stimulation (Vegh et al., 2016). Projections reach the aorta and
pulmonary trunk at E11.5 and begin to differentiate into
parasympathetic and sympathetic branches. By E13.5,
sympathetic axons have started to innervate the ventricles,
guided by nerve growth factor-expressing vascular smooth
muscle of the coronary veins and later arteries (Nam et al.,
2013). They continue to expand well into postnatal life,
eventually rivaling the density of capillaries within the
myocardium (Freeman et al., 2014; Zaglia and Mongillo,
2017). Disrupting cardiac sympathetic patterning in the
embryo leads to postnatal arrhythmia and sudden death
(Ieda et al., 2007), while abolishing sympathetic function
results in prenatal death due to cardiac failure (Kobayashi
et al., 1995; Thomas et al., 1995; Zhou et al., 1995; Rohrer
et al., 1996; Baker et al., 2012). We have studied the autonomic
devoid Phox2b−/− mouse and observed embryo mortality at
E13.5-14.5 (Pattyn et al., 1999; Mokshagundam et al., 2021). We
performed echocardiography to measure cardiac function prior
to death, but found no progressive phenotype in Phox2b−/−

embryos, suggesting that sudden death due to arrhythmia was
the most likely cause. These studies demonstrate that the
sympathetic system is essential for cardiac function and
embryo survival. Despite their extensive innervation and
essential role, the long-term effects of SNs on developing
CMs are largely unknown, and it remains unclear if SNs
influence aspects of CM maturation.

To investigate the role of SNs in CM maturation, we
performed in vitro co-culture of human induced pluripotent
stem cell (hiPSC)-derived CMs with embryonic mouse SNs.
CMs derived from hiPSC display an immature, fetal-like phenotype
and are a well-used model for studying CM maturation (Uosaki
et al., 2015; Guo and Pu, 2020). We found that co-culture with SNs
up-regulated multiple genes for CM maturation, ranging from
myofiber components to ion channels and calcium machinery.
Furthermore, gap junction expression increased, as well as
sarcomere organization and intracellular Ca2+ transient
amplitudes. Sarcomere spacing, however, was shorter and
sarcoplasmic reticulum (SR) Ca2+ stores were reduced in co-
cultured CM, demonstrating that SNs can also have a limiting
effect on some aspects of maturation. We then incorporated
endothelial cells (ECs) and epicardial-derived vascular smooth
muscle and fibroblasts (EPI) into our co-culture model, as
demonstrated in the recent studies that these cell types
enhance maturation of hiPSC-derived CMs (Lee et al., 2015;
Tan et al., 2021). We found that the maturation benefits of SNs
were equal to or exceeded those of ECs and EPI, while
combining all cell types did not produce further enrichment.
Our results therefore indicate that SNs have a significant impact
on developing CMs and play a role similar to other support cells
in CM maturation.

MATERIALS AND METHODS

Animals
C57BL/6J mice were purchased from the Jackson Laboratory. All
experiments were performed under approval from the National
Heart, Lung, and Blood Institute (NHLBI) Animal Care and Use
Committee.

hiPSC-CM Co-Culture
CMs were differentiated from ND2.0 hiPS cells expressing a GFP
reporter as previously described (Chen et al., 2011; Luo et al.,
2014; Lin et al., 2017). CMs were cryopreserved on day 10 and
thawed 24 h before co-culture. SNs were obtained from dissected
sympathetic ganglia of E13.5 mouse embryos as previously
described (Nam et al., 2013). Sympathetic ganglia were
dissociated to single cell suspension with the papain
dissociation system according to the manufacturer’s directions
(Worthington). Epicardial cells were harvested from E13.5 mouse
embryo hearts as previously described (Nam et al., 2013).
HUVECs were purchased commercially (Lonza). CMs and
support cells were co-cultured at a ratio of 10:1. Culture
surfaces were coated in 0.11 mg/ml growth factor reduced
Matrigel (Corning). For FACS and qPCR, cells were cultured
on 12 well plates (Falcon); for immunohistochemistry, cells were
cultured on plastic coverslips (Nunc Thermanox); for Ca2+

imaging, cells were cultured on glass coverslips (Celltreat). Co-
cultures were maintained in DMEM/F12 media (Gibco 11330)
supplemented with 64 μg/ml L-ascorbic acid (Sigma),13.6 ng/ml
selenium (Sigma), 10 μg/ml transferrin (Sigma), 5% chemically
defined lipid concentrate (Gibco 11905), 5% fetal bovine serum
(Hyclone), 1% penicillin-streptomycin (Gibco 15140), 20 μg/ml
insulin (Sigma I9278), 20 ng/ml nerve growth factor (NGF,
Millipore 01-125), 10 ng/ml human basic fibroblast growth
factor (FGF-2, PromoCell C-60240), and 0.5 ng/ml human
vascular endothelial growth factor-165 (VEGF165, PromoCell
C-64420). Culture medium was changed every 2–3 days. All
analyses were conducted on day 30 of cell culture.

GCaMP6s Knock-in
GCaMP6s-expressing CMs were developed as follows. We used
CRISPR/Cas9-mediated targeting to knock-in GCaMP6s at the
AAVS1 safe harbor locus (Chen et al., 2013; Lin et al., 2018). The
AAVS1 locus is an ideal target for the introduction of cell markers
or other transgenes as it is actively and stably expressed in
pluripotent stem cells as well as in differentiated cells
(Patterson et al., 2020). Donor plasmid containing GCaMP6s
and AAVS1 homology arms was transfected along with a
AAVS1-CRISPR/Cas9 expression plasmid into 2 million
ND2.0 iPSCs by nucleofection (Supplementary Figure S1A).
Transfected iPSCs were seeded in E8 medium for 2 days, 0.5 μg/
ml of puromycin (Sigma-Aldrich) was added on day 3 and
continued for 10 days thereafter. The medium was changed
every day. The survived colonies were picked and screened by
PCR. Genomic DNA was collected from single colonies, and the
gene targeting was confirmed by 5′-junction PCR
(Supplementary Figure S1B). Primers AAVS1U-F2 (CTG
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CCGTCTCTCTCCTGAGT) and PuroU-R (GTGGGCTTGTAC
TCGGTCAT) detected targeted allele. Primers AAVSEL-F (TTC
GGGTCACCTCTCACTCC) and AAVSEL-R (GGCTCCATC
GTAAGCAAACC) detected wild-type allele. A GCaMP6s
heterozygous knock-in iPSC clone, which contains both
knock-in allele and wild-type AAVS1 allele, was then
differentiated into cardiomyocytes for evaluation of GFP
fluorescent transients that reflects calcium flux during
contraction (Supplementary Figure S1C). Normal karyotype
of the gene-edited ND2.0-GCaMP6s iPSC clone was confirmed
by G-band karyotyping (Supplementary Figure S1D).

Flow Cytometry
Single-cell suspensions were prepared by treating cultured cells with
124.8 units/ml collagenase type 1 (Worthington LS004214),
147.4 units/ml collagenase type 2 (Worthington LS004202),
400 units/ml DNaseI (Sigma DN25), and 5 μM CaCl2 in DMEM/
F-12 (Gibco 11330) for 30min at 37°C with gentle pipetting.
Following dissociation with collagenase, cells were treated with
0.05% Trypsin-EDTA (Gibco 25300) for 3min at 37°C. Cells were
then resuspended in Lebovitz’s L-15 medium containing 1mg/ml
bovine serum albumin (Sigma A9148), 10mM HEPES (Gibco
15630), 1% penicillin-streptomycin (Gibco 15140), and 25 μg/ml
DNaseI (Sigma DN25). Cells were passed through a 40 μm
strainer (Falcon) prior to sorting. Cell viability was assessed with
7-aminoactinomycin D (Thermo Fisher Scientific, A1310). HUVECs
were used as unstained and non-GFP controls. GFP+ hiPSC-CMs
were isolated by FACS with the Aria II SORP instrument (BD
Biosciences). CMs were sorted directly into TRIzol reagent
(Invitrogen 15596026) and kept at −20°C until processing for RNA.

qPCR Analysis
Total RNA was extracted from the cultured cells as previously
described (Li et al., 2013). First-strand cDNAs were synthesized
with SuperScriptIII reverse transcriptase (Invitrogen) using
random hexamer primers according to the manufacturer’s
instruction. The same starting mass of RNA was used for all
experiments. Quantitative mRNA expression analysis was
performed with LightCycler 96 (Roche) using FastStart
Universal SYBR Green master (Roche). A 10 μl reaction was
performed, with cDNA diluted 1:4 and a final primer
concentration of 250 nM. Reactions were run in triplicates and a
Ct difference greater than 0.5 cycles was rejected. At least n = 2
biological samples were analyzed per gene for each experimental
group. Data was analyzed by the 2−ΔΔCt method (Livak and
Schmittgen, 2001). Glyceraldehyde 3-phosphate dehydrogenase
(GAPH) and β-actin (ACTB) were used as housekeeper genes,
with the geometric mean of their Ct values acting as the first
normalization step (Vandesompele et al., 2002). These
housekeeping genes were selected following stability analysis
(Vandesompele et al., 2002). Data was then normalized to the
CM-only control cultures as the second step. A detailed description
of the PCR primers is described in Supplementary Table S1.

Immunohistochemistry
Cell culture staining was performed as previously described (Nam
et al., 2013). Cells were washed in cold PBS and fixed in 4% PFA/

PBS for 15 min at room temperature. After washing in PBS, cells
were incubated with primary antibodies overnight at 4°C in 0.1%
Triton X-100/PBS with 10% heat inactivated goat serum. The
following primary antibodies were used: bovine anti-cardiac
troponin T antibody (mouse monoclonal, DSHB, 1:1,000) to
detect CMs, rabbit anti-tyrosine hydroxylase antibody
(Millipore, 1:200) to detect SNs, rabbit anti-Col1a1 antibody
(Millipore, 1:500) to detect fibroblasts, Cy3-conjugated anti-
αSMA antibody (mouse monoclonal antibody, clone1A4,
Sigma, 1:1,000) to detect smooth muscle cells, rabbit anti-von
Willebrand factor antibody (Sigma, 1:200) to detect endothelial
cells, anti-α-actinin antibody (mouse monoclonal antibody, clone
EA-53, Sigma, 1:500) to detect sarcomeres, and anti-Cx43
antibody (mouse monoclonal antibody, clone 2, BD Biosciences,
1:200) to detect gap junctions. For immunofluorescence detection,
either Cy3-, Alexa-568-, or Alexa-647- conjugated secondary
antibodies (Jackson ImmunoResearch or ThermoFisher Scientific,
1:250, 1 h at room temperature) were used. Coverslips weremounted
with ProLong Gold Antifade Mounting solution (Thermo Fisher
Scientific). All confocal microscopy was carried out on a Leica TCS
SP5 confocal (Leica). To quantify sarcomere organization and
spacing, sarcomeres were first segmented with ImageJ using a
ridge detection algorithm (Steger, 1998). The segmented images
were then partitioned into 20 × 20 μm windows. For each window,
the local sarcomere organization and spacing were calculated using
automated analysis in Matlab (Sutcliffe et al., 2018). Briefly, the co-
occurrence matrix and Haralick correlation were computed for
multiple angles, 0–180°, and offset distances, 0–3.8 μm, generating
an m (number of angles) by n (number of offset distances) matrix of
Haralick correlations (Haralick et al., 1973). The sarcomere score is
the magnitude of the peak correlation, ranging between 0 and 2. The
offset distance associated with the peak correlation is the sarcomere
spacing. An idealized image of parallel stripes, all the same width,
would give a maximum organization score of 2. After computing the
organization and spacing for each window, the average values for the
entire image was considered the overall sarcomere organization and
spacing. Windows with no or insufficient sarcomeres were not
included. Cx43 content was analyzed using custom Matlab
scripts. Sample numbers are given in figure captions.

Live Imaging and Quantification Analysis of
GCaMP6s-hiPSC-CM
Intracellular Ca2+ transients were recorded from GCaMP6s-
expressing CM-only and CM + SN cultured on glass
coverslips. Cells were incubated at 37°C for 1 hour in fresh
medium and then coverslips were transferred to an imaging
chamber perfused at 1 ml/min with 37°C Tyrode’s solution
containing (in mM) 145 NaCl, 5.4 KCl, 2 CaCl2, 0.5 MgCl2,
5.5 glucose, 5 HEPES, 0.3 NaH2PO4, pH adjusted to 7.4
(Knollmann et al., 2006). Propranolol (1 μM) was applied
during pre-incubation and imaging to isolate CM from
adrenergic signaling. Propranolol was used during CM-only
imaging as well in order to maintain experimental parameters.
Ca2+ imaging was performed with a Leica TCS SP5 confocal
microscope (Leica). Time-lapse images were recorded at 22
frames/second with a 20X/0.7 NA objective. After several
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transients were recorded, 10 mM caffeine was applied by injecting
a bolus directly into the imaging chamber. Caffeine was washed
out for 5 min between image acquisitions. Ca2+ images were
analyzed using custom Matlab scripts (Mathworks, Natick, MA).
For each time series, three ROIs (7.5 × 7.5 μm) were manually
selected for analysis. We analyzed n = 45 ROIs from 6 CM-only
coverslips and n = 54 ROIs from 7 CM + SN coverslips.

Statistics
Data are presented as mean ± standard deviation. Data were compared
using upaired t-tests, Welch’s t-test, and Welch’s ANOVA with
Dunnett’s T3 as indicated in the text and figure legends. p < 0.05
was considered significant. All statistical analysis was performed in
GraphPad Prism (GraphPad Software, San Diego, CA).

RESULTS

Cardiomyocytes, Sympathetic Neurons,
and Other Support Cells Intermix in
Co-Culture
To understand how SNs support developing CMs, we established
a long-term culture system (30 days) of GFP-expressing hiPSC-
derived CMs (Lin et al., 2017) alone and with freshly isolated SNs

dissected from E13.5 mouse embryos (Figure 1A). Cells were co-
cultured on thin layers of Matrigel and grew to become 2–3 cell
layers thick. CMs formed large clusters, which were surrounded
by support cells (Figure 1). CMs expressed the GFP reporter and
CMmarker cardiac troponin T (cTnT, Figure 1B). After 30 days,
we observed SNs with tyrosine hydroxylase immunostaining
(Figure 1C). Multiple sympathetic axons and axon bundles
extended toward and crossed into CM clusters, confirming that
the two cell types were interwoven and not sequestered in our co-
culture (Figure 1C, Supplementary Figure S2). We performed
further experiments with EPI and ECs as additional support cells
(Figure 1A). EPI is an epicardial-derived source of cardiac
fibroblasts and coronary vascular smooth muscle cells. These
support cells grew adjacent to the CM clusters, but we observed
few non-CM within the clusters themselves (Figures 1D,E). EPI-
derived cells expressed the fibroblast marker Col1a1 and vascular
smooth muscle marker α-smooth muscle actin (α-SMA,
Figure 1D). ECs expressed von Willebrand factor (Figure 1E).
Throughout the 30 days co-cultures, CMs beat spontaneously.

Sympathetic Neurons Up-Regulate Genes
for Cardiomyocyte Maturation
We next examined changes in gene expression in co-cultured CM
relative to CM-only controls. We performed quantitative PCR

FIGURE 1 | Co-culture protocol. (A) Diagram of cell sources and co-culture protocol. SNs were dissociated from E13.5 mouse sympathetic ganglia. GFP
expressing hiPSC-CM were cultured alone (CM-only) or with SN (CM + SN) for 30 days. In other experiments, we included EPI and EC (CM + SN + EPI + EC). EPI were
harvested from E13.5 mouse hearts and formed vascular smooth muscle and fibroblasts. ECs were HUVECS. (B–E) Co-cultures immunostained at day 30. (B) GFP-
expressing hiSPC-derived CMs (green) were positive for cardiac troponin-T (red). (C) SNs expressed tyrosine hydroxylase (blue). (D) EPI cells showed α-smooth
muscle actin (vascular smooth muscle, red) and Col1a1 (fibroblasts, cyan). (E) ECs are marked with von Willebrand factor (white). Scale bars 250 μm.
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(qPCR) experiments on GFP+ CMs isolated from the co-cultures
by FACS (Figure 2A). Relative expression is presented as a
heatmap of log fold changes (Figure 2B). Genes tested were
grouped into three categories: myofiber proteins,
electrophysiology, and calcium cycling. When co-cultured with
SNs, CMs showed increased expression of genes encoding
structural components including TNNC1, TNNT2, MYL2, and
ACTN2. Expression of ion channel genes such as KCNH2,
KCNQ1, KCNJ2, SCN5A, and the Na+-Ca2+ exchanger
(SLC8A1) were also increased, as well as genes encoding the
calcium cycling machinery: ATP2A2, RYR2, PLN, S100A1. The
gene encoding gap junction Cx43 (GJA1), however was not
changed by co-culture with SNs. These data suggest that SNs
can promote expression of genes for myofibril formation,
electrophysiology functions, and calcium handling, all major
facets of CM maturation.

We added additional support cells EPI and ECs to CM co-
culture in order to better mimic the physiological environment.
While CM + SN + EPI + EC showed up-regulation of multiple
genes compared to CM-only controls, these additional support
cells did not enhance expression beyond the changes observed in
CM + SN (Figure 2B). In the case of some genes, such as RYR2
and PLN, expression increased to greater levels when SNs were
the only support cell. We then performed further co-cultures with
a single support cell: CM + EPI and CM + EC. Co-culture with
EPI as the single support cell increased gene expression as well,
although the change for most genes was slightly less than the
multi-support cell or CM + SN conditions. EC had little or no
effect on CM gene expression. In our co-culture, therefore,
additional support cells did not enhance the effects of SNs.

Our co-culture results indicated that SNs increased CM gene
expression. We then examined whether SN-derived β-adrenergic

FIGURE 2 |Relative gene expression. (A) Example FACS graphs of sorted GFP + CMs after dissociation of co-cultures. (B)Heatmap display of the log fold-change
in CM specific genes, normalized to the CM-only culture. Genes are grouped based on their function in CM maturation. n ≥ 2 biological samples per gene.
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signaling was the underlying factor, rather than the actual SN
cells. To address this, we cultured CMs under chronic exposure to
1 μM isoproterenol, a non-selective β-agonist. Isoproterenol was
added at each media change for the entire 30-days culture. Gene
expression analysis revealed that the β-agonist reduced

expression of several genes and had little to no effect on
others. These results suggest that a different mechanism is
responsible for the expression changes in CM + SN co-culture
and that β-adrenergic signaling has no, or possibly a detrimental,
effect on CM maturation.

FIGURE 3 | CM sarcomere organization and Cx43 expression. (A–C) Sarcomeres stained with α-actinin (red). GFP-expressing hiPSC-CM are shown in green.
(A9–C9) Higher magnification of boxed areas in (A–C). (D–E) Sarcomere organization (D) and spacing (E) from analysis of immunofluorescence images; **p <0.01,
***p <0.001, ****p <0.0001. Data are mean ± SD. Welch’s ANOVA with Dunnett’s T3 multiple comparisons test is shown. n = 9 areas from 3 CM-only cultures, n = 16
areas from 5 CM + SN, and n = 14 areas from 4 CM + SN + EPI + EC. (F–H) Immunofluorescence of Cx43 puncta (red) within hiPSC-CM (green). (F9–H9) Higher
magnification of boxed regions in (F–H). The Cx43 channel is shown in monochrome to visualize differences among the groups. (I) Total Cx43 area as a fraction of CM
area; *p <0.05. Data are mean ± SD. Welch’s ANOVA with Dunnett’s T3 multiple comparisons test is shown. n ≥ 9 areas from five cultures per group. Scale bars
50 μm (A–C) and (F–H), 25 μm (A9–C9) and (F9–H9).
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Sarcomere Maturation Is Slightly Delayed in
Cardiomyocytes Co-Cultured With
Sympathetic Neurons
We next examined structural changes in the co-cultured CMs.
We first analyzed sarcomere morphology in CMs with α-actinin
staining (Figures 3A vs. 3B vs. 3C). CMs in all culture conditions
showed parallel Z-disks distributed along the length of the cell.
Sarcomere organization, which represents the alignment and
regularity of spacing, was significantly increased in CM + SN
(0.32 ± 0.05) compared to both CM-only controls (0.24 ± 0.04,
p < 0.001) and CM + SN + EPI + EC (0.25 ± 0.05, p < 0.01,
Welch’s ANOVA with Dunnett’s T3, Figure 3D). However,
sarcomere spacing was significantly reduced by co-culture with
SNs (CM + SN: 1.9 ± 0.07 μm, CM-only: 2.1 ± 0.08 μm, p <
0.0001, Figure 3E). When adding EPI and EC, sarcomere spacing
recovered somewhat (2.0 ± 0.08 μm, p < 0.01, Figure 3E), but was
still less than CM-only levels (p < 0.01). These additional cells
may inhibit or counteract the effects of the SNs. In the developing
heart, then, SNs may have a complex, dual role in sarcomere
maturation, improving the alignment of Z-disks, but slightly
delaying their spacing.

Sympathetic Neurons Increase Cx43 in
Cardiomyocytes
Gap junction formation is a critical step in CM maturation
(Scuderi and Butcher, 2017). We performed the connexin 43
(Cx43) gap junction protein immunostaining and analyzed the
amount of Cx43 relative to CM area (Figure 3I). Cx43 expression
was significantly increased in CM + SN compared to CM-only
controls (0.03 ± 0.03 CM + SN vs. 0.008 ± 0.006 CM-only, p <
0.05, Figure 3F vs. 3G,I). Cx43 levels did not increase further
when EPI and ECwere added along with SN (0.05 ± 0.04, p = 0.61,
Figure 3F vs. 3H,I). Therefore, SNs may have an important role
in promoting Cx43 formation in CMs. Interestingly, in the above-
mentioned qPCR analysis, mRNA for the Cx43 gene (GJA1) did
not show a large fold change relative to CM-only controls
(Figure 2B). These results indicate that SNs might enhance
translation or other post-transcriptional events, leading to
greater levels of the Cx43 gap junction protein.

Ca2+ Handling Is Changed Significantly by
Co-Culture With Sympathetic Neurons
To investigate functional changes in response to co-culture with
SN, we analyzed intracellular Ca2+ transients during CM
contraction (Figures 4A,B). GCaMP6s-expressing CMs and
SNs were co-cultured on Matrigel-coated glass coverslips for
30 days and then imaged under perfusion with a warmed
Tyrode’s buffer. Ca2+ imaging was conducted at the intrinsic,
spontaneous beat rate of CMs (Figures 4C,D). We found that the
amplitude of the Ca2+ transient was significantly greater in CMs
co-cultured with SNs compared to CM-only controls (2.87 ± 1.52
CM + SN vs. 2.05 ± 1.38 CM-only, p < 0.01, unpaired t-test,
Figure 4E). Time to 90% relaxation (RT90), however, was longer
in CM + SN (2.20 ± 0.76 s vs. 1.54 ± 0.50 s, p < 0.0001, Figure 4F).

The larger Ca2+ amplitude is indicative of a more mature
phenotype, while longer RT90 suggests less mature Ca2+

clearance. Taken together, these data demonstrate that SNs
have a significant, yet bi-directional, affect the development of
CM Ca2+ transients.

We further examined development of the SR Ca2+ stores by
administration of caffeine. In response to caffeine stimulus, both
CM-only and CM + SN showed an increase in the Ca2+ peak
followed by temporary cessation of Ca2+ flux (Figure 4G vs. 4H).
The relative change in the caffeine peak compared to baseline was
significantly reduced in CM + SN (0.50 ± 0.32 CM + SN vs. 1.32 ±
0.88 CM-only, p < 0.0001, Welch’s t-test, Figure 4G vs. 4H,I).
This smaller caffeine response indicates that CMs co-cultured
with SNs have significantly less mature SR Ca2+. The variability of
the caffeine response, however, was significantly greater in CM-
only controls (0.23 ± 0.09 CM + SN vs. 0.67 ± 0.40 CM-only, p <
0.05, unpaired t-test, Figure 4G vs. 4H,J). We measured this
variability as the standard deviation across all Ca2+ ROIs in a
single coverslip. These results show a significant role for SNs in
development of the SR and its function in Ca2+ dynamics.

DISCUSSION

Multiple aspects of CM maturation were modified by co-culture
with SNs, including gene expression, sarcomeres, gap junctions,
and Ca2+ handling. SNs up-regulated genes important to the
contractile apparatus, electrophysiology, and calcium machinery,
improved sarcomere organization, generated greater Cx43 levels
in cells, and increased Ca2+ transient amplitudes. These results
suggest a positive effect of SNs on CMmaturation. However, SNs
were also responsible for shorter sarcomere lengths, longer Ca2+

relaxation, and decreased release of Ca2+ from the SR, indicating
delayed maturation. This bimodal role may be important to
regulate CM development in vivo. Incorporating EPI and ECs
as additional support cells produced only modest changes,
lending further support to a significant role for SNs in guiding
CM maturation.

Relative gene expression by qPCR revealed that multiple genes
related to CMmaturation increased expression when co-cultured
with SNs. Genes encoding both thin (TNNC1, TNNT2) and thick
(MYL2) myofiber filaments were up-regulated in the presence of
SNs. Additionally, ACTN2, which encodes the major Z-disk α-
actinin protein, was increased. However, TNNI3, the mature
isoform of troponin-I (Bedada et al., 2014), and the MYH7/
MYH6 ratio (Guo and Pu, 2020) showed only small effects,
suggesting that these isoform switches may not be influenced
by SNs. We furthermore found up-regulation of membrane
bound ion channels, which are required to propagate the CM
action potential. Genes for the major voltage-dependent Na+

channel (SCN5A) and inward rectifying K+ channel (KCNJ2)
were both increased in CM + SN co-cultures. During the action
potential, membrane depolarization triggers Ca2+-induced Ca2+

release, which facilitates contraction, followed by removal of Ca2+

from the cytoplasm as the CM relaxes (Bers, 2008). The main
components for Ca2+ cycling all showed increased expression in
CMs co-cultured with SNs, including L-type Ca2+ channel
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(CACNA1C), ryanodine receptor (RYR2), Na+-Ca2+ exchanger
(SLC8A1), sarco/endoplasmic reticulum Ca2+-ATPase (SERCA,
ATP2A2), and phospholamban (PLN). Interestingly, some of the
largest expression increases occurred in RYR2 and PLN, which
may relate to the changes in Ca2+ dynamics in CM+ SN discussed
below. Taken together, these data show that SNs modify CM gene
expression and promote a more mature profile.

We found that SNs increased sarcomere organization in CMs.
Randomly oriented myofibrils with condensed Z-bodies is a
hallmark of immature CMs (Snir et al., 2003; Kamakura et al.,
2013; Lundy et al., 2013). In both CM-only and CM + SN, Z-disks
are visible and mostly aligned to the CM long axis, similar to
previous 30 days culture (Kamakura et al., 2013). In the presence
of SNs, however, alignment has progressed further and

FIGURE 4 |Ca2+ transients in CMs. (A,B) Sample images of GCaMP6s-expressing hiPSC-CMs in CM-only (A) and CM + SN (B) culture conditions. The white box
regions show example ROIs for Ca2+ transient analysis. (C) Example trace of normalized Ca2+ fluorescence (F/F0) in CM-only culture during intrinsic beating. (D) Ca2+

trace of a CM + SN co-culture. (E,F) Amplitude (E) and RT90 (F) of the Ca2+ transients in CM-only and CM + SN; **p <0.01, ****p < 0.0001. Data are mean ± SD.
Unpaired t-test is shown. (G,H) Example Ca2+ traces during caffeine injection in CM-only (G) and CM + SN (H) co-cultures. Three example plots are shown for both
conditions to demonstrate the range of caffeine responses. Plots are scaled so that the baseline amplitudes appear equal. Arrows indicate the timing of caffeine infusion.
(I) The caffeine-induced increase in Ca2+ transient amplitude was quantified relative to the baseline Ca2+ amplitude; ****p < 0.0001. Box plots extend between the 25th
and 75th percentile, the median value is shown by a horizontal line, and the whiskers show the entire range. Welch’s t-test is shown. (J) Standard deviation (SD) of local
caffeine increases observed across all ROIs from single coverslips; *p < 0.05. Data aremean ± SD. Unpaired t-test is shown. n = 45 ROIs from 6CM-only and n = 54 ROIs
from 7 CM + SN coverslips. Scale bars 100 μm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8506458

Kowalski et al. Sympathetic Regulation of Cardiomyocyte Maturation

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


sarcomeres are more uniformly spaced. These features can
enhance the contractile force of CMs. Despite this increased
organization, CMs co-cultured with SNs exhibited slightly
shorter sarcomere lengths, indicating that SNs may inhibit
sarcomere elongation. As CMs mature, sarcomere length–the
distance between Z-disks–increases, reaching 2.2 μm in adult
human CMs (Yang et al., 2014). We suggest, therefore, that
SNs enhance organization but delay elongation of sarcomeres.
Mechanisms of sarcomere assembly and maturation are slowly
being uncovered (Guo et al., 2021), and further research is
required to understand how these processes are regulated and
interpret the effects of this dual role on CM function.

Cx43 increased in hiPSC-derived CMs co-cultured with SNs.
Interestingly, the gene, GJA1, did not show increased expression,
suggesting that SNs may regulate translation or another post-
transcription mechanism. Cx43 forms the gap junctions in CMs,
allowing for propagation of the action potential. In adult CMs,
Cx43 is localized to the intercalated disc between individual cells.
We did not observe any localization pattern in control or CM +
SN. The effect of SN, therefore, seems limited to expression of the
protein, but not trafficking to cell termini. In human CMs, Cx43
localization is a largely postnatal process and may take up to
7 years to completely organize at the intercalated disk (Vreeker
et al., 2014). SN-promoted Cx43 expression, therefore, may be
important to support later development of electrical conduction.
A recent study using 3D hiPSC-derived CM/EC/fibroblast
microtissues proposed that greater cAMP in CMs leads to
increased Cx43 assembly (Giacomelli et al., 2020). Our study
supports this role for sympathetic stimulation in CM
development. That study further showed that decreased Cx43
expression was associated with arrhythmic behavior. If a lack of
SNs leads to reduced Cx43 in vivo, this may give insight into the
sudden cardiac embryolethality of Phox2b−/− and adrenergic-null
mutants.

Our co-culture experiments showed that SNs significantly
affect Ca2+ dynamics in hiPSC-derived CMs. We observed
larger Ca2+ amplitudes in CM + SN vs. CM-only controls, but
slower relaxation times. Previous studies have demonstrated
that stem cell-derived CMs express Ca2+ handling proteins,
although at a lower level than adult CMs (Satin et al., 2008).
Our qPCR data showed increased expression of Ca2+

handling machinery such as CACNA1C, SLC8A1, RYR2,
ATP2A2, and PLN in SN co-cultured hiPSC-CMs. While
up-regulation of these genes is consistent with greater Ca2+

amplitudes, the reason for slower relaxation is less clear. A
possible explanation is that the less mature SR Ca2+ stores in
SN co-cultured CM may make these CMs more reliant on
membrane bound Ca2+ channels for Ca2+ removal,
prolonging their RT90. It is important to note, however,
that we analyzed CMs at intrinsic beat rates, and the
slower beat rates of CM + SN may contribute to the
greater Ca2+ amplitudes (Figure 4). Field stimulation at
different pacing rates would offer further insight into the
effects of SN on Ca2+ cycling. Stem cell-derived CMs have
been shown to exhibit functional features such as Ca2+-
induced Ca2+ release and SERCA activity (Satin et al.,
2008; Itzhaki et al., 2011; Hwang et al., 2015). In

particular, it has been demonstrated in vitro that the
caffeine triggered Ca2+ release increases with culture time
as the CMs develop SR Ca2+ stores (Satin et al., 2008).
However, in our study, we found that the caffeine Ca2+

release was significantly reduced in CM + SN. This
caffeine response suggests that CM + SN have smaller SR
Ca2+ stores compared to CM-only, indicating that SNs lead to a
less mature SR Ca2+ phenotype. It is intriguing, however, that
at baseline, CM + SN show a larger Ca2+ amplitude. If the CM
+ SN indeed have less SR Ca2+, this increase would likely be
due to greater influx of Ca2+ through the L-type Ca2+ channel.
An alternative scenario, though, is that CM + SN release a
greater fraction of their SR Ca2+ during normal beating. More
sensitive ryanodine channels is one possible mechanism. Upon
introducing caffeine, there would be less reserve Ca2+,
therefore resulting, in part, to the reduced caffeine
amplitude. Additional assays testing the activation of
ryanodine receptors and activity of the L-type Ca2+ channel
could provide insight to this issue.

Although the magnitude of the caffeine triggered Ca2+

release was reduced, CM + SN showed a more consistent
response to the caffeine stimulus. In CM-only cultures, the
caffeine response varied greatly, with some CMs exhibiting
only a modest caffeine peak while others showed a more than
3-fold change compared to their baseline amplitude. CM +
SN, however, had a much narrower band of responses. This
difference may reflect a role for SNs in regulating
development of Ca2+ handling apparatuses. Without SNs,
maturation of Ca2+ handling may progress more
haphazardly, generating a heterogenous mix of CMs. With
SNs, Ca2+ handling development may be more tightly
controlled. An intriguing question is if more uniform Ca2+

handling and, possibly, lower SR Ca2+ could be protective
against arrhythmia early in development. Without uniform
Ca2+ handling, a variegated response to environmental
stimuli, for example, could lead to discordant ventricular
contraction or rhythmic defects. Additionally, delayed
afterdepolarizations (DADs) occur when high luminal SR
Ca2+ stimulates spontaneous Ca2+ release (Bers, 2008).
These afterdepolarizations can trigger arrhythmias in some
cases. With lower SR Ca2+, a DAD is less likely to occur. Later
in development, these effects would need to dissipate,
especially to grow the SR Ca2+. But there may be a window
where SNs provide some protection to the developing heart.
Further research can explore these potential roles of SNs.

The significance of non-CM cells in the heart has long been
recognized and various cell types have been used to improve stem
cell-derived CMs (Burridge et al., 2014; Lee et al., 2015;
Masumoto et al., 2016; Scuderi and Butcher, 2017; Zhang
et al., 2017; Giacomelli et al., 2020; Tan et al., 2021). To
generate a more physiologic environment, we added EPI and
EC to perform CM+ SN + EPI + EC co-culture. CM + SN + EPI +
EC showed improvements in gene expression and Cx43 level over
CM-only controls. Compared to CM + SN, however, the addition
of EPI and ECs did not have a strong effect. Changes in gene
expression were similar, and in some cases genes were more
highly expressed in CM + SN, such as RYR2 and PLN. CM + EPI
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also achieved similar changes in gene expression compared to CM
+ SN + EPI + EC. In the case of Cx43, there was no difference when
EPI and EC were added. We did note that the EPI and ECs may
have countered the effects of the SNs on sarcomere organization
and spacing, recovering both to at or near the CM-only levels.
Together, these data suggest that multiple support cells do not add
up to generate further maturation. Our CM + SN + EPI + EC
results demonstrate that SNs can influence CMmaturation similar
to other, more widely studied, support cells.

SNs have received relatively little attention as a potential
regulator of CM maturation. Most studies thus far have
focused on their role in modulating CM proliferation, which
remains unclear (Tampakakis and Mahmoud, 2021). Neonatal
rat SN and CM co-culture improved contractility and increased
L-type Ca2+ channel expression, which is in line with our
findings (Lloyd and Marvin, 1990; Ogawa et al., 1992). Co-
culture of stem cell-derived CMs with SNs have demonstrated
that SNs can control CM beat rate, but effects on CM
maturation were not investigated (Takeuchi et al., 2012;
Sakai et al., 2017; Takayama et al., 2020). In summary, our
study demonstrates that SNs have a significant impact on
multiple facets of CM maturation, giving insight into their
critical role during development.

Further research is required to understand how SNs act to
influence CM maturation. Our qPCR results suggest that β-
adrenergic signaling is not sufficient to achieve the changes we
observe in CM + SN co-culture. A limited number of previous
studies on β-adrenergic stimulation and immature CMs have
left the issue mostly unsettled. Neonatal rat CMs showed
decreased cell size but no effect on proliferation in response
to isoproterenol treatment (Kreipke and Birren, 2015). In
E11.5 mouse embryonic CMs, β-adrenergic stimulation
inhibited proliferation via decreased phosphorylation of Erk
and Akt (Feridooni et al., 2017). Studies with hiPSC-CMs have
shown conflicting results with regards to β-adrenergic
stimulation: it either results in CM hypertrophy (Zhi et al.,
2012) or has no effect on cell size (Foldes et al., 2014). In the
case of α-adrenergic signaling, the agonist phenylephrine
promoted hypertrophy in hESC-CMs, but had no impact on
hiSPC-CMs (Foldes et al., 2011; Foldes et al., 2014). In the
clinical setting, chronic exposure to catecholamines
contributes to progressive heart failure and be cardiotoxic
(Lymperopoulos et al., 2013). A previous study exposing
iPSC-CM engineered tissues to norepinephrine for 7 days
showed features of heart failure, but these were significantly
blunted in serum-containing media (Tiburcy et al., 2017). Our
qPCR results showed reduced expression of several genes after
30-days exposure to isoproterenol. It is possible that these
changes are due to heart failure development in hiPSC-CMs.
However, few studies have examined the effects of chronic
catecholamine exposure on immature CMs, and it will require
additional experiments to determine if there are cardiotoxic
effects.

The physical presence of SNs in our CM + SN co-cultures
may be the significant factor modulating CM maturation,
rather than adrenergic signaling. Multiple sympathetic
axons extended toward and invaded CM clusters, potentially

enabling cell-cell contacts. A previous study with neonatal rat
CM and SN showed changes in CM morphology, synapsin
puncta, and cadherin accumulation at sites of cell-cell overlap
(Shcherbakova et al., 2007). If similar specialized zones occur in
our co-culture model, it may allow for greater cell-cell
interaction between SN and CM. Further experiments such
as RNA-sequencing will be needed to understand what
signaling pathways are changed in CM + SN vs. CM-only
conditions. While a future such experiment may reveal new
interactions between CM and SN, there remains much to be
learned about adrenergic signaling. Although prior work has
not shown a definitive role, it is clear from Th−/-, Dbh−/−, and
other mouse models that catecholamines are essential for
embryonic heart function and embryo survival (Thomas
et al., 1995; Zhou et al., 1995; Baker et al., 2012; Osuala
et al., 2012). In the Phox2b−/− model, embryos die mostly
between E13.5-E14.5. At this stage, SNs have just reached
the ventricle, innervating only a small portion of the dorsal
subepicardium and are not yet in contact with CMs (Nam et al.,
2013). Before SNs reach the heart, intrinsic cardiac adrenergic
cells are required to sustain catecholamine levels (Ebert et al.,
2008). In early embryonic CMs, therefore, adrenergic signaling
is necessary, while the actual presence of SNs may be
dispensable. Later CM development may require contact
with SNs. SNs therefore likely act through a combination of
adrenergic stimulation and local cell-cell signaling to influence
CMs. As seen in the results of this study, SNs can have an
enhancing or delaying effect on CM maturation.

In conclusion, we found that SNs had a significant influence
on hiPSC-derived CM maturation. Gene expression, Cx43
quantity, sarcomere organization and some aspects of Ca2+

handling were improved in CM + SN co-culture, while
maturation of sarcomere spacing and SR Ca2+ were delayed.
Adding EPI and ECs as other support cells did not enhance
maturation beyond CM + SN, highlighting the significance of
SNs. We assessed that SNs act through more than cateholamines,
as culture of CM with isoproterenol did not replicate the changes
in gene expression. These data suggest a complex role for SN in
CM development. Future research will examine the influence of
SNs other facets of CM maturation. Understanding this
relationship could provide insight into fetal and pediatric
arrhythmias, in particular sudden cardiac death as well as
other disorders.
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