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Computational methods in protein engineering often require encoding amino acid
sequences, i.e., converting them into numeric arrays. Physicochemical properties are a
typical choice to define encoders, where we replace each amino acid by its value for a given
property. However, what property (or group thereof) is best for a given predictive task
remains an open problem. In this work, we generalize property-based encoding strategies
to maximize the performance of predictive models in protein engineering. First, combining
text mining and unsupervised learning, we partitioned the AAIndex database into eight
semantically-consistent groups of properties. We then applied a non-linear PCA within
each group to define a single encoder to represent it. Then, in several case studies, we
assess the performance of predictive models for protein and peptide function, folding, and
biological activity, trained using the proposed encoders and classical methods (One Hot
Encoder and TAPE embeddings). Models trained on datasets encoded with our encoders
and converted to signals through the Fast Fourier Transform (FFT) increased their precision
and reduced their overfitting substantially, outperforming classical approaches in most
cases. Finally, we propose a preliminary methodology to create de novo sequences with
desired properties. All these results offer simple ways to increase the performance of
general and complex predictive tasks in protein engineering without increasing their
complexity.

Keywords: protein engineering, predictive models, machine learning, digital signal processing, fourier transform,
numerical representation strategies

1 INTRODUCTION

Protein Engineering is one of the main research areas of biotechnology. It focuses on designing and
implementing strategies that allow or optimize the production of proteins with desired properties.
The main strategies used to achieve this objective are directed evolution and rational design. The first
focuses on emulating and accelerating the evolution process, evaluating mutations and selecting
those that show the desired trait, iterating the process until reaching an economically feasible
optimum. The second consists of applying existing knowledge about a protein system—both
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empirical and theoretical—to propose mutations or variants that
are likelier to exhibit the desired property.

However, predicting the outcome of replacing one (or more)
amino acids in a protein sequence is a central task in Protein
Engineering because it is unclear how the individual sequences
relate to higher-order properties, e.g., folding Khoury et al.
(2014). As protein function and properties are closely related
to their constitutive amino acids (Sadowski and Jones, 2009), it is
possible to design variants with enhanced functions by changing
the constitutive amino acids of a sequence. However, amino acid
sequences need to be encoded into numeric arrays in order to
facilitate their computational processing. In other words, every
amino acid has to be turned into a number.

Unsurprisingly, encoders play a fundamental role in the
quality of the outcome of predictive models (Yang et al., 2019;
Wittmann et al., 2021). However, while there is a wide variety of
encoding techniques, there is no general agreement on which one
to select for a specific task (Yang et al., 2018; Siedhoff et al., 2021).
The first encoding approaches represented amino acid sequences
in discrete manner (numeric-wise), using techniques such as One
Hot or Ordinal Encoder (Winter 1998; Pavelka et al., 2009;
Brownlee, 2020). However, these techniques struggle to handle
high-dimensional datasets and often lack biological
interpretation (Yang et al., 2018). Therefore, efficient encoding
strategies allowing handling high dimensional datasets while
capturing biological and physicochemical properties of the
sequences are required.

Researchers have intensively used physicochemical properties
of the constitutive amino acids to encode sequences (Potapov
et al., 2009; Broom et al., 2017; Ancien et al., 2018). One of the
open datasets summarizing these properties is the AAIndex
database (Kawashima and Kanehisa, 2000), with (to date)
566 different entries for the 20 canonical amino acids.
Property selection based on unsupervised machine learning
(ML) algorithms (Saha et al., 2012; Forghani and Khani, 2017)
often generates groups with mixed properties (Georgiev, 2009), in
the sense that they are not semantically or physically coherent.
Various studies have combined physicochemical properties and
digital signal processing in protein engineering (Cosic and Nesic,
1987; Hejase de Trad et al., 2000). An example of such digital
signal processing is the use of (Fast) Fourier Transforms (FFT) to
analyze encoded sequences’ spectra. Integral transforms (as the
FFT) have some interesting properties, as facilitating the
convolution of signals and, eventually, capturing the
interaction between amino acids. Consistently, in the context
of protein engineering, transforming encoded sequences and
training models in the frequency space instead allows
capturing the interactions between amino acids in the whole
range of the sequence (Siedhoff et al., 2020). Veljkovic et al. (1985)
were pioneers in the application of discrete Fourier Transforms to
analyze DNA and protein sequences. Other remarkable examples
find applications in cancer studies (Cosic et al., 2016), analysis of
conserved motif regions (Hejase de Trad et al., 2000), evaluation
of bioactivity (Cosic, 1994), and the prediction of secondary
structure and protein-protein interactions (Cosic et al., 2016).
Recently, researchers have combined with great success digital
signal processing with machine learning to develop predictive

models to evaluate—among other variables—enantioselectivity
and protein thermostability (Cadet et al., 2018a,b; Siedhoff et al.,
2021).

However, the use of integral transforms (as Fourier
transforms) dates further back on time (see, e.g., Eisenberg
et al. (1984); Rackovsky (1998); Cosic and Nesic, 1987).
Recently, Kieslich et al. aimed to generalize the property-based
encoding of sequences by applying a PCA to the AAIndex. They
select the 18 most explanatory principal components to define
encoders and use them for training Support Vector Machine
(SVM) models to predict antiviral activity on peptides, reaching
outstanding performance metrics (Kieslich et al., 2021). Thereby,
the authors showcase the benefits of extracting the full potential
of the AAIndex dataset by proper data preprocessing. Could it
then be possible to extract even more information from the
AAIndex database so that we could reach higher performance
metrics by employing even fewer independent encoders?

In this work, we aim to go one step beyond generalizing
property-based encoding strategies and improve the numerical
representation of amino acid sequences for predictive tasks in
protein engineering in a way that is both explainable and
consistent with previous findings. First, we applied text mining
techniques to the AAIndex database to define eight semantically
consistent groups of properties (i.e., groups of properties with
compatible physical meaning, which naturally arise). Then, using
the first component of a Kernel PCA (which is less restrictive than
classic PCA), we define eight encoders that we use to represent the
same protein sequence. After applying FFT, we train predictive
models using the complex modulus of the Fourier spectra as
input. Thereby, we facilitate the development of predictive
models using ML algorithms, outperforming classical encoding
strategies in the studied cases. Finally, we demonstrate the
usability of the proposed approach to enhance performance in
predictive tasks and to design proteins with desirable properties.

2 METHODS

2.1 Semantic Clustering of Properties in the
AAIndex Database
We sought to identify groups of physicochemical properties in the
AAIndex database (Kawashima and Kanehisa, 2000), maximizing
the separation between groups while conserving semantic
consistency within them (in the sense of all properties of the
same group having compatible descriptions). Our methodology
combined doc2vec strategies as document representation (Kim
et al., 2019) and several unsupervised learning algorithms. Below,
we describe each of the four stages involved in the proposed
methodology for semantic clustering and the derivation of
generalized property-based encoders.

2.1.1 Data Pre-Processing
We retrieved the AAIndex database records from its official site
https://www.genome.jp/ftp/db/community/aaindex/aaindex1.
Then, we processed the dataset generating two *.csv files to
facilitate its handling, one containing numeric values for the
properties and the other containing their description.
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2.1.2 Unsupervised Learning
As classical clustering methods based on unsupervised learning
using the values of the properties cannot ensure semantic
consistency within the partition generated, we designed a
staged process, combining them with doc2vec techniques to
generate autoencoders. We first train a doc2vec autoencoder
on the descriptions of the physicochemical properties in the
AAIndex database and apply it over the same dataset to
obtain embedding representations. We then explore different
classical unsupervised learning algorithms and combinations of
their hyperparameters (as described in the exploration stage in
Medina-Ortiz et al. (2020b,c)) to obtain several candidate
partitions of the dataset.

2.1.3 Selection of the Best Partition
We assessed the quality of each partition by obtaining their
Calinsky-Harabasz indexes and selecting the one with the
highest. Finally, we retrieve the original descriptions applying
the inverse encoder (decoder) and review whether the condition
of semantic consistency is met within the groups generated.

2.1.4 Encoder Creation
Using the partition generated in the previous step, we studied
how property values are distributed for the different amino acids.
We created a 20 × Ni matrix containing the values of the Ni

properties contained in the i − th group for each amino acid. We
then applied a kernel principal component analysis (kernel-PCA,
radial basis function RBF-kernel with default settings) to the
matrix representing each group. Noteworthy, a kernel-PCA
expands the traditional PCA’s limitations, such as requiring
the components (namely, columns of the matrix) to distribute
normally, and prevents the information loss that would cause
removing those properties that do not meet this condition.
Finally, we define encoders as the first component of each
intra-group kernel-PCA.

2.2 Numerical Representation of Protein
Sequences and Fast Fourier Applications
The general principle behind encodings is to map a categorical
variable into a numeric value. In the context of protein
engineering, encoding sequences of amino acids translates
them into vectors. However, distance-based algorithms
cannot capture the interactions between residues when
comparing different sequences (or variants of the same
sequence when replacing one or more of the constitutive
amino acids). As we expect changes in one residue to
impact the protein’s function depending on who the
neighbor residues were, we need a method to account for
the impact that each amino acid has on the whole sequence.
One way to capture this broad range of interactions is to use
Fourier transforms (Sneddon, 1995).

Alongside other integral transforms, Fourier transforms
search to represent functions (or vectors) as a superposition of
other functions or vectors that form a basis of the correspondent
space. For Fourier transforms, such a basis is all possible
sinusoidal functions. Although it was originally thought for a

continuously valued function, it is possible to define the Fourier
transform and its inverse for discrete distributions. In this case,
only a finite sample segment of the continuous data set is required
to reconstruct the frequency spectrum (Rao and Yip, 2014).

The Fast Fourier transform (FFT) algorithm enables the efficient
computation of the Fourier transform; Solving the problem directly
from the discrete Fourier Transform (DFT) yields a complexity of
O(N2), while using the FFT generates a complexity of O(N log N)
(Welch, 1967). In the context of the present work, we apply FFT to
each encoded sequence according to the following steps: 1) As
required to apply FFT, we complete every vector with zeros (zero
padding) such that the resulting dimension is (2n) − 1. 2) We apply
FFT to each resized vector independently, obtaining a n × m

2 matrix of
frequencies, where n is the number of sequences andm is the number
of points in the vector.We then use the obtained frequencies as input
to train predictive models.

2.3 Predictive Models Training
Throughout the different case studies presented in this work, we
use Random Forest predictive models due to their easy
implementation and interpretation. Hyperparameters are those
of the default configuration of DMAKit (Medina-Ortiz et al.,
2020b): n_estimatorsint = 100, criterion = gini,
min_samples_split = 2, min_samples_leaf = 1, and
n_jobs = −1 so that all available cores are used. After
preprocessing, each input dataset was divided into training
and testing datasets in an 80:20 ratio. For the performance
assessment experiment, we repeated the 80:20 split of the
dataset 1.000 times using different random seeds, aiming to
compensate for any potential selection bias. Thus, instead of
reporting a single value for model precision, we report, in this
case, a distribution. Model training involves a k cross-validation
stage, with k = 10. We also put forward a metric to assess
overfitting, the overfitting ratio, defined as the ratio between
model precision in the training and validation stages.

2.4 Testing Datasets and Case Studies
Here we describe the different datasets we evaluated in the case
studies to assess the proposed encoders and methodology.

2.4.1 DNA-Binding Protein
DNA-binding protein (DBP) classification is one of the most
exciting problems in biotechnology, mainly because of its
implications in protein engineering, synthetic biology,
molecular biology, and genetic engineering (Rahman et al.,
2018). Furthermore, it finds direct application in the
improvement of commercial DNA polymerases and restriction
enzymes (Wei et al., 2017). Different computational methods to
develop classification models for DNA-Binding protein have
been proposed, involving various sequence coding and
characterization strategies. Despite the enormous efforts
aiming to solve this problem, it remains open. The dataset for
this task was built using different previously reported datasets
(Wei et al., 2017; Rahman et al., 2018; Adilina et al., 2019). We
also removed all sequences without classification, generating a
balanced dataset with 504 examples of DNA binding protein and
523 non-DNA binding protein.
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2.4.2 Folding and Function Recognition
Two of the most common tasks in protein engineering are the
prediction of the folding of secondary structures and the classification
of protein function (Marchler-Bauer et al., 2017). Based on this, our
approach was based on solving two questions of interest. 1) Given a
set of proteins with the same folding, is it possible to recognize or
predict the functions of these proteins? 2) Given a set of proteins with
the same function, is it feasible to classify protein folding? First, we
used the Protein Data Base (PDB) to build these data sets. Then, for
each search, we applied the following filters: 1) Homo sapiens
organism, 2) X-Ray diffraction as the experimental method, 3)
Protein type as Polymer entity type, and 4) a resolution lower
than 3 Å. Next, we implemented a bash script to download the
protein sequences and save them in csv files for the different
applications. Remarkably, we developed balanced datasets to
reduce the possible problems in the training process in all cases.

2.4.3 Biological Activity Prediction for Peptide
Sequences
Antimicrobial peptides (AMPs) are known as host-defense peptides
(Sitaram andNagaraj, 2002). Thesemolecules play an essential role in
the innate immune response, thus having direct application in the
pharmaceutical, biotechnological, and industrial areas (Papagianni,
2003;Ma et al., 2018). Different computationalmethods based onML
have been developed to classify antimicrobial peptides (Xiao et al.,
2013; Chen et al., 2016; Zimmer et al., 2018; Yi et al., 2019; Yi et al.,
2019). In this case study, we used the peptide sequences reported in
PeptipediaDB (Quiroz et al., 2021) to develop classificationmodels of
AMPs peptides, generating a dataset with six types of biological
activities.

2.5 Implementation Strategies and Library
Developing
Scripts to develop, assess, and exemplify the usage of the proposed
encoders are written in Python v3.9, powered by libraries as
Pandas (McKinney, 2010), Numpy, Gensim (Řehřek and Sojka,
2011), and DMAKit (Medina-Ortiz et al., 2020b), among others.
The encoding library proposed in this work was designed under
the Object-Oriented Programming paradigm (Wegner, 1990),
which is advantageous for its modularity.

3 RESULTS AND DISCUSSION

3.1 Combining Text Mining and
Unsupervised Learning Reveal Semantic
Groups of Physicochemical Properties in
the AAIndex Database
Using a combination of doc2vec strategies and unsupervised learning
algorithms, we identified eight groups semantically-consistent groups
of physicochemical properties within the AAIndex database
(Kawashima and Kanehisa, 2000). By semantic consistency, we
refer to these groups representing the same physical aspect of
amino acids, such as general structural and thermodynamic
properties and indices. To determine them, we explored about

one million possible partitions of the dataset, changing the way of
generating embeddings of property descriptions, the clustering
algorithms, and their hyperparameters. We performed this using
the model exploration tools presented inMedina-Ortiz et al. (2020b).

The resulting eight groups of properties were obtained by training
autoencoders with hyperparameters of 500 epochs, a value of α =
0.025, and an embedding size of 2, and partitioning the dataset by
applying the k − means algorithm with k = 8. This was the best
performing algorithm found in the exploration stage, reaching a
Calinski-Harabasz index of 1,532.36 and a silhouette coefficient of
0.43. Finally, we assessed the semantic consistency of each group,
evaluating whether the properties within the group presented the
same contexts or specific words. As a result, only 17 descriptions were
reclassified from the group of Other indexes to the groups of α
structure and β structure.

One of the advantages of implementing a strategy based on
doc2vec is the semanticity generated by separating the properties
by their descriptions, which facilitates a simple visualization of the
existing contexts or topics in each group. On the other hand, applying
unsupervised learning algorithms to property values will generate
partitions that do not ensure semantic consistency within groups, as
clustering criteria will be numeric. In this way, the semantic clustering
methodology proposed in this work ensures that the random
selection of any member of a particular group will have the same
physical meaning, otherwise not possible.

We analyzed theAAIndex database from a numeric perspective to
test the statement above. We explored different combinations of
unsupervised learning algorithms and hyperparameters to partition
the dataset. The best performing algorithm was k − means (k = 2),
yielding a Calinski-Harabasz index of 1,527.81 and a silhouette
coefficient of 0.87. Although these results hint at an excellent
separation between the groups in the partition, not only is there
no relationship between the descriptions within the groups, but also
unbalanced divisions of properties between groups. Forcing the k −
means algorithm to produce eight groups generates a partition with a
Calinski-Harabasz index of 614.25 and a silhouette coefficient of
0.50. However, and as expected, no semantic consistency within the
groups was achieved.

Once the groups of descriptions were generated and corrected,
these were used to generate eight data sets with the property
values for each amino acid. We applied a kernel-PCA (Radial
Basis Function–RBF–kernel) to the numeric values of each group
and assessed how much of the variance was explained by the first
component. In all groups, the variance explained by the first
component of the kernel-PCA was higher than 85%.
Furthermore, the different groups resulted in being linearly
separable in the PCA1/PCA2 space, as their convex hulls are
disjoint (cf. Figure 1A). Therefore, we proposed to use the first
component of each semantic group of properties generated as an
encoder. These encoders are listed in Table 1.

3.2 Semantically-Consistent Encoders and
Fourier Transform Facilitate Predictive
Tasks in Protein Engineering
We used the proposed semantic encoders to tackle four
different predictive tasks in protein engineering (DNA-

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 8986274

Medina-Ortiz et al. Improving Predictions Through Better Representations

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


binding protein classification, protein folding, protein
function, and enzyme family determination) using Random
Forest algorithms. The datasets and hyperparameters are
described in the Methods section. First, input datasets were
split into training and validation datasets in an 80:
20 proportion. Then, aiming to prevent any stochastic
artifact induced by a favorable/unfavorable partition of the

dataset, we repeated this stage 1,000 times using different
random seeds. Thus, instead of obtaining a single value for the
performance of a model, we obtained a distribution of
performances (cf. Figures 1B,C). When comparing model
performance achieved using our encoders with that of models
trained with classical methods (e.g., One Hot Encoder (Broom
et al., 2017) and TAPE embeddings (Rao et al., 2019)), there is

FIGURE 1 | The AAIndex database of amino acid physicochemical properties can be split into eight semantically-consistent groups. (A) Combining doc2vec
strategies with unsupervised learning algorithms, we proposed a methodology to generate groups that preserve semantic consistency within the partition. Applying an
RBF kernel PCA on the whole dataset, we observe that the groups are linearly separable in the PCA1/PCA2 space, as their convex hulls are disjoint. (B,C)Combining our
encoders with FFT improves model performance and helps reducing overfitting in several predictive tasks. Here, boxplots summarize the distribution of
performances reached in each experiment across the 1,000 independent realizations of the 80/20 split of the input dataset for the task. Central circles represent
medians, bars the interquartile range, and whiskers the 95% CI. Complementary analyses of model performance, including other metrics (such as recall, F-Score, and
area under the receiver operating curves AUC), are presented in Supplementary Section S3 and summarized in Supplementary Tables S3–S6.
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no major difference (cf. Figure 1B). However, our models
reached over-fitting ratios (defined as the performance of
training divided by the performance in validation) closer to
one than classical approaches, suggesting that our encoders
are better suited for these predictive tasks (cf. Figure 1C).

We repeated the experiments above but applied the Fast
Fourier Transform (FFT) to the encoded sequences before
training predictive models. We then use the complex modulus
of the discrete Fourier transform as a feature to train our models.
By doing so, we aim to capture the influence of the position of
each amino acid within the sequence, which affects other amino
acids in different ranges of influence. We will provide further
details on the interpretation of the FFT-related variables in the
next section. While there is a drop in performance when
combining One Hot and embedding-based encoders and FFT,
the use of FFT increased the precision of predictive models
trained using the semantic encoders herein proposed.
Moreover, the over-fitting ratio decreases even further in this
case, suggesting a synergistic effect on the predictive performance
of trained models.

A possible interpretation of this effect relates to the Fourier
transform’s properties, which capture the influence of each
component of the input on the others, thereby incorporating
more information into the predictive systems. Amino acids
within a protein sequence influence each other. Thus, by
applying Fourier Transforms, we can capture, to some extent,
this spatial dependency. Furthermore, this property results
beneficial for any property-based encoding strategy, as
previously reported in Siedhoff et al. (2021), Cadet et al.
(2018b), and Cosic (1994). Based on the above, we propose
the combination of our encoders together with the application
of Fourier transforms in order to improve the performance of
predictive models.

We performed a complementary model evaluation analyzing
the whole spectra of performance metrics, including recall,

F-Score, and area under the receiver operating curves AUC.
We found a marked consistency between the precision and
recall obtained by trained models, and these metrics were
further increased when training models in the frequency space.
Furthermore, the high values reached for the AUC across
predictive tasks highlight the predictive power of our
approach. The reader is referred to Supplementary Section
S3, and Supplementary Tables S3–S6.

We compared the performance of our encoders and similar
approaches to assess whether we reached a sweet spot regarding
the number of proposed encoders and information contained
therein. In particular, we compare our results against 1) using all
properties in the AAIndex as independent encoders and 2)
applying a linear PCA directly on the AAIndex database and
using the most informative components as independent
encoders. The reader is referred to Supplementary Section S4.

3.3 The Combination of Our Encoders With
FFT Allow Detecting Profiles Related to
Folding and Protein Functions
Combining the encoders proposed in this work, the
interpretation of protein sequences as signals, and processing
them after applying FFT, facilitates the identification of profiles at
the folding and functional levels. To demonstrate this, we propose
the following case study. We encode the protein function dataset
employing the secondary structure-related encoder and apply FFT
on it to analyse its spectra. In particular, we sought to find
relations for the mean complex modulus of the transformed
signals of different families of enzymes (in this case, hydrolase
and ligase), and used their length to x-scale the frequency,
zoomed to the active site, and excluded extremes that could be
affected by either zero-padding or border conditions. We found a
clear difference between the mean complex modulus of the
Fourier spectra of ligases and hydrolases (cf. Figure 2A).

TABLE 1 | Generalized property-based encoders for amino acids.

Amino acid α structure β structure Hydrophobicity Volume Energy Hydropathy Secondary structure Other indexes

A 290.41 71.85 6.25 44.65 −107.79 15.33 56.16 92.92
R 172.57 −6.96 84.09 200.15 51.15 172.36 1.44 −37.39
N −38.37 −90.14 −21.73 −191.18 73.94 −259.13 −54.69 −77.74
D 159.43 −56.58 −28.96 −232.26 55.36 −216.01 −29.38 −7.42
C −4.24 15.67 −34.88 −156.21 −54.19 −242.01 10.07 40.04
Q −268.55 −32.61 38.46 179.88 31.44 145.73 -15.43 −45.52
E −0.02 21.03 −21.48 −170.44 −49.97 8.11 20.20 50.74
G −104.49 −62.33 53.16 250.66 92.25 256.52 -39.89 −95.41
H −159.87 31.27 −69.67 194.47 −39.54 455.61 34.12 43.37
I −34.08 164.64 −54.85 −88.56 −48.44 −274.76 25.05 52.40
L −91.11 −16.38 −64.98 −201.08 7.56 −257.27 −10.20 4.27
K 195.59 54.45 −52.92 −118.84 −109.99 −136.28 55.31 85.66
M 21.94 −18.77 −26.70 −227.61 −7.39 −139.71 −19.45 16.04
F 88.02 21.61 −21.46 −78.96 −56.97 80.68 30.31 46.42
P 317.10 115.37 −22.23 −44.80 −157.63 −126.45 95.69 136.09
S −314.20 −106.56 61.31 221.12 174.08 248.05 −85.57 −122.66
T −252.51 −23.99 13.72 −3.30 17.50 −153.13 −25.56 −31.46
W −118.15 −76.02 88.28 34.80 105.47 19.24 −59.91 −124.49
Y −10.20 −15.49 40.85 203.07 36.61 171.61 −4.25 −33.07
V 150.75 9.929 33.77 184.45 −13.45 231.50 15.99 7.21
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Furthermore, we also found differences in the mean complex
modulus of the Fourier spectra when analyzing two folding
classes within the same family (cf. Figures 2B,C).

We employ the same approach (secondary structure-related
encoder combined with FFT) to identify protein folding profiles
and sub-profiles related to protein function. Figure 2D shows the
average spectra for the α and β folds of enzymes with different
functions. Similarly, we found that isomerases and
oxidoreductases have slightly different mean Fourier spectra,
although sharing the α and β folding properties (cf. Figures 2E,F).

3.4 Towards a New Design Strategy for
Protein Sequences With Desirable
Properties
One of the most challenging problems in protein engineering is
protein design (Yang et al., 2019). Considering the advantages of
combining our semantic encoders and FFT, we put forward a
prospective methodology to design peptide sequences with
desired properties. In this case study, we illustrate the use of
this methodology to design peptides with antimicrobial activity.
Using the antimicrobial peptide dataset described in Methods, we
apply our encoders and FFT to the dataset and trained two
random forest predictive models. The first model is a binary
classification model for antimicrobial activity, while the second

corresponds to a multi-class model of various biological activities
for antimicrobial peptides. The latter include peptide classes such
as antibacterial, anti-viral, anti-cancer, anti-HIV, and anti-fungal.
The models had an accuracy of respectively 95.3% and 89.41%.
On the one hand, the clear separation between the spectra of
antimicrobial and non-antimicrobial peptides explains the high
performance reached by the binary classifier. On the other hand,
marked patterns for each biological activity facilitate the
generalization in the multi-class model (cf. Figure 3, where
panels A–I represent the different encoders proposed herein).
Altogether, when analyzing the distribution of values for each
position, we can define a latent space where, theoretically,
encoded signals with the same complex modulus would have
the same activity.

After characterizing the classification mechanisms of the
models described above, we put forward the following
methodology to generate new sequences that would be
classified as “having an activity” by them. First, we collect
different peptide sequences with antimicrobial activity from
the Peptipedia database (Quiroz et al., 2021). These sequences
are new examples for the classifiers, as they were not used during
the model training step. Alternatively, another way to generate
new sequences for this stage is through deep generative models
(Wu et al., 2021). Note that we already know that these sequences
do have antimicrobial activity. These build up a m × n matrix,

FIGURE 2 | The combination of our encoders with FFT unveils frequency profiles associated to specific protein folding and functions. We used the encoder of
secondary structure combined with FFT to create profiles related to folding and protein functions. (A) Fourier spectra for two family enzymes (hydrolases and ligases) in a
dataset of enzyme families. (B,C) Fourier spectra of the same family separated by folding, showing that our methodology is sensitive to apparent differences between
alpha and beta folding types. (D) Fourier spectra for alpha and beta folding in a dataset of different protein families. (E,F) Fourier spectra of the same folding
separated by protein family, showing that our methodology is sensitive to proteins with the same folding but belonging to different families. N for frequency
normalization = 1,024.
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where m are the number of sequences and n the length of the
longest of those (all others are completed with zeros). Second, we
encode and transform the sequences using all the proposed
encoders in this work separately to obtain 8m × n matrices.
Third, we characterize the distribution of values column-wise for
each matrix, so we obtain confidence intervals for the encoded
values of each position. Fourth, we calculate the likelihood of new
sequences belonging to each category’s latent space for each
encoder. Precisely, for each residue in the sequence, we
calculate a probability. Assuming that all these are
independent, the t probability of belonging to the latent space
is the multiplication of the individual probabilities obtained for
each position. In this way, we have eight statistical tests where
belonging to a latent space could predict a unique biological
activity. Fifth, we used the trainedmodel to predict the category of
the proposal sequence. Finally, we evaluate the predictions and
check if the proposed sequences are classified in the class of
interest. A step-by-step, in-depth explanation of the proposed
methodology and a summary flowchart can be found in
Supplementary Section S4.

Using the proposed strategy, we randomly explored
10,000 sequences. We defined a selection criterion of 90%
probability of existing within the latent space of desirable
biological activity, in this case, antimicrobial peptides and
their different subcategories. Of the 10,000 sequences explored,
only 3,513 met the established probability criteria, and their
activity was predicted using the previously trained models.

Remarkably, because the biological activities of the sequences
were known in advance, the performance of the screening
methodology could be evaluated by comparing the predicted
rankings with the biological activities reported by each sequence.
Performance metrics are reported in Supplementary Table S3.
Notably, the sequences recognized as antimicrobial peptides
showed performance similar to the training result. However,
the rest of the biological activities evaluated showed a decrease
concerning the predictive model. This is not surprising since the
models were trained using sequences that only presented a
specific activity, while the evaluated sequences showed
primarily moonlight activity (which is why the sub-activities of
antimicrobial peptides do not add up to the total number of
antimicrobial peptides evaluated sequences). Despite these
results, the proposed methodology facilitates the exploration of
new sequences from a probabilistic point of view, being
enormously efficient for antimicrobial peptides and promising
for future applications.

CONCLUSION

The results presented in this work can be summarized as three
main contributions. First, we extend the traditional property-
based encoding strategy and propose eight new encoders that
represent semantically-consistent groups of physicochemical
properties of the AAIndex database. Second, we illustrate how

FIGURE 3 | Fourier spectra of encoded amino acid sequences with different activities are visually separated. Sub figures show the Fourier spectrum of different
sequences of peptides, encoded according to the groups of properties proposed in this article, represented in panels (A–I). We analyse two types of peptides:
Antimicrobial (AMPs) and non-Antimicrobial (nonAMP). AMPs are subsequently divided into five categories: Antibacterial Peptides (AB), Anticancer Peptides (AC),
Antifungal Peptides (AF), Anti-HIV Peptides (AHIV), and Antiviral Peptides (AV). The signals analyzed show a clear differentiation for AMPs concerning nonAMPs. N
for frequency normalization = 128.
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using these encoders together with Fourier transforms can
substantially improve the performance of machine learning
models in general predictive tasks in protein engineering.
Furthermore, we found a synergistic interaction between the
proposed encoders and the FFT that simultaneously increases
the precision of the trained models while reducing their
overfitting to the data. Finally, we put forward a simple and
preliminary statistically-based methodology to create de novo
peptide and protein sequences with desirable properties. We will
extend the modeling framework to simultaneously use the eight
encoders to tackle more complex predictive tasks in protein
engineering in future work. We expect these independent
descriptions of a sequence to interact synergistically and
increase model performance.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Conceptualization, DM-O, SC, AO-N; methodology, DM-O, JT-
A; validation AO-N, DM-O, JA-H, MN, SC; investigation, DM-
O, JA-H, SC; writing, review and editing, DM-O, SC, JA-H, JA,
MN, AO-N; supervision, AO-N, DM-O; project administration,
AO-N, DM-O, SC; funding resources, AO-N, SC.

FUNDING

Open Access (OA) publication of this work has been enabled
by the Max-Planck-Society. The authors gratefully
acknowledge support from the Centre for Biotechnology
and Bioengineering - CeBiB (PIA project FB0001, Conicyt,
Chile). DM-O gratefully acknowledges ANID, Chile, for
Ph.D. fellowship 21181435. DM-O received support from
Universidad de Magallanes (project MAG-2095). SC
received support from the Max-Planck-Society. JA-H
gratefully acknowledges ANID, for Ph.D. fellowship
21182109. MN and JT-A gratefully acknowledge ANID,
Chile for Fondecyt 1180882 project and Universidad de
Magallanes for 2095 project. Powered@NLHPC; This
research was partially supported by the supercomputing
infrastructure of the National Laboratory for High-
Performance Computing, NLHPC (ECM-02), Chile.

ACKNOWLEDGMENTS

Part of the content of this manuscript was released as a preprint at
Medina-Ortiz et al. (2020a)

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.898627/
full#supplementary-material

REFERENCES

Adilina, S., Farid, D. M., and Shatabda, S. (2019). Effective DNA Binding Protein
Prediction by Using Key Features via Chou’s General PseAAC. J. Theor. Biol.
460, 64–78. doi:10.1016/j.jtbi.2018.10.027

Ancien, F., Pucci, F., Godfroid, M., and Rooman, M. (2018). Prediction and
Interpretation of Deleterious Coding Variants in Terms of Protein Structural
Stability. Sci. Rep. 8, 4480. doi:10.1038/s41598-018-22531-2

Broom, A., Jacobi, Z., Trainor, K., and Meiering, E. M. (2017). Computational
Tools Help Improve Protein Stability but with a Solubility Tradeoff. J. Biol.
Chem. 292, 14349–14361. doi:10.1074/jbc.m117.784165

Brownlee, J. (2020). Ordinal and One-Hot Encodings for Categorical Data.
Machine Learning Mastery. Available at: https://machinelearningmastery.
com/one-hot-encoding-for-categorical-data/.

Cadet, F., Fontaine, N., Li, G., Sanchis, J., Ng Fuk Chong, M., Pandjaitan, R.,
et al. (2018a). A Machine Learning Approach for Reliable Prediction of
Amino Acid Interactions and its Application in the Directed Evolution of
Enantioselective Enzymes. Sci. Rep. 8, 16757–16815. doi:10.1038/s41598-
018-35033-y

Cadet, F., Fontaine, N., Vetrivel, I., Ng Fuk Chong, M., Savriama, O., Cadet, X.,
et al. (2018b). Application of Fourier Transform and Proteochemometrics
Principles to Protein Engineering. BMC Bioinform. 19, 382. doi:10.1186/
s12859-018-2407-8

Chen, W., Ding, H., Feng, P., Lin, H., and Chou, K.-C. (2016). Iacp: a Sequence-
Based Tool for Identifying Anticancer Peptides. Oncotarget 7, 16895–16909.
doi:10.18632/oncotarget.7815

Cosic, I., Cosic, D., and Lazar, K. (2016). Analysis of Tumor Necrosis Factor
Function Using the Resonant Recognition Model. Cell Biochem. Biophys. 74,
175–180. doi:10.1007/s12013-015-0716-3

Cosic, I. (1994). Macromolecular Bioactivity: Is it Resonant Interaction between
Macromolecules?-Theory and Applications. IEEE Trans. Biomed. Eng. 41,
1101–1114. doi:10.1109/10.335859

Cosic, I., and Nesic, D. (1987). Prediction of ’hot Spots’ in SV40 Enhancer and
Relation with Experimental Data. Eur. J. Biochem. 170, 247–252. doi:10.1111/j.
1432-1033.1987.tb13692.x

Eisenberg, D., Weiss, R. M., and Terwilliger, T. C. (1984). The Hydrophobic
Moment Detects Periodicity in Protein Hydrophobicity. Proc. Natl. Acad. Sci.
U.S.A. 81, 140–144. doi:10.1073/pnas.81.1.140

Forghani, M., and Khani, R. (2017). “A Multivariate Clustering of Aaindex
Database for Protein Numerical Representation,” in 2017 3rd Iranian
Conference on Intelligent Systems and Signal Processing (ICSPIS) (IEEE),
1–4. doi:10.1109/icspis.2017.8311579

Georgiev, A. G. (2009). Interpretable Numerical Descriptors of Amino Acid Space.
J. Comput. Biol. 16, 703–723. doi:10.1089/cmb.2008.0173

Hejase de Trad, C., Fang, Q., and Cosic, I. (2000). The Resonant Recognition Model
(Rrm) Predicts Amino Acid Residues in Highly Conserved Regions of the Hormone
Prolactin (Prl). Biophys. Chem. 84, 149–157. doi:10.1016/S0301-4622(00)00109-5

Kawashima, S., and Kanehisa, M. (2000). Aaindex: Amino Acid Index Database.
Nucleic Acids Res. 28, 374. doi:10.1093/nar/28.1.374

Khoury, G. A., Smadbeck, J., Kieslich, C. A., and Floudas, C. A. (2014). Protein
Folding and De Novo Protein Design for Biotechnological Applications. Trends
Biotechnol. 32, 99–109. doi:10.1016/j.tibtech.2013.10.008

Kieslich, C. A., Alimirzaei, F., Song, H., Do, M., and Hall, P. (2021). Data-driven
Prediction of Antiviral Peptides Based on Periodicities of Amino Acid
Properties. Comput. Aided Chem. Eng. 50, 2019–2024. doi:10.1016/b978-0-
323-88506-5.50312-0

Kim, D., Seo, D., Cho, S., and Kang, P. (2019). Multi-co-training for Document
Classification Using Various Document Representations: TF-IDF, LDA, and
Doc2Vec. Inf. Sci. 477, 15–29. doi:10.1016/j.ins.2018.10.006

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 8986279

Medina-Ortiz et al. Improving Predictions Through Better Representations

https://www.frontiersin.org/articles/10.3389/fmolb.2022.898627/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2022.898627/full#supplementary-material
https://doi.org/10.1016/j.jtbi.2018.10.027
https://doi.org/10.1038/s41598-018-22531-2
https://doi.org/10.1074/jbc.m117.784165
https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/
https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/
https://doi.org/10.1038/s41598-018-35033-y
https://doi.org/10.1038/s41598-018-35033-y
https://doi.org/10.1186/s12859-018-2407-8
https://doi.org/10.1186/s12859-018-2407-8
https://doi.org/10.18632/oncotarget.7815
https://doi.org/10.1007/s12013-015-0716-3
https://doi.org/10.1109/10.335859
https://doi.org/10.1111/j.1432-1033.1987.tb13692.x
https://doi.org/10.1111/j.1432-1033.1987.tb13692.x
https://doi.org/10.1073/pnas.81.1.140
https://doi.org/10.1109/icspis.2017.8311579
https://doi.org/10.1089/cmb.2008.0173
https://doi.org/10.1016/S0301-4622(00)00109-5
https://doi.org/10.1093/nar/28.1.374
https://doi.org/10.1016/j.tibtech.2013.10.008
https://doi.org/10.1016/b978-0-323-88506-5.50312-0
https://doi.org/10.1016/b978-0-323-88506-5.50312-0
https://doi.org/10.1016/j.ins.2018.10.006
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Ma, C., Ren, Y., Yang, J., Ren, Z., Yang, H., and Liu, S. (2018). Improved Peptide
Retention Time Prediction in Liquid Chromatography through Deep Learning.
Anal. Chem. 90, 10881–10888. doi:10.1021/acs.analchem.8b02386

Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., et al. (2017). Cdd/
sparcle: Functional Classification of Proteins via Subfamily Domain
Architectures. Nucleic Acids Res. 45, D200–D203. doi:10.1093/nar/gkw1129

McKinney, W. (2010). “Data Structures for Statistical Computing in python,” in
Proceedings of the 9th Python in Science Conference. Editors S. van der Walt and
J. Millman, 51–56. doi:10.25080/majora-92bf1922-00a

Medina-Ortiz, D., Contreras, S., Amado-Hinojosa, J., Torres-Almonacid, J.,
Asenjo, J. A., Navarrete, M., et al. (2020a). Combination of Digital Signal
Processing and Assembled Predictive Models Facilitates the Rational Design of
Proteins. arXiv [Preprint]. Available at: https://arxiv.org/abs/2010.03516.

Medina-Ortiz, D., Contreras, S., Quiroz, C., Asenjo, J. A., and Olivera-Nappa, Á.
(2020b). Dmakit: A User-FriendlyWeb Platform for Bringing State-Of-The-Art
Data Analysis Techniques to Non-specific Users. Inf. Syst. 93, 101557. doi:10.
1016/j.is.2020.101557

Medina-Ortiz, D., Contreras, S., Quiroz, C., and Olivera-Nappa, Á. (2020c).
Development of Supervised Learning Predictive Models for Highly Non-
linear Biological, Biomedical, and General Datasets. Front. Mol. Biosci. 7, 13.
doi:10.3389/fmolb.2020.00013

Papagianni, M. (2003). Ribosomally Synthesized Peptides with Antimicrobial
Properties: Biosynthesis, Structure, Function, and Applications. Biotechnol.
Adv. 21, 465–499. doi:10.1016/s0734-9750(03)00077-6

Pavelka, A., Chovancova, E., and Damborsky, J. (2009). Hotspot Wizard: a Web
Server for Identification of Hot Spots in Protein Engineering. Nucleic acids Res.
37, W376–W383. doi:10.1093/nar/gkp410

Potapov, V., Cohen, M., and Schreiber, G. (2009). Assessing Computational
Methods for Predicting Protein Stability upon Mutation: Good on Average
but Not in the Details. Protein Eng. Des. Sel. 22, 553–560. doi:10.1093/protein/
gzp030

Quiroz, C., Saavedra, Y. B., Armijo-Galdames, B., Amado-Hinojosa, J., Olivera-
Nappa, Á., Sanchez-Daza, A., et al. (2021). Peptipedia: a User-Friendly Web
Application and a Comprehensive Database for Peptide Research Supported by
Machine Learning Approach. Database (Oxford) 2021. doi:10.1093/database/
baab055

Rackovsky, S. (1998). "Hidden" Sequence Periodicities and Protein Architecture.
Proc. Natl. Acad. Sci. U.S.A. 95, 8580–8584. doi:10.1073/pnas.95.15.8580

Rahman, M. S., Shatabda, S., Saha, S., Kaykobad, M., and Rahman, M. S. (2018).
DPP-PseAAC: A DNA-Binding Protein Prediction Model Using Chou’s
General PseAAC. J. Theor. Biol. 452, 22–34. doi:10.1016/j.jtbi.2018.05.006

Rao, K. R., and Yip, P. (2014). Discrete Cosine Transform: Algorithms, Advantages,
Applications. Academic Press.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, X., Canny, J., et al. (2019).
“Evaluating Protein Transfer Learning with Tape,” in Advances in Neural
Information Processing Systems.

Řehřek, R., and Sojka, P. (2011). Gensim—Statistical Semantics in Python.
Retrieved from genism.org.

Sadowski, M. I., and Jones, D. T. (2009). The Sequence-Structure Relationship and
Protein Function Prediction. Curr. Opin. Struct. Biol. 19, 357–362. doi:10.1016/
j.sbi.2009.03.008

Saha, I., Maulik, U., Bandyopadhyay, S., and Plewczynski, D. (2012). Fuzzy
Clustering of Physicochemical and Biochemical Properties of Amino Acids.
Amino acids 43, 583–594. doi:10.1007/s00726-011-1106-9

Siedhoff, N. E., Illig, A.-M., Schwaneberg, U., and Davari, M. D. (2021). PyPEF-An
Integrated Framework for Data-Driven Protein Engineering. J. Chem. Inf.
Model. 61, 3463–3476. doi:10.1021/acs.jcim.1c00099

Siedhoff, N. E., Schwaneberg, U., and Davari, M. D. (2020). Machine Learning-
Assisted Enzyme Engineering. Methods Enzym. 643, 281–315. doi:10.1016/bs.
mie.2020.05.005

Sitaram, N., and Nagaraj, R. (2002). Host-defense Antimicrobial Peptides:
Importance of Structure for Activity. Curr. Pharm. Des. 8, 727–742. doi:10.
2174/1381612023395358

Sneddon, I. N. (1995). Fourier Transforms. Courier Corporation. New York: Dover
Publications.

Veljkovic, V., Cosic, I., Dimitrijevicand Lalovic, D. (1985). Is it Possible to
Analyze Dna and Protein Sequences by the Methods of Digital Signal
Processing? IEEE Trans. Biomed. Eng. 32, 337–341. doi:10.1109/tbme.
1985.325549

Wegner, P. (1990). Concepts and Paradigms of Object-Oriented Programming.
SIGPLAN OOPS Mess. 1, 7–87. doi:10.1145/382192.383004

Wei, L., Tang, J., and Zou, Q. (2017). Local-dpp: An Improved Dna-Binding
Protein Prediction Method by Exploring Local Evolutionary Information. Inf.
Sci. 384, 135–144. doi:10.1016/j.ins.2016.06.026

Welch, P. (1967). TheUse of Fast Fourier Transform for the Estimation of Power Spectra:
aMethod Based on TimeAveraging over Short, Modified Periodograms. IEEE Trans.
Audio Electroacoust. 15, 70–73. doi:10.1109/tau.1967.1161901

Winter, G. (1998). Synthetic Human Antibodies and a Strategy for Protein
Engineering. FEBS Lett. 430, 92–94. doi:10.1016/s0014-5793(98)00628-0

Wittmann, B. J., Johnston, K. E., Wu, Z., and Arnold, F. H. (2021). Advances in
Machine Learning for Directed Evolution. Curr. Opin. Struct. Biol. 69, 11–18.
doi:10.1016/j.sbi.2021.01.008

Wu, Z., Johnston, K. E., Arnold, F. H., and Yang, K. K. (2021). Protein Sequence
Design with Deep Generative Models. Curr. Opin. Chem. Biol. 65, 18–27.
doi:10.1016/j.cbpa.2021.04.004

Xiao, X., Wang, P., Lin, W.-Z., Jia, J.-H., and Chou, K.-C. (2013). iamp-2l: a
Two-Level Multi-Label Classifier for Identifying Antimicrobial Peptides
and Their Functional Types. Anal. Biochem. 436, 168–177. doi:10.1016/j.
ab.2013.01.019

Yang, K. K., Wu, Z., and Arnold, F. H. (2019). Machine-learning-guided Directed
Evolution for Protein Engineering. Nat. Methods 16, 687–694. doi:10.1038/
s41592-019-0496-6

Yang, K. K., Wu, Z., Bedbrook, C. N., and Arnold, F. H. (2018). Learned Protein
Embeddings for Machine Learning. Bioinformatics 34, 2642–2648. doi:10.1093/
bioinformatics/bty178

Yi, H.-C., You, Z.-H., Zhou, X., Cheng, L., Li, X., Jiang, T.-H., et al. (2019). Acp-dl: a
Deep Learning Long Short-Term Memory Model to Predict Anticancer
Peptides Using High-Efficiency Feature Representation. Mol. Ther. - Nucleic
Acids 17, 1–9. doi:10.1016/j.omtn.2019.04.025

Zimmer, D., Schneider, K., Sommer, F., Schroda, M., andMühlhaus, T. (2018). Artificial
Intelligence Understands Peptide Observability and Assists with Absolute Protein
Quantification. Front. Plant Sci. 9, 1559. doi:10.3389/fpls.2018.01559

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Medina-Ortiz, Contreras, Amado-Hinojosa, Torres-Almonacid,
Asenjo, Navarrete and Olivera-Nappa. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 89862710

Medina-Ortiz et al. Improving Predictions Through Better Representations

https://doi.org/10.1021/acs.analchem.8b02386
https://doi.org/10.1093/nar/gkw1129
https://doi.org/10.25080/majora-92bf1922-00a
https://arxiv.org/abs/2010.03516
https://doi.org/10.1016/j.is.2020.101557
https://doi.org/10.1016/j.is.2020.101557
https://doi.org/10.3389/fmolb.2020.00013
https://doi.org/10.1016/s0734-9750(03)00077-6
https://doi.org/10.1093/nar/gkp410
https://doi.org/10.1093/protein/gzp030
https://doi.org/10.1093/protein/gzp030
https://doi.org/10.1093/database/baab055
https://doi.org/10.1093/database/baab055
https://doi.org/10.1073/pnas.95.15.8580
https://doi.org/10.1016/j.jtbi.2018.05.006
genism.org
https://doi.org/10.1016/j.sbi.2009.03.008
https://doi.org/10.1016/j.sbi.2009.03.008
https://doi.org/10.1007/s00726-011-1106-9
https://doi.org/10.1021/acs.jcim.1c00099
https://doi.org/10.1016/bs.mie.2020.05.005
https://doi.org/10.1016/bs.mie.2020.05.005
https://doi.org/10.2174/1381612023395358
https://doi.org/10.2174/1381612023395358
https://doi.org/10.1109/tbme.1985.325549
https://doi.org/10.1109/tbme.1985.325549
https://doi.org/10.1145/382192.383004
https://doi.org/10.1016/j.ins.2016.06.026
https://doi.org/10.1109/tau.1967.1161901
https://doi.org/10.1016/s0014-5793(98)00628-0
https://doi.org/10.1016/j.sbi.2021.01.008
https://doi.org/10.1016/j.cbpa.2021.04.004
https://doi.org/10.1016/j.ab.2013.01.019
https://doi.org/10.1016/j.ab.2013.01.019
https://doi.org/10.1038/s41592-019-0496-6
https://doi.org/10.1038/s41592-019-0496-6
https://doi.org/10.1093/bioinformatics/bty178
https://doi.org/10.1093/bioinformatics/bty178
https://doi.org/10.1016/j.omtn.2019.04.025
https://doi.org/10.3389/fpls.2018.01559
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Generalized Property-Based Encoders and Digital Signal Processing Facilitate Predictive Tasks in Protein Engineering
	1 Introduction
	2 Methods
	2.1 Semantic Clustering of Properties in the AAIndex Database
	2.1.1 Data Pre-Processing
	2.1.2 Unsupervised Learning
	2.1.3 Selection of the Best Partition
	2.1.4 Encoder Creation

	2.2 Numerical Representation of Protein Sequences and Fast Fourier Applications
	2.3 Predictive Models Training
	2.4 Testing Datasets and Case Studies
	2.4.1 DNA-Binding Protein
	2.4.2 Folding and Function Recognition
	2.4.3 Biological Activity Prediction for Peptide Sequences

	2.5 Implementation Strategies and Library Developing

	3 Results and Discussion
	3.1 Combining Text Mining and Unsupervised Learning Reveal Semantic Groups of Physicochemical Properties in the AAIndex Dat ...
	3.2 Semantically-Consistent Encoders and Fourier Transform Facilitate Predictive Tasks in Protein Engineering
	3.3 The Combination of Our Encoders With FFT Allow Detecting Profiles Related to Folding and Protein Functions
	3.4 Towards a New Design Strategy for Protein Sequences With Desirable Properties

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


