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Aims The aim of this study was to validate a four-parameter risk model including 123I-meta-iodobenzylguanidine (MIBG)
imaging, which was previously developed for predicting cardiac mortality, in a new cohort of patients with chronic
heart failure (CHF).

...................................................................................................................................................................................................
Methods
and results

Clinical and outcome data were retrospectively obtained from 546 patients (age 66 ± 14 years) who had undergone
123I-MIBG imaging with a heart-to-mediastinum ratio (HMR). The mean follow-up time was 30 ± 20 months, and
the endpoint was cardiac death. The mortality outcome predicted by the model was compared with actual 2-year
event rates in pre-specified risk categories of three or four risk groups using Kaplan–Meier survival analysis for car-
diac death and receiver-operating characteristic (ROC) analysis. Cardiac death occurred in 137 patients, including
105 (68%) patients due to heart-failure death. With a 2-year mortality risk from the model divided into three cate-
gories of low- (<4%), intermediate- (4–12%), and high-risk (>12%), 2-year cardiac mortality was 1.1%, 7.9%, and
54.7%, respectively in the validation population (P < 0.0001). In a quartile analysis, although the predicted numbers
of cardiac death was comparable with actual number of cardiac death for low- to intermediate-risk groups with a
mortality risk <13.8%, it was underestimated in the high-risk group with a mortality risk >_13.8%. The ROC analysis
showed that the 2-year risk model had better (P < 0.0001) diagnostic ability for predicting heart failure death than
left ventricular ejection fraction, natriuretic peptides or HMR alone.

...................................................................................................................................................................................................
Conclusion The 2-year risk model was successfully validated particularly in CHF patients at a low to intermediate cardiac mor-

tality risk.
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Introduction

Chronic heart failure (CHF) is a life-threatening condition affecting
approximately 26 million people worldwide, and heart failure carries
substantial risk of morbidity and mortality.1 Recent advances in

non-pharmacological treatment, including device therapy, can
improve quality of life and survival in CHF patients. Ineffective or less
appropriate use of aggressive therapeutic approaches, however, has
been reported not only in high-risk patients with advanced systolic
dysfunction or end-stage heart failure but also those at a low risk for
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lethal outcomes.2 From a medico-economical point of view, there is
a clear need for more precise risk-stratification in order to achieve
more effective management of CHF.

With respect to risk assessment for cardiac mortality, conven-
tional functional evaluations, and diagnostic biomarkers, such as heart
failure symptoms, circulating hormones and peptides, and left ventric-
ular functional parameters, have non-negligible limitations in the
discrimination of low-, intermediate-, and high-risk as a basis for
short- or long-term clinical management. To enhance the utility of
individual risk markers, a large number of multivariate risk models
have been developed in the past 2 decades.3–5 However, use of these
models in clinical practice remains limited.6,7

Sympathetic nerve function plays a crucial role in CHF outcomes.
In the early stages of CHF, sympathetic nerve function is increased to
compensate for symptomatic and cardiac functional deteriorations.
With a CHF progression, however, sympathetic outflow and circulat-
ing neurohormones become further augmented and long-lasting sym-
pathetic hyperactivity induces a loss of both presynaptic neurons and
post-synaptic receptors,8,9 resulting in compensatory mechanisms
being blunted and in unfavourable outcomes. In the clinical assess-
ment of CHF condition, neuroimaging with 123I-meta-iodobenzylgua-
nidine (MIBG) is a unique diagnostic method to evaluate the integrity
of cardiac sympathetic activity and innervation.9 Furthermore, a num-
ber of studies have demonstrated the potent prognostic values of
cardiac 123I-MIBG activity,10–15 which is quantified as a heart-to-
mediastinum ratio (HMR), in a single- and multi-centre studies.16–19

Recently, a CHF mortality risk model using a cardiac 123I-MIBG
parameter together with clinical information was developed using a
Japanese CHF database consisting of 1322 patients, which was shown
effective for the prediction of 2- and 5-year cardiac mortality
risks.20,21

The present study was designed to validate the predictability of
the 2-year mortality risk model using a new cohort of CHF patients
derived from multiple clinical centres in Japan.

Methods

Patients
A total of 546 patients diagnosed with CHF who had undergone 123I-
MIBG study during clinically stable condition, and had been followed up
for at least 1 year in four medical centres were retrospectively included
in this study (Table 1). Cardiac 123I-MIBG studies were performed
between 2005 and 2016. An average follow-up period was
30± 20 months (range 0.1–108 months) and left ventricular ejection frac-
tion (LVEF) either by echocardiography or gated single-photon emission
computed tomography was 39± 14%. New York Heart Association
(NYHA) functional class was 77% in class I/II and 23% in III/IV. CHF
aetiology was ischemic in 36% of the patients. Standard optimal medical
care for CHF was continued in each university and community hospital
after MIBG imaging. Seventy-three (13%) patients underwent
haemodialysis due to chronic renal failure.

Cardiac 123I-MIBG imaging
Planar anterior images of the thorax were obtained at 15–20 min (early)
and 3–4 h (late) after intravenous injection of 123I-MIBG (111 MBq,
FUJIFILM RI Pharma Co. Ltd., Tokyo, Japan). Image processing was per-
formed locally at each institution. Regions of interest were set over the

heart and upper mediastinum to calculate an HMR. Since collimators
used in the four hospitals were low-energy (LE) high-resolution, LE gen-
eral purpose, and low-medium energy general-purpose collimators, all
the HMR values were converted to medium-energy (ME) general-
purpose collimator-equivalent HMR [conversion coefficient (CC) of 0.88
by phantom experiments] by using the standardization method devel-
oped previously.22,23 Since HMR used for creating the 2-year risk model
was based on LE collimators, the model was adjusted to HMR values for
the LE collimators with an average CC of 0.60.

Biomarkers
Blood b-type natriuretic peptide (BNP) or N-terminal pro-BNP (NT-
ProBNP) was measured in each hospital, and the data obtained at a stable
clinical condition around the time of MIBG imaging were used for the
analysis.

.................................................................................................

Table 1 Demographics of patients (n 5 546)

n (%), mean 6 SD

Age (years) 66 ± 14

Gender (male) 392 (72)

Follow-up (months) 30 ± 20

NYHA functional class

I 284 (52)

II 136 (25)

III 101 (18)

IV 25 (5)

Ischaemic aetiology (%) 36

Left ventricular ejection fraction (%) 39 ± 14

BNP (pg/mL) 475 ± 54

Log BNP 2.38 ± 0.57

NT-ProBNP (pg/mL) 10852 ± 37 998

Log NT-proBNP 3.44 ± 0.69
123I-MIBG parameters

Early HMR

Standardized to ME collimatora 1.91 ± 0.44

LE collimator equivalentb 1.62 ± 0.30

Late HMR

Standardized to ME collimatora 1.74 ± 0.43

LE collimator equivalentb 1.51 ± 0.29

Washout rate (%) 30 ± 12

Complications

Hypertension (%) 52

Diabetes (%) 39

Dyslipidaemia (%) 34

Medications

Beta-blocker (%) 84

ARB, ACE inhibitor (%) 70

Diuretics (%) 77

Aldosterone antagonist (%) 32

ACE, angiotensin-converting-enzyme; ARB, angiotensin II receptor blocker; BNP,
b-type natriuretic peptide; HMR, heart-to-mediastinum ratio; LE, low energy; ME,
medium energy; MIBG, meta-iodobenzylguanidine; NYHA, New York Heart
Association; NT-ProBNP, N-terminal Pro BNP.
aConversion coefficient = 0.88.
bConversion coefficient = 0.60.
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Definitions of events
A primary endpoint in this study was cardiac death; end-stage heart failure
death (death due to pump failure), arrhythmic/sudden cardiac death and
fatal acute myocardial infarction. The following non-fatal arrhythmic events
were also documented; appropriate anti-arrhythmia pacing against lethal
arrhythmias, and appropriate discharge by implantable cardioverter defibril-
lator (ICD) or cardiac resynchronization therapy with defibrillator (CRTD).

2-year mortality risk model
The 2-year risk model was developed based on a database consisting of
1280 subjects who underwent MIBG imaging from 1990 to 2009
in Japan.21 In that study, the multivariate logistic model selected four sig-
nificant independent variables: age, LVEF, NYHA functional class (I–II vs.
III–IV), and MIBG HMR. The risk model provides a 2-year probability of
cardiac death (unit %/2 years) due to pump failure, sudden cardiac death,
lethal arrhythmia, and/or acute myocardial infarction.

Statistical analysis
All the values were expressed as mean± standard deviations (SDs). Mean
values among groups were compared using analysis of variance with T- and
F-tests and comparison of all pairs by Tukey–Kramer (honestly significant
difference) statistics. Kaplan–Meier survival analysis was performed among
three groups classified by thresholds of LVEF, a predicted 2-year mortality
risk and BNP/NT-ProBNP as follows. LVEF groups were <35%, 35–50%,
and >50%: 2-year mortality risk groups were <4%, 4–12%, and >12%: BNP
and NT-ProBNP groups were <100, 100–200, >200 pg/mL, and <400,
400–900, and >900 pg/mL, respectively.24,25 Predicted mortality by the risk
model was compared with actual outcomes observed during the follow-up
period in patients in whom 2-year follow-up data were available. Receiver-
operating characteristics (ROCs) analysis with area under curve (AUC)
was used to compare the risk model and individual variables. A P-value
<0.05 was considered significant. All analyses were performed using the
SAS statistical program package (JMP version 12, SAS, Cary, NC, USA).

Results

Number of events
Fatal events occurred in 137 (25%) patients; 105 (68%) patients due
to pump failure and the remaining 32 patients due to arrhythmic or
sudden death. Non-fatal arrhythmic events were observed in 17
patients; resuscitated cardiac arrest in 5 and appropriate ICD shocks
in 12 (29%) of 41 patients undergoing ICD/CRTD therapy. The total
number of events was 154 (28%).

Survival analysis
The actually documented 2-year mortality rates of 3 predicted risk
groups (<4%, 4–12%, and >12%) were 1.6, 8.4, and 48.5%
(P < 0.0001), respectively (Figure 1). For further comparisons of sur-
vival curves, thresholds of LVEF and BNP/NT-ProBNP were com-
bined with the predicted 2-year mortality risks. The survival rates in
the three LVEF subgroups (<30%, 30–35%, and >35%) were signifi-
cantly discriminated by the risk model (P < 0.0001 for all) (Figure 2).
Likewise, the survival rates in the three BNP/NT-ProBNP subgroups
were significantly (P = 0.003 to P < 0.0001) discriminated (Figure 3).

Comparison of predicted and actual
mortality
The average 2-year mortality rate predicted by the risk model was
12.1± 10.9% (range 0.0–52.1%, median 8.3%). Based upon predicted

risks, patients were classified into quartiles; <5.1% for Q1, 5.1–8.2%
for Q2, 8.3–13.7% for Q3, and >_13.8% for Q4. With respect to clini-
cal backgrounds, Q3 and Q4 groups showed greater abnormalities of
MIBG HMR, BNP/NT-ProBNP levels, estimated glomerular filtration
rate (eGFR), and LVEF than did Q1 and Q2 groups (Table 2). The
2-year mortality rates predicted by the risk model were nearly identi-
cal to those actually documented in Q1–Q3; 3% vs. 4% for Q1; 7%
vs. 8% for Q2; and 11% vs. 15% for Q3, respectively. The risk model,
underestimated the mortality rate in Q4: 28% vs. 54% (Figure 4).

Prediction of heart failure death
Because most frequent deaths observed in the study were due to pro-
gressive heart failure, the predictability of this event was compared
among the 2-year risk model, MIBG HMR, BNP/NT-ProBNP, eGFR,
and LVEF by ROC analysis (Figure 5). For this analysis, additional
thresholds of natriuretic peptide levels were determined by ROC
analysis as follows; 560 pg/mL for BNP and 4800 pg/mL for NT-
ProBNP. The 2-year risk model had the significantly greater (v2 = 58,
P < 0.0001) ROC AUC of 0.84 with a 95% confidence interval (CI) of
0.79–0.88 when compared with other individual variables: ROC AUC
0.76 (CI 0.71–0.80; v2 = 12, P = 0.0004) for MIBG HMR, ROC AUC
0.70 (CI 0.65–0.75; v2 = 22, P < 0.0001) for BNP/NT-ProBNP, ROC
AUC 0.63 (CI 0.56–0.69; v2 = 41, P < 0.0001) for LVEF, and ROC
AUC 0.67 (CI 0.61–0.73; v2 = 19, P < 0.0001) for eGFR (Figure 5).

Arrhythmic death and appropriate
cardiac device therapy
When arrhythmic/sudden cardiac death and non-fatal arrhythmic
events with appropriate treatment of ICD and CRTD (n = 26) were
combined, the observed event rates were 3.7%, 2.9%, 4.4%, and 8.1%
for Q1, Q2, Q3, and Q4, respectively (P = 0.0359 for trend).
However, when HMR quartiles of < 1.43 (n = 137), 1.43–1.66

Figure 1 Survival analysis of three 2-year risk groups (<4%, 4–12%,
and >12%) for cardiac death.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

2-year MIBG based risk model for heart failure 751

Deleted Text: -
Deleted Text: Two
Deleted Text: between 
Deleted Text:  (
Deleted Text: ).
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: 3 
Deleted Text: &thinsp;<
Deleted Text: -
Deleted Text: &percnt;,&thinsp;>
Deleted Text: &thinsp;<
Deleted Text: -
Deleted Text: &percnt;,&thinsp;>
Deleted Text: and 
Deleted Text: &thinsp;<
Deleted Text: -
Deleted Text: ,&thinsp;>
Deleted Text: &thinsp;<
Deleted Text: -
Deleted Text: ,&thinsp;>
Deleted Text:  (
Deleted Text: ).
Deleted Text: to 
Deleted Text: the 
Deleted Text: P 
Deleted Text: &thinsp;<
Deleted Text: patients 
Deleted Text: -
Deleted Text: &percnt;,&thinsp;>
Deleted Text: p
Deleted Text: -
Deleted Text: &thinsp;>
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: - 
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text: p
Deleted Text: of 
Deleted Text: -
Deleted Text: to 
Deleted Text: ,
Deleted Text: -
Deleted Text: &equals;
Deleted Text: p
Deleted Text: ,
Deleted Text: -
Deleted Text: &equals;
Deleted Text: p
Deleted Text: ,
Deleted Text: -
Deleted Text: &equals;
Deleted Text: p
Deleted Text: ,
Deleted Text: -
Deleted Text: &equals;
Deleted Text: p
Deleted Text: p
Deleted Text: -


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.(n = 132), 1.67–1.92 (n = 141), and >1.92 (n = 136) were analysed,
the observed event rates were 5.1%, 8.3%, 3.6%, and 2.2%, respec-
tively (P = 0.10).

Discussion

The presented findings validated the reliability of the 2-year risk
model developed by combining cardiac 123I-MIBG HMR with clinical
information. The prediction of the 2-year risk model was superior to
that of individual variables such as LVEF, BNP/NT-ProBNP, or MIBG
HMR. It is particularly noted that, irrespective of LVEF and BNP/NT-
proBNP levels, the risk model discriminated CHF patients at low to
intermediate risks. The high-risk population was well discriminated
from others, but the actual event rate observed was underestimated
by this model.

Utility of 123I-MIBG and classical
prognostic biomarkers
Cardiac sympathetic innervation assessed by 123I-MIBG activity has
potent prognostic value in patients with CHF independently of and
synergistically with known variables such as age, symptoms or NYHA
functional class, LV function, and circulating biomarkers. 10–13,26–28

Recent multicentre CHF prognosis cohort studies demonstrated

that 123I-MIBG HMR is a powerful measurement for predicting pro-
gression and fatal outcomes of CHF, including lethal arrhythmias and
sudden cardiac death.16–19 The present findings further support the
clinical utilities of a 2-year risk model for predicting the probability of
lethal cardiac events. BNP and NT-ProBNP are routinely used at a
clinical practice as biomarkers for initial diagnosis and for monitoring
therapeutic effects in CHF. During a relatively long-term entry inter-
val, both BNP and NT-ProBNP data were collected for this study.
BNP and NT-ProBNP have different physiological properties, and are
affected by age and renal function. Because of a difficulty in a simple
conversion, these parameters were treated as categorical variables
for statistical analysis based on the recommendations of Japanese
Heart Failure Society and European Society of Cardiology.24,25

Irrespective of LVEF and BNP/NT-ProBNP categories, a high-risk
population with a 2-year cardiac mortality risk more than 12% was
clearly identified and discriminated from other populations at low-
to-intermediate risks.

Accuracy for prediction of cardiac death
The 2-year risk model demonstrated satisfactory diagnostic accuracy
in low- to intermediate-risk patients who had 2-year mortality risk
less than 14%. In high-risk patients who were predicted to have a
mortality risk of more than 14%, however, the actual cardiac death
rate was nearly two times greater than predicted. There are several

Figure 2 Survival analysis of three 2-year risk groups (<4%, 4–12%, and >12%) for three left ventricular ejection fraction (EF) ranges with <30%
(A), 30–35% (B), and >35% (C).
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possible reasons for this discrepancy. The risk model was developed
using multiple cohorts dating as far back as 1990, including many early
research studies into the potential utility of 123I-MIBG imaging in
CHF.12–14,29,30 As these studies tended to include larger proportions
of patients with less severe CHF being closely followed, it is likely the

derivation population experienced fewer adverse outcomes com-
pared with an unselected cohort of clinical HF patients. This is borne
out by the overall relatively low 2-year cardiac death rate in the total
derivation population (9.8%) as well as in NYHA classes III and IV
patients (18% and 30%, respectively). The greater disease severity in

Figure 3 Survival analysis of three 2-year risk groups (<4%, 4–12%, and >12%) for three BNP/NT-ProBNP ranges of BNP <100 pg/mL or NT-
ProBNP <400 pg/mL (A), BNP 100–200 pg/mL or NT-ProBNP 400–900 pg/mL (B), and BNP >200 pg/mL or NT-ProBNP >900 pg/mL (C).

....................................................................................................................................................................................................................

Table 2 Quartiles of the 2-year mortality risk

Q1 Q2 Q3 Q4 P-value

n 136 137 137 136

Range (%) <5.1 5.1–8.2 8.3–13.7 >_13.8

2-year mortality risk (%), mean ± SD 3.2 ± 1.3 6.7 ± 0.9 10.7 ± 1.7 27.9 ± 10.5 <0.0001

Age (years), mean ± SD 57 ± 15 64 ± 12 70 ± 11 73 ± 11 <0.0001

LVEF (%), mean ± SD 47 ± 16 38 ± 11 36 ± 12 33 ± 13 <0.0001
123I-MIBG HMR (standardized ME collimatora), mean ± SD 2.22 ± 0.41 1.74 ± 0.22 1.54 ± 0.30 1.46 ± 0.28 <0.0001
123I-MIBG HMR (LE collimator-equivalentb), mean ± SD 1.83 ± 0.28 1.51 ± 0.16 1.37 ± 0.20 1.31 ± 0.19 <0.0001

BNP >200 pg/mL 41% 40% 83% 91% <0.0001

NT-ProBNP >900 pg/mL 60% 67% 86% 94% <0.0001

eGFR (mL/min), mean ± SD 69 ± 22 69 ± 24 55 ± 29 49 ± 25 0.0002

BNP, b-type natriuretic peptide; eGFR, estimated glomerular filtration rate; HMR, heart-to-mediastinum ration; LE, low energy; LVEF, left ventricular ejection fraction; ME,
medium energy; MIBG, meta-iodobenzylguanidine; NT-ProBNP, N-terminal Pro-BNP.
aConversion coefficient = 0.88.
bConversion coefficient = 0.60.
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.the validation population is also observed in eGFR results [65± 23
and 50±29 mL/min/1.73 m2 for the derivation (n = 324 available) and
validation datasets, respectively; P < 0.0001] and BNP levels [mean
BNP 373 (range 5–2996) pg/mL and 475 (range 3–4370) pg/mL,
respectively; P = 0.019]. The lower eGFR results in the present study
reflected inclusion of many high-risk patients with chronic renal dys-
function and haemodialysis.31,32

Given the known adverse prognostic significance of high BNP/NT-
ProBNP and low eGFR in CHF patients, absence of these variables in
the risk model is probably the primary reason why the predicted
mortality rate was underestimated in the highest risk patients in the
validation cohort. Such high-risk patients were more likely to

undergo 123I-MIBG imaging in Japan in the 2000s since clinical use of
the technique expanded to patients with more severe CHF and those
with comorbidities such as diabetes and renal failure. An additional
supplementary model including BNP/NT-ProBNP and eGFR may
improve the predictive accuracy for identifying exceptionally high-
risk patients.

Discrimination of low- to intermediate-
and high-risk patients
Irrespective of LVEF and BNP/NT-ProBNP levels, a low risk predic-
tion by the model was validated; no patients died when the 2-year
mortality risk was <2% and the observed cardiac mortality was 1.6%
when the predicted risk was <4%. Likewise, a high-risk population
with a 2-year cardiac mortality risk more than 12% was clearly discri-
minated from the populations at low- to intermediate-risks. Thus, the
presented risk-stratification concept incorporating cardiac sympa-
thetic functional parameters can address some limitations of conven-
tional prognostic biomarkers recommended by the current
guidelines6,7 and help select more appropriate therapeutic strategies.
For example, patients with LVEF >_35% but at a high risk in this model
(i.e. a 2-year cardiac mortality risk >12%) could benefit from more
aggressive medical and device treatments. On the other hand,
patients who have LVEF <35% but are at a low risk in this model (i.e.
2-year cardiac mortality risk <4%) may be able to undergo less
aggressive treatment than that recommended by current guidelines.

Prediction of heart failure death and
lethal arrhythmic events
With respect to pump-failure death, the 2-year risk model had defini-
tively better predictive capability compared with each conventional
variable such as LVEF, BNP/NT-ProBNP, renal function, and HMR.
Concerning arrhythmia/sudden death events including appropriate
ICD/CRTD shocks, however, the presented results are more

Figure 5 Receiver-operating characteristic analysis for the 2-year risk model (red), MIBG HMR (green), BNP/NT-ProBNP (orange), LVEF (blue),
and eGFR (purple) to predict heart failure death. ROC AUC (0.84) of the 2-year risk model was significantly greater than other four individual
variables.

Figure 4 2-year mortality risk estimated by the model (box plots)
and actual cardiac death (blue dots). Quartile ranges for Q1–Q4
were <5.1%, 5.1–8.2%, 8.3–13.7%, and >_13.8%, respectively. The
box plot denotes median and first and third quartiles, and whiskers
for value ranges.
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complicated for interpretation of clinical implications. A bell-shaped
mortality rate in association with impairment of cardiac sympathetic
function was also observed in the sub-analysis of ADMIRE-HF study33

and the more recent 123I-MIBG multicentre study in patients with
ICD.34 Perfusion-innervation imbalance or denervated but viable
myocardium assessed by cardiac MIBG imaging is likely to be respon-
sible for arrhythmogenecity35–37 probably because impaired cardiac
sympathetic innervation and residual myocardial viability is synergisti-
cally related to arrhythmogenic substrate, inhomogeneous refractory
period, and denervated supersensitivity to adrenoceptor function of
myocytes.38,39

Standardized HMR for the risk model
As HMR calculated in ME- and LE-collimator conditions differed sig-
nificantly (Table 1), importance of adjusting HMR among institutions
was recognized. The CC of 0.60 was used for internal calculation
even after standardization to the ME collimator condition (CC of
0.88).21,22 The use of HMR standardization enabled inter-institutional
comparison and allowed inclusion of more patients for this validation
study than would have been available if only images acquired using LE
collimation (as per the derivation study) were accepted. The linear
HMR conversion enhanced the current validation study by increasing
the sample size and the robustness of the statistical analyses.

Limitations
Because of a retrospective and non-interventional nature, patients
were studied over a long-term interval (2005–16). The 2-year risk
model was developed by the database of patient data collected
between 1990 and 2009 during which cardiac device treatment was
not widely available at cardiac practice. In this context, advances in
therapeutic strategies and revised guidelines for CHF might have
affected outcomes and current cardiac prognosis of CHF patients
modifiable by recent devices and pharmacotherapy. Such modifica-
tions by the treatments cannot be necessarily predicted precisely by
the presented risk model. Nevertheless, the good agreement
between the predicted risk and the observed outcomes in this study
using the relatively recent cohort indicates that the limitation is less
important particularly in patients at a low- to intermediate-mortality
risk. For example, improved therapeutics would be less likely to have
a dramatic effect on prognosis in a derivation cohort patient with
low-risk characteristics than in one with a high-risk profile, an expect-
ation consistent with the results shown in this validation study. On
the other hand, patients at high-risk despite use of modern therapeu-
tics such as implanted devices could be the subset that resulted in
underestimation of risk by the model. A further study in patients eligi-
ble for and receiving devices is required to more appropriately iden-
tify high-risk patients who could benefit most from current
indications of ICD/CRT/CRTD.

Conclusion

The 2-year risk model with age, NYHA functional class, MIBG HMR,
and LVEF was successfully validated by the good agreement between
predicted and observed cardiac mortality rates and by showing the
better predictive accuracy of heart failure death compared with
LVEF, BNP/NT-Pro BNP, or HMR alone. The prognostic value is

evident particularly when CHF patients at a low to intermediate car-
diac mortality risk.
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