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Simple Summary: Gastric cancer (GC) is one of the most newly diagnosed cancers and the fifth
leading cause of death globally. Previous studies reported that the detection rate of gastric cancer
(EGC) at an earlier stage is low, and the overall false-negative rate with esophagogastroduodenoscopy
(EGD) is up to 25.8%, which often leads to inappropriate treatment. Accurate diagnosis of EGC can
reduce unnecessary interventions and benefits treatment planning. Convolutional neural network
(CNN) models have recently shown promising performance in analyzing medical images, including
endoscopy. This study shows that an automated tool based on the CNN model could improve EGC
diagnosis and treatment decision.

Abstract: Gastric cancer (GC) is one of the most newly diagnosed cancers and the fifth leading cause
of death globally. Identification of early gastric cancer (EGC) can ensure quick treatment and reduce
significant mortality. Therefore, we aimed to conduct a systematic review with a meta-analysis of
current literature to evaluate the performance of the CNN model in detecting EGC. We conducted a
systematic search in the online databases (e.g., PubMed, Embase, and Web of Science) for all relevant
original studies on the subject of CNN in EGC published between 1 January 2010, and 26 March
2021. The Quality Assessment of Diagnostic Accuracy Studies-2 was used to assess the risk of bias.
Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic
odds ratio were calculated. Moreover, a summary receiver operating characteristic curve (SROC)
was plotted. Of the 171 studies retrieved, 15 studies met inclusion criteria. The application of the
CNN model in the diagnosis of EGC achieved a SROC of 0.95, with corresponding sensitivity of
0.89 (0.88–0.89), and specificity of 0.89 (0.89–0.90). Pooled sensitivity and specificity for experts
endoscopists were 0.77 (0.76–0.78), and 0.92 (0.91–0.93), respectively. However, the overall SROC
for the CNN model and expert endoscopists was 0.95 and 0.90. The findings of this comprehensive
study show that CNN model exhibited comparable performance to endoscopists in the diagnosis
of EGC using digital endoscopy images. Given its scalability, the CNN model could enhance the
performance of endoscopists to correctly stratify EGC patients and reduce work load.

Keywords: convolutional neural network; deep learning; gastric cancer; endoscopy image; artificial
intelligence
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1. Introduction

Gastric cancer (GC) is the fifth most commonly diagnosed cancer and the third leading
cause of death worldwide [1]. The overall incidence and global burden of GC are rapidly
growing, especially in East Asian countries, such as Japan and Korea [2]. The majority of
patients remain asymptomatic, and more than 80% of patients are diagnosed with GC at
an advanced stage [3]. The five-year overall survival rate of GC patients at pathological
stage IA is higher than 90%, where it is below 20% in stage IV [4,5]. Therefore, timely
identification and referral to gastroenterologists could significantly reduce mortality and
disease complications. A recent study also suggests that stratification of GC at an early
stage can be clinically efficacious; although, it is quite challenging and often overlooked [6].

Importantly, previous studies showed that the detection rate of early gastric cancer
(EGC) is low [7,8], and the overall false-negative rate is up to 25.8% [9–12]. Endoscopy is
now a widely used technique for distinguishing between EGC and other gastric diseases
(e.g., Helicobacter pylori and gastritis) [13]. Several reliable imaging modalities, namely,
white light imaging (WLI) or narrow-band imaging (NBI) combined with magnifying
endoscopy, have been used to clearly visualize and stratify gastric abnormalities such
as cancers [14–16] and intestinal metaplasia [17]. A meta-analysis of 22 studies reported
that the rate of missed GC when using endoscopy is only 9.4% [18]. However, grading
of endoscopic images is always subjective, time-consuming, and labor intensive, and the
performance varies among endoscopists, especially novices [19]. Automated grading of
EGC would have enormous clinical benefits, such as increasing efficiency, accessibility,
coverage, and productivity of existing resources.

Artificial intelligence (AI) has gained tremendous global attention over the last decade
in various healthcare domains, including gastroenterology. AI models have shown robust
performance in the diagnosis of gastroesophageal reflux disease [20] and the prediction
of colorectal [21] and esophageal squamous cell carcinoma [22]. AI is a broader notion,
which includes machine learning (ML) and deep learning (DL) (Figure 1). AI illustrates
an innovative computerized technique to perform complex tasks that normally require
“human judgement/cognition”. ML is a special branch of AI that allows a computer
to become more accurate in predicting, identifying, and stratifying tasks without using
explicit computer programing. ML algorithms have several potential limitations to perform
tasks; primarily image recognition. However, DL, a subset of ML, has revolutionized the
world and become the de-facto standard for recognizing medical images.

Figure 1. Hierarchical architecture of artificial intelligence.
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Recently, CNN has been applied to detect EGC using endoscopic images, helping
physicians to reduce a mistaken diagnosis and improve effective clinical decisions. The
primary benefits of the CNN model in gastroenterology can be to promote earlier detection,
more accurate diagnosis, and ensure a more timely treatment. Developing a CNN-based
automated system could detect EGC faster than endoscopists, and result in positive effects
on clinical workflow and quality for patients care. However, the overall clinical applicability
and reliability of the CNN model for EGC are still debated due to a lack of external
validation and comparison to the performance of endoscopists. To our knowledge, there
is no study that summarizes the effectiveness of the recent evidence. Therefore, the aims
of this meta-analysis were to critically review the relevant articles of the CNN model for
the diagnosis of EGC, evaluate the diagnostic performance in comparison with that of
endoscopists, analyze the methodological quality, and explore the applicability of the CNN
model in real-world clinical settings.

2. Materials and Methods
2.1. Study Protocol

We conducted a meta-analysis of studies about the diagnostic test accuracy (DTA).
The methodological standards outlined for this study is based on the Handbook for DTA
Reviews of Cochrane and the Preferred Reporting Items for a Systematic Review and
Meta-analysis of Diagnostic Test Accuracy Studies (i.e., PRISMA-DTA), which was used to
report our study findings [23].

2.2. Electronic Databases Search

We conducted a systematic search of electronic databases such as PubMed, Embase,
Scopus, and Web of Science to identify all eligible articles published between January 1,
2010, and March 1, 2021. The following keywords were used: (1) “Deep learning” OR
“Convolutional neural network” OR “CNN” OR “Artificial intelligence” OR “Automated
technique”, (2) “Early gastric cancer”, (3) 1 AND 2. The reference list of potential articles
was screened for other relevant studies.

2.3. Eligibility Criteria

We considered all studies on the diagnostic accuracy of the CNN model for detecting
EGC in any setting. These original research studies were included if they were published
in English, and research designs were prospective, retrospective, or secondary analyses of
randomized controlled trial. We excluded studies if they were published as reviews, letters
to editors, or short reports. We also excluded studies reported in invasion of GC and with a
lack of DTA, namely sensitivity, and specificity. Two authors (M.M.I., T.N.P.) independently
reviewed each study for eligibility and data extraction. Any disagreement during the study
screening was resolved through discussion between the main investigators.

2.4. Data Extraction

The same two authors extracted the following data: (a) study characteristics (author
first and last name, publication year, country, study design, sample size, total number
of endoscopy image, and clinical settings), (b) patient characteristics (inclusion and ex-
clusion criteria, demographic criteria), (c) index test (methods, performer of endoscopy),
(d) reference standard (image modality, guidelines), and (e) diagnostic accuracy parameters
(accuracy, sensitivity, specificity, and the area under the receiver operating curve).

2.5. Quality Assessment and Risk of Bias

The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was used
to assess the risk of bias of the included studies [24]. The QUDAS-2 tool contains two
domains, namely risk of bias (patient selection, index test, reference standard, and flow and
timing) and applicability concerns (patients’ selection, index test, and reference standard).
The risk of bias was categorized into three groups, namely low, uncertain, and high.
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2.6. Statistical Analysis

We followed the Cochrane Handbook for Systematic Reviews of Diagnostic Test
Accuracy methodology guidelines to conduct all statistical analyses. The pooled sensitivity
and specificity with the corresponding 95% confidence intervals (CIs) were calculated using
a random-effect model. Moreover, the summary receiver operating characteristic curve
(SROC) was computed by bivariate analysis. In our study, we also calculated the positive
predictive value, negative predictive value, positive likelihood ratio, negative likelihood
ratio, and diagnostic odd ratio. The value of the SROC curve was considered to be excellent
(SROC: ≥90), good (SROC: 80–89), fair (SROC: 0.70–0.79), poor (SROC: 0.60–0.69), and
worse (SROC: <50). We also assessed the statistical heterogeneity among the studies by
using the I2 value, and the I2 value was also classified into very low (0–25%), low (25–50%),
medium (50–75%), and high (>75%) heterogeneity, respectively [25].

3. Results
3.1. Study Selection

The initial literature search of the electronic databases yielded 171 articles. A total
of 101 articles were excluded for duplication. After reviewing the titles and abstracts, we
further excluded 47 articles; therefore, 23 articles went for full-text review. Afterwards, we
screened all reference lists for further relevant articles, but no additional study was found.
Based on the full-text review, we excluded eight more studies because they were not in
adherence with our inclusion criteria. Finally, 15 studies met all inclusion criteria [6,26–39].
The flow diagram of the systematic search is presented in Figure 2.

Figure 2. Search Strategy.
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3.2. Study Characteristics

Table 1 shows the baseline characteristics of the included studies. Among the 15 in-
cluded studies, 7 studies were published in China, 6 studies in Japan, and 2 studies in Korea.
All the included studies retrospectively collected data and developed their model for the
diagnosis of EGC. All the studies utilized the CNN model to train and validate their results;
however, GoogLeNet, Inception-v3, VGG-16, Inception-Resnet-v2, and ResNet34 were
the most widely used algorithms (Table S1). The number of patients and images ranged
from 69–2639 and 926–l45,240, respectively. The gold standard methods for identifying
EGC were the World Health Organization (WHO) guidelines, Japanese classification, and
histopathology, as shown in Table 2. White light imaging (WLI), magnifying endoscopy,
narrow-band imaging (ME-NBI), and chromoendoscopy imaging were utilized to develop
and evaluate the performance of the CNN model.

3.3. Deep Learning Model for EGC:

A total of 15 studies focused on the performance of the CNN model for EGC detection.
The pooled sensitivity was 0.89 (95%CI: 0.88–0.89), and the corresponding specificity was
0.89 (95%CI: 0.89–0.90) (Figure 3). The pooled SROC of the CNN model to detect EGC was
0.95 (Figure 4). Moreover, the pooled positive predictive value (PPV), negative predictive
value (NPV), positive likelihood ratio (+LR), and negative likelihood ratio (−LR) were 0.86,
0.90, 8.44, and 0.13, respectively.

Figure 3. Sensitivity and specificity of included studies for EGC detection.

3.4. Performance Evaluation in Different Image Modalities

Eight studies used ME-NBI images to develop a CNN model for predicting EGC
(Table 3). The pooled sensitivity and specificity of CNN model for the detection of EGC
was 0.95 and 0.95, respectively. Additionally, the pooled sensitivity and specificity of WLI
image application (4 studies) was 0.80 and 0.95, respectively. The performance was not
up to the mark while applying mixed image for detecting EGC. The pooled sensitivity,
specificity, PPV, and NPV was 0.85, 0.89, 0.63, and 0.96, respectively.
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Table 1. Baseline characteristics of included studies.

Study Country Year Design Model
(Algorithm) Total Images Total Patients Data Partition

Process
External

Validation Sen/Spe Level

Cho-2020 [26] Korea 2010–2017 Retrospective CNN (Inception-
Resnet-v2) 5017 200 Split Yes 0.283/0.883

AGC, EGC,
HGD,

LGD, and
non-neoplasm

Hirasawa-2018
[27] Japan 2004–2016 Retrospective CNN (SSD) 2296 69 Split No 0.885/0.927 EGC, NGC

Horiuchi-2020
[28] Japan 2005–2016 Retrospective CNN

(GoogLeNet) 2570 NR Split No 0.954/0.710 EGC, gastritis

Horiuchi-2020
[29] Japan 2005–2016 Retrospective CNN

(GoogLeNet) 2570 82 Split No 0.874/0.828 EGC, NGC

Hu-2020 [30] China 2017–2020 Retrospective CNN (VGG-19) 1777 295 Split Yes 0.792/0.745 NN, MLGN, LC,
SIC, EGC

Ikenoyama-2021
[6] Japan 2004–2016 Retrospective CNN (SSD) 13,584 2639 Split No 0.59/0.87 EGC, NGC

Yoon-2019 [38] Korea 2012–2018 Retrospective CNN (VGG-16) 11,539 800 Split No 0.910/0.976 EGC, NGC

Li-2019 [31] China 2017–2018 Retrospective CNN
(Inception-v3) 10,000 NR Split No 0.9118/0.906 EGC, NGC

Ling-2020 [32] China 2015–2020 Retrospective CNN (VGG-16) 9025 561 Split Yes 0.886/0.786 EGC, NGC

Liu-2018 [33] China NR Retrospective CNN
(Inception-v3) 2331 NR Split No 0.981/0.988 EGC, NGC

Sakai-2018 [34] Japan NR Retrospective CNN
(GoogLeNet) 926 58 Split No 0.800/0.948 EGC, NGC

Tang-2020 [35] China 2016–2019 Retrospective CNN (DCNN) l45,240 1364 Split Yes 0.955/0.817 EGC, NGC

Ueyama-2020
[36] Japan 2013–2018 Retrospective CNN

(ResNet50) 5574 349 Split No 0.98/1.0 EGC, NGC

Wu-2018 [37] China 2016–2018 Retrospective CNN (VGG-
16+ResNet50) NR NR Split Yes 0.940/0.910 EGC, NGC

Zhang-2020 [39] China 2012–2018 Retrospective CNN
(ResNet34) 21,217 1121 Split No 0.360/0.910 EGC, NGC
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Table 2. Description of endoscopy and images.

Study Data Source Format Rotation Resolutio Level of Annotator
Experience Gold Standard Image Terminology Endoscope

Cho-2020 Two Hospitals(CHH
& DTSHH) JPEG 35-field view 1280 * 640 Expert Histopathology WL GIF-Q260, H260 or H290, CV-260

SL or Elite CV-290

Hirasawa-2018
Two Hospitals (CIH
& TTH); Two Clinics

(TTIG & LYC)
NR NR 300 * 300 Expert Japanese

classification
WL, ME-NBI,

Chromoendoscopy

GIF-H290Z, GIF-H290,
GIF-XP290N, GIF-H260Z,

GIF-Q260NS, EVIS LUCERA
CV-260/CLV-260 EVIS LUCERA

ELITE CV-290/
CLV-290SL

Horiuchi-2020 Single Center (CIH) NR NR 224 * 224 Expert Histopathology ME-NBI GIF-H260Z and GIF-H290Z

Horiuchi-2020. Single Center (CIH) NR NR 224 * 224 Expert Histopathology ME-NBI GIF-H240Z, GIF-H260Z, and
GIF-H290Z:

Hu-2020 Single Center (ZH) NR NR 224 * 224 Expert Histopathology ME-NBI GIF-H260Z or GIF-H290Z

Ikenoyama-2021 Single Center (CIH) NR Anterograde &
retroflexed view 300 * 300 Expert Histopathology WL, NBI,

Chromoendoscopy

GIF-H290Z, GIF-H290,
GIF-XP290N, GIF-H260Z,

GIF-Q260J,
GIF-XP260, GIF-XP260NS,

GIF-N260

Yoon-2019 Single Hospital
(GSH) NR both close-up and a

distant view NR Expert
WHO classification

of tumor & Japanese
classification

WL GIF-Q260J, GIF-H260; GIF-H290

Li-2019 Four Hospitals NR NR 512 * 512 Expert Vienna classification ME-NBI GIF-H260Z; GIF-H290Z

Ling-2020 Renmin Hospital NR NR 512 * 512 Expert Japanese
classification ME-NBI GIF-H260Z

Liu-2018 Chongqing Xinqiao
Hospital JPEG Horizontally, and

vertically

768 * 576, 720 * 480,
1920 * 1080, 1280 *

720
Expert NR ME-NBI GIF Q140Z; GIF-H260Z

Sakai-2018 NR NR NR 224 * 224 Expert Histopathology WL GIF-H290Z; GIF TYPE
H260Z

Tang-2020 Multi-center NR NR NR Expert

WHO classification;
Japanese

classification;
European society of

gastrointestinal
endoscopy

ME-NBI

GIF-H260, GIF-H260Z,
GIFHQ290, GIF-H290Z, EVIS
LUCERA CV260/CLV260SL,

EVIS LUCERA
ELITECV290/CLV290SL
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Table 2. Cont.

Study Data Source Format Rotation Resolutio Level of Annotator
Experience Gold Standard Image Terminology Endoscope

Ueyama-2020 Saitama Medical
Center NR NR 224 * 224 Expert Japanese

classification ME-NBI (GIF-H260Z; GIF-H290Z

Wu-2018 Renmin
Hospital NR NR 224 * 224 Expert Histopathology WL, ME-NBI CVL-290SL, VP-4450HD

Zhang-2020
Peking

University People’s
Hospital

NR NR NR Expert Japanese
classification WL GIF-H260, GIF-Q260J, GIF-H290,

EVIS LUCERA CV-260/CLV-260

Note: CHH and DTSHH; CIHA: Cancer Institute Hospital Ariake, Tokyo, Japan; TTH: Tokatsu-Tsujinaka Hospital, Chiba, Japan; TTIGP: Tada Tomohiro Institute of Gastroenterology and Proctology, Saitama,
Japan; LYC: Lalaport Yokohama Clinic, Kanagawa, Japan); CIH: Cancer Institute Hospital; ZH = Zhongshan Hospital; GSH: the Gangnam Severance Hospital; SYSUCC: Sun Yat-sen University Cancer Center,
Guangzhou, China; NR = Not reported. *: Multiple sign.
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Figure 4. The AUROC curve for EGC detection.

Table 3. The performance of the CNN model for EGC detection in different image modalities.

Model SROC SN SP PPV NPV +LR −LR DOR

CNNWLI 0.99 0.80 0.95 0.94 0.83 9.32 0.33 28.47
CNNME−NBI 0.97 0.95 0.85 0.87 0.93 7.84 0.07 123.45

CNNWLI+ME−NBI+C 0.96 0.85 0.89 0.63 0.96 8.27 0.16 51.44

Note: SN: Sensitivity; SP: Specificity; PPV: Positive Predictive Value; NPV: Negative Predictive Value; +LR: Positive Likelihood Ratio; −LR:
Negative Likelihood Ratio; WLI: White Light image; ME-NBI: Magnifying endoscopy with narrow-band imaging; C: Chromoendoscopy.

3.5. Deep Learning versus Endoscopists

Five studies compared the performance of the CNN model to detect EGC with a
total of 51 expert endoscopists (who had more than 10 years of working experience). The
pooled sensitivity, specificity, PPV, and NPV was 0.77, 0.92, 0.80, and 0.90, respectively.
The pooled SROC of expert endoscopists for detecting EGC was 0.90. Five studies also
compared the performance of the CNN model to detect EGC with 47 senior endoscopists
(who had 5–10 years of working experience). The pooled sensitivity, specificity, PPV, and
NPV was 0.73, 0.95, 0.89, and 0.84, respectively. The pooled SROC of expert endoscopists
for detecting EGC was 0.92. Moreover, the pooled sensitivity, specificity, PPV, and NPV of
junior endoscopists was 0.69, 0.80, 0.78, and 0.71, respectively (Table 4).

Table 4. Comparison between deep learning and endoscopists.

Comparison SROC SN SP PPV NPV +LR −LR DOR

CNN 0.95 0.86 0.89 0.87 0.87 10.00 0.13 75.17
Experts 0.90 0.77 0.92 0.80 0.90 5.84 0.22 27.99
Seniors 0.92 0.73 0.95 0.89 0.84 7.90 0.24 33.88
Junior 0.82 0.69 0.80 0.78 0.71 3.83 0.36 11.09

CNN + Expert † - 0.97 0.91 0.91 0.98 - - -
CNN + Junior † - 0.94 0.97 0.98 0.95 - - -

Note: CNN: Convolutional Neural Network; †: reported only Tang et al.; Experts: had more than 10 years’ experience; seniors: had
5–10 years’ experience; junior: had less than 5 years’ experience.
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3.6. Quality Assessment

In this study, the risk of bias was assessed by the QUDAS-2 tool (Table S2). The risk of
bias for patient’s selection, index test, and reference standard were low. All studies had an
unclear risk of bias for the flow, timing, and index test. In case of applicability, all studies
had a low risk of bias for the patient selection, index test, and applicability concern for the
reference standard.

4. Discussion
4.1. Main Findings

This comprehensive study shows the effectiveness of the CNN model in the automatic
diagnosis of EGC using endoscopic digital images. The key findings are (1) the CNN model
can diagnose EGC with comparable or better performance than expert endoscopists, and
(2) the CNN model may facilitate existing screening program without human efforts, avoid
misclassification, and assist endoscopists when it is needed.

4.2. Clinical Implications

The number of GC cases and deaths has increased globally. However, the prevalence
of GC is always high in developed countries (approximately 70%), and nearly 50% of
GC occurred in East Asian countries such as China, Korea, Japan, and Taiwan [40,41].
Previous studies reported that earlier identification and treatment could reduce the overall
morbidity and mortality of GC [19,42]. Patients with gastrointestinal disorders such as
Helicobacter pylori, gastritis, and intestinal metaplasia should be screened for GC at least
annually to identify high-risk patients. In practice, the screening strategy relies only on
visual inspection of the gastric mucosa [43]; therefore, gastroenterologists use an endoscope
to collect samples from the inner cavity for histopathological evaluation [44]. Endoscopy
is considered as a standard procedure for the diagnosis of EGC, and detection is higher
than other screening methods such as UGI series, serum pepsinogen testing, and H. pylori
serology [45]. However, the use of endoscopic screening has several limitations, and
screening requires referral to a gastroenterologist. Patients do not always visit expert
gastroenterologists due to the logistical barrier, cost, and availability of experts in rural
areas [46].

Moreover, manual inspection of endoscopy images for gastric abnormalities findings
is time-consuming, and detection performance always depends on the skill of the endo-
scopists. Previous studies reported that manual inspection increases the false detection rate,
especially when the number of patients for screening is high [47,48]. Our study findings
demonstrate that the CNN model can improve the detection performance of EGC, which
is higher than that of endoscopists. Tang et al. [35] reported that the detection perfor-
mance of EGC is even higher when endoscopists use the CNN model (Table 4). Obtaining
high-quality images to detect EGC is difficult, especially for inexperienced endoscopists.
Different image techniques have been using to detect gastric tissue abnormalities. However,
the CNN model, which used a conventional technique, white light endoscopy (WLE), had
lower performance NBI, a novel imaging technique. A previous study mentioned that
diagnosis accuracy of EGC when using WLE is low when it comes to flat lesions and
minute carcinoma [49]; however, both superficial structures and microvascular architecture
of lesions are visualized by NBI [50,51]. The performance of CNN was even lower when a
mixture of WLI, ME-NBI, and chromoendoscopy had been used to train and test the model.

The findings of our study suggest that the CNN model is clinically effective in de-
tecting EGC. The application of the CNN model to correctly diagnose EGC could provide
alternative ways for EGC screening, especially in areas where skilled endoscopists are
not always available. In the future, physicians may cooperate with a CNN-based auto-
mated system, which would help to increase work efficiency and to reduce false detection
(Figure 5).
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Figure 5. Propose diagnosis of EGC by man with machine. (A) Screening of EGC by physicians only can increase false-
positive and false-negative cases; (B) screening of EGC by AI only can also increase false-positive and false-negative;
(C) combined decision based on AI plus physicians can accurately diagnose EGC.

4.3. Strengths and Limitations

Our study has several strengths. First, this is the most comprehensive study that
evaluated the performance of the CNN model to correctly diagnose EGC. Second, our
study also compared the performance of the CNN model with that of expert, senior,
and junior endoscopists to diagnose EGC, which has great clinical value. Third, we also
compared the performance of the CNN model for different image modalities. Finally, we
calculated the overall PPV and NPV values, which may help to make an effective clinical
decision on implementing the CNN model in real-world clinical settings. However, our
study has several limitations that also need to be mentioned. First, our study findings are
mainly based on retrospective data, but prospective evaluation is needed to check the real
performance of the CNN model. Although, several studies had prospective evaluation.
Second, all studies used high-quality images to develop and validate the performance of
the CNN model. Therefore, our study is unable to present the real-performance of the
CNN model if subjected to lower quality images. Finally, high heterogeneity exists among
the studies included in this current study, which may be due to the following reasons:
(a) varied nature of methodology and training algorithms, (b) a different number of sample
size, (c) the variability of endoscopic images (WLI, NBI, and chromo-endoscopy). However,
it could also be due to the distinct strictness of experts in the various study centers for
positive judgment of GC patients. Therefore, the findings should be interpreted with
caution. Despite the above limitations, efforts were made to select high-quality studies
and the current meta-analysis presents the potentiality of the DL model for detecting
GC. These findings warrant further validation in the larger prospective studies with
different populations.

5. Conclusions

This study provides a summary of the current state-of-the-art CNN model for the
diagnosis of EGC using endoscopic images. The findings of this comprehensive study
show that the CNN model had a high sensitivity and specificity of stratifying EGC and
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outperformed the performance of endoscopists. A fully automated tool based on CNN
could facilitate EGC screening in a cost-effective and time-efficient manner.

Despite the outstanding performance of the CNN model, there are still several po-
tential challenges to apply these findings in the real-world clinical practice. First, the
CNN model is often referred to as “black-box” due to a lack of interpretability of its
findings [52–55]; therefore, it is not sufficient to have good accuracy. Second, the compari-
son of CNN algorithms across the studies is quite challenging because various method-
ologies on different populations with different sample sizes were being compared. Third,
more sample size, and sample from various population as developing set is likely to im-
prove performance, reduce the risk of bias, and increase the applicability of DL models in
the real-world clinical settings. Finally, generalizability is another key challenge because
the performance of the CNN model could vary when it is tested on unknown datasets,
especially those based on low-quality images. Therefore, more evaluation is needed before
widely deploying the CNN based tool in the real-world clinical practice.
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