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Abstract: The CDKN2a/ARF locus expresses two partially overlapping transcripts that encode
two distinct proteins, namely p14ARF (p19Arf in mouse) and p16INK4a, which present no
sequence identity. Initial data obtained in mice showed that both proteins are potent tumor
suppressors. In line with a tumor-suppressive role, ARF-deficient mice develop lymphomas,
sarcomas, and adenocarcinomas, with a median survival rate of one year of age. In humans,
the importance of ARF inactivation in cancer is less clear whereas a more obvious role has been
documented for p16INK4a. Indeed, many alterations in human tumors result in the elimination
of the entire locus, while the majority of point mutations affect p16INK4a. Nevertheless, specific
mutations of p14ARF have been described in different types of human cancers such as colorectal and
gastric carcinomas, melanoma and glioblastoma. The activity of the tumor suppressor ARF has been
shown to rely on both p53-dependent and independent functions. However, novel data collected in
the last years has challenged the traditional and established role of this protein as a tumor suppressor.
In particular, tumors retaining ARF expression evolve to metastatic and invasive phenotypes and in
humans are associated with a poor prognosis. In this review, the recent evidence and the molecular
mechanisms of a novel role played by ARF will be presented and discussed, both in pathological and
physiological contexts.

Keywords: tumor suppression; autophagy; anoikis; CDKN2a/ARF locus; chemoresistance;
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1. Introduction

The ARF (alternative reading frame) protein is encoded by the Alternative Reading Frame
of the CDKN2a locus, one of the most frequently mutated sites in human cancers after the p53
locus [1–3]. The locus, located on human chromosome 9p21, encodes two completely unrelated
proteins, p16INK4a and p14ARF, both of which are potent tumor suppressors. The mechanism by
which the two proteins are produced is quite unusual. Each gene is endowed with its own promoter
that guides the transcription of an α- or β-transcript. Each transcript has a specific 5’ exon, E1α or E1β
for INK4a and ARF respectively, spliced to a common exon 2 (Figure 1a) in which two overlapped
ORFs (Open Reading Frame) are translated into two proteins sharing no amino acid sequence identity
at all.
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Figure 1. Genomic structure of the CDKN2a locus and produced transcripts. (a) Arrows above each 
exon 1 indicate promoters, continuous and dashed lines above and below the genomic structure 
indicate p16 and ARF splicing patterns respectively. Transcription of exon 1β, and its splicing to exons 
2 and 3 results in the α-transcript, encoding p16INK4a, whereas transcription starting upstream of 
exon 1β produces the β-transcript in which the exon1β, and the common exons 2 and 3 encode ARF 
(p14ARF in human, p19Arf in mouse). In yellow and in red are indicated the open reading frames 
(ORFs) of p16 and ARF respectively, with exon 2 displaying two overlapped ORFs. White boxes 
represent untranslated regions at the 3’ and 5’ ends while asterisks (*) indicate stop codons (b) 
Pathways regulated by the two proteins: while p14ARF inhibits Mdm2 (Mouse Double Minute-2) 
functions with consequential p53 stabilization [4,5], p16INK4a inhibits the cyclinD-CDK4/6 complex 
thus maintaining the retinoblastoma protein pRb in its growth-suppressive mode [4]. 

The alpha transcript encodes the p16INK4a protein, a member of the INK4 family of inhibitors 
of the cyclin-dependent kinases 4 and 6 (Inhibitor of CDK4). In response to specific signals, they block 
the assembly and/or inhibit the kinase activity of the cyclin D-CDK4/6 complex required for G1 to S 
cell cycle progression [6,7]. In this way, the retinoblastoma protein pRB is maintained in an active 
hypo-phosphorylated state and sequesters the transcription factors of the E2F family causing G1-
phase cell cycle arrest [7,8] (Figure 1b). The ARF protein instead inhibits the functions of the MDM2 
oncoprotein (Mouse Double Minute 2, HDM2 in human) thus inducing p53 stabilization and the 
activation of p53-dependent pathways (Figure 1b).  

In humans, the β transcript results in a polypeptide of 132 amino acids (14 kDa) named p14ARF 
while, in mice, the transcript is translated into a 169 amino acid polypeptide named p19ARF (19kDa). 
Human and mouse proteins share only 50% of identity. Interestingly, the exon 1β-encoded N-
terminal region, that is necessary and sufficient to fulfil almost all of the known ARF tumor 
suppressor functions, is only modestly conserved between species, whereas the exon 2-encoded C-
terminal region shows a stronger degree of identity between human and mouse (57% of identity) [5]. 
By comparison, mouse and human INK4a are more conserved, sharing the 65% of identity overall 
[9]. ARF proteins are highly basic (> 20% arginine content) and hydrophobic molecules. The basic 

Figure 1. Genomic structure of the CDKN2a locus and produced transcripts. (a) Arrows above each
exon 1 indicate promoters, continuous and dashed lines above and below the genomic structure
indicate p16 and ARF splicing patterns respectively. Transcription of exon 1β, and its splicing to
exons 2 and 3 results in the α-transcript, encoding p16INK4a, whereas transcription starting upstream
of exon 1β produces the β-transcript in which the exon1β, and the common exons 2 and 3 encode
ARF (p14ARF in human, p19Arf in mouse). In yellow and in red are indicated the open reading
frames (ORFs) of p16 and ARF respectively, with exon 2 displaying two overlapped ORFs. White boxes
represent untranslated regions at the 3’ and 5’ ends while asterisks (*) indicate stop codons (b) Pathways
regulated by the two proteins: while p14ARF inhibits Mdm2 (Mouse Double Minute-2) functions with
consequential p53 stabilization [4,5], p16INK4a inhibits the cyclinD-CDK4/6 complex thus maintaining
the retinoblastoma protein pRb in its growth-suppressive mode [4].

The alpha transcript encodes the p16INK4a protein, a member of the INK4 family of inhibitors of
the cyclin-dependent kinases 4 and 6 (Inhibitor of CDK4). In response to specific signals, they block
the assembly and/or inhibit the kinase activity of the cyclin D-CDK4/6 complex required for G1
to S cell cycle progression [6,7]. In this way, the retinoblastoma protein pRB is maintained in an
active hypo-phosphorylated state and sequesters the transcription factors of the E2F family causing
G1-phase cell cycle arrest [7,8] (Figure 1b). The ARF protein instead inhibits the functions of the
MDM2 oncoprotein (Mouse Double Minute 2, HDM2 in human) thus inducing p53 stabilization and
the activation of p53-dependent pathways (Figure 1b).

In humans, the β transcript results in a polypeptide of 132 amino acids (14 kDa) named p14ARF
while, in mice, the transcript is translated into a 169 amino acid polypeptide named p19ARF (19kDa).
Human and mouse proteins share only 50% of identity. Interestingly, the exon 1β-encoded N-terminal
region, that is necessary and sufficient to fulfil almost all of the known ARF tumor suppressor functions,
is only modestly conserved between species, whereas the exon 2-encoded C-terminal region shows a
stronger degree of identity between human and mouse (57% of identity) [5]. By comparison, mouse
and human INK4a are more conserved, sharing the 65% of identity overall [9]. ARF proteins are
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highly basic (> 20% arginine content) and hydrophobic molecules. The basic nature of ARF renders
this protein highly insoluble and this is likely the reason for which neither NMR (nuclear magnetic
resonance) nor crystal structure has been determined, despite its small size. ARF probably needs to
form complexes with other molecules to assume specific spatial conformation and to neutralize its
charge at physiological pH, thus explaining the incredible number of ARF binding partners [10].

ARF is a potent tumor suppressor, regulating cell cycle arrest and/or apoptosis by both
p53-dependent and independent pathways [11]. Interestingly, it represents a link between the pRb
and the p53 pathway, the most important tumor suppressor pathways within the cell. It has been
demonstrated the ARF triggers a p53-dependent checkpoint when the pRb pathway is compromised.
In particular, when inactivated, pRb causes the release of E2F transcription factors, which in turn
induce the increase of ARF transcription [5,12].

The classical ARF tumor suppressor function has been challenged by the recent observations
suggesting that this protein is overexpressed and plays pro-oncogenic functions in specific types of
human cancers. In this review, ARF dependent tumor suppressor mechanisms will be described
together with the new evidence outlining its pro-survival functions.

2. ARF Inactivation in Human and Murine Cancer

A contribution of ARF to tumor formation has been documented using genetic analysis of tumors,
molecular and cell biology approaches, and animal models [13,14]. In respect to p16, ARF seems
to assume a more prominent role as a tumor suppressor in mice rather than in humans, where the
mutation frequency of this gene is low. Arf -null mice usually die after one year since they develop
tumors, mostly sarcomas (43%), lymphoid malignancies (29%), carcinomas (17%), and tumors of the
nervous system (11%). Furthermore, tumors arising in the heterozygous mice undergo further deletion
of the remaining allele [15].

In most cases of human cancers, both ARF and p16 are inactivated, making it difficult to determine
their individual roles in tumor suppression [16–20]. Alterations of the CDKN2a locus were found in
roughly 30% of human tumors such as glioblastoma, melanoma and pancreatic adenocarcinoma [8,21].
However, there are specific examples in which only ARF appears to be affected in human cancer.
Promoter methylation in ARF gene has been reported to occur independently of the INK4a promoter
methylation, thus suggesting that this is a specific alteration of ARF expression. A CpG island within
the promoter region of p14ARF has been found to be hyper-methylated [21] in a wide spectrum
of human cancers such as colorectal [22], gastric [23] and prostate carcinomas [24]. Deletions
and point mutations of the exon 1β has been reported in familial melanoma syndromes and in
glioblastoma [11,17,25–28]. In breast cancer, several insults such as homozygous deletion, loss of
heterozygosity and promoter hyper-methylation, have all been described [29]. Interestingly, in the
majority of non-small cell lung cancer (NSCLC), p14ARF protein is expressed at low levels, albeit no
genetic mutations or known transcriptional alterations have been reported so far [30].

3. ARF is Involved in the p53 Pathway

One of the most well-defined ARF function is the suppression of aberrant cell growth in response
to oncogene activation [12,31–34]. In particular, in this condition, ARF activates the transcription
factor p53 that triggers the expression of many apoptosis inducers and cell cycle inhibitory genes.
TP53 mutation is the most frequent genetic alteration in human cancers. In response to a wide variety
of cellular stresses, p53 is able to induce the expression of target genes leading to cell cycle arrest,
apoptosis or senescence. A transcriptional target of p53 is the MDM2 protein, which plays a central
role in regulating p53 functions [35–37]. MDM2 is an E3 ubiquitin ligase that ubiquitinates p53 through
its RING (Really Interesting New Gene) domain, common to many E3 ubiquitin ligases [38]. The two
proteins are part of a negative feedback loop that keeps p53 levels low during normal growth and
development. Interestingly, the dynamics of p53 activation appears to be the signal that dictates cell
fate. While transient p53 activation induces cell cycle arrest, long-lasting p53 oscillations promote
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apoptosis [39]. The mechanisms that increase the stability and the activity of p53 point to alleviating the
negative effect of MDM2 on p53. By interacting with p53, MDM2 blocks p53-mediated transactivation
and targets the p53 protein for ubiquitin-dependent proteasome-mediated degradation [35,37,40,41].
Early studies reported that the p19ARF protein was involved in the p53 pathway via its interaction and
inhibition of MDM2 [42,43]. Several studies then clarified that ARF inhibition of cell proliferation also
relies on p53 independent pathways through the functional and molecular interaction with a number
of different proteins (Figure 2).
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Figure 2. ARF involvement in tumor suppression relies on p53-dependent and independent
pathways. Upon over-expression of oncogenes (such as E2F, Ras, E1A and Myc), an increase of
ARF intracellular levels are promptly observed (ARF checkpoint) in the cell. By inhibiting MDM2
functions, ARF interferes with the p53/MDM2 circuit (highlighted in grey), leading to p53 stabilization
followed by cell cycle arrest and/or apoptosis [10,32–35,39]. ARF is able to block cell growth also
in a p53-independent manner, through the functional interaction with several molecular players
as indicated.

ARF Inhibits MDM2 Through Multiple Mechanisms

Several mechanisms have been formulated to explain ARF-mediated p53 stabilization and
activation. Initial evidence reported that ARF is able to block the nucleus-cytoplasm shuttling of
the MDM2-p53 complex [44]. ARF is predominantly located in the nucleolus in different cell lines and
in different experimental conditions [45]. In regard to the human protein, this localization depends on
two aminoacidic stretches, one located at the N-terminal region (aa 2–14), while the other resides at
the C-terminal and comprises a sequence of basic amino acids (aa 82–101) [45,46]. The co-expression
of ARF together with p53 and MDM2 blocks the export of both p53 and MDM2 to the cytoplasm.
Furthermore, it was observed a re-localization of ARF from the nucleolus to the nucleus in sub-nuclear
structures defined as nuclear bodies, in which p53 is stabilized and activated. Another mechanism
reports that ARF induces p53 stabilization and activation by sequestering MDM2 in the nucleolus. This
hypothesis is based on the evidence that the interaction between ARF and MDM2 reveals a cryptic
nucleolar localization signal present in the C-terminal region of MDM2 [47]. This signal, in synergy
with similar sequences within ARF, induces re-localization of the ARF-MDM2 complex in the nucleolus,
thus preventing p53 binding and export to the cytoplasm [48,49].

An alternative mechanism, that probably integrates the previously described ones, reports that
ARF, by MDM2 binding, inhibits its ubiquitin-ligase activity [50,51]. In order to be exported in
the cytoplasm and degraded, p53 needs to be modified through the covalent binding to ubiquitin.
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Ubiquitination, in addition to targeting p53 to the proteasome for degradation, prevents the formation
of p53 tetramers, thus inducing the exposure of the p53 nuclear export signals and its re-localization to
the cytoplasm.

The observations that ARF mediated p53 stabilization can occur without relocation of MDM2
in the nucleolus, and that ARF mutants that do not exhibit nucleolar accumulation retain the ability
to stabilize p53 [52], suggested that its nucleolar localization could contribute to, but is not essential
for, p53 stabilization. As mouse and human homologues are poorly conserved it has been difficult to
dissect which are the domains required for ARF localization, MDM2 binding and inhibition, and above
all, how these aspects led to p53 stabilization. Moreover, the MDM2 binding and the p53 stabilization
domains, as well as the nucleolar driving sequences, show a certain degree of overlap. In mice,
for example, the domain mapped between aa 26–37 is not only required to induce p19ARF nucleolar
localization but also for p53 accumulation and cell cycle arrest [53]. Another layer of complexity
comes from the observation that N-terminally deleted p19ARF mutants, although impaired in p53
stabilization, are still able to induce its transcriptional activation and to inhibit cell growth. Conversely,
expression of ARF mutants not able to block cell proliferation through p53 can still induce MDM2
accumulation in the nucleolus. Altogether these data point to the notion that MDM2 subcellular
localization and p53 stabilization are not both required to guarantee p53-dependent ARF inhibition of
cell growth, as previously supposed [54].

4. ARF is Involved In p53 Independent Pathways of Tumor Suppression

Although ARF is undoubtedly a critical component of the p53 pathway, there are many lines of
evidence that ARF restrains cell growth independently of p53 (Figure 2). Analysis of mouse models
in which Arf, Trp53 and Mdm2 genes were simultaneously ablated (triple knockout or TKO mice)
showed a higher tendency towards tumor development than those lacking only p53 and MDM2 [55].
Furthermore, Arf -/- and Arf +/- mice develop a broader spectrum of tumors than Trp53 null mice and
ARF overexpression can induce cell cycle arrest in cells lacking p53. Finally, in cells derived from TKO
mice, the reintroduction of ARF prevents S phase entry and/or trigger apoptosis by mechanisms that
did not require the expression of p53 protein [55]. Similarly, in human lung tumor cells devoid of p53
expression, p14ARF induces cell cycle arrest accompanied by features of tumor regression [56]. Also,
xenograft models of pancreatic cancer showed that ARF expression impedes cell colonization and thus
metastasis formation in a p53-independent fashion [13]. The notion that ARF acts independently of the
Mdm2–p53 axis in tumor surveillance is in line with the observation that ARF interacts with a multitude
of different cellular partners, such as proteins involved in transcriptional control (E2Fs, DP1, p63, c-Myc,
Hif1α), nucleolar proteins such as nucleophosmin (NPM/B23), viral proteins (HIV-1Tat), mitochondrial
protein (p32) and others [10,57]. This variety of ARF’s interactors suggested that the protein could
play a wide role in cell protection from different types of insults. In particular, for some targets,
the interaction with ARF causes an alteration of their stability. For example, NPM/B23 and E2F become
degraded by the proteasome in a ubiquitin-dependent manner upon ARF interaction. Other targets
change their localization upon ARF expression, while others become activated or stabilized [58].
Moreover, it has been demonstrated that the interaction with the mitochondrial protein p32 determines
ARF’s mitochondrial recruitment, through its domain in exon 2 (aa stretch 82–101) [59,60]. The ability to
localize to the mitochondrion appears to be p53 independent and required for ARF-induced apoptosis.
Interestingly, the ARF exon 2 encoded domain appears to have a role in the defense mechanism
that protects cells from oxidative stress. In senescent melanocytes, endogenous ARF is constitutively
expressed as a cytoplasmic protein recruited to dysfunctional mitochondria as part of a pathway
aimed at maintaining low levels of intracellular superoxide [61]. ARF translocation to mitochondria
induces dissipation of mitochondrial potential, with the consequent decrease of free radical levels
and cell growth inhibition. This mitochondrial activity involves an evolutionarily conserved acidic
motif GHDDGQ (residues 65–70 in p14ARF), which mediates the interaction with, and the consequent
inhibition of, BCL-xL, a positive regulator of mitochondrial potential. This cell-protective mechanism
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appears to be targeted in familial melanoma thus explaining why ARF mutations predispose carriers
to melanoma. This function appears to be p3-independent. Moreover, although the C-terminal domain
is also required for ARF induced autophagy (as we will discuss below), it is also independent of ARF
function in autophagy.

Another tumor-suppressive function of ARF relies on its ability to ensure chromosomal stability [1]
through its functional interaction with Aurora B [62]. ARF ablation in primary mouse embryonic
fibroblasts (MEFs) results in aneuploidy, caused by misaligned and lagging chromosomes and
multipolar spindles. Albeit this appears to be a p53-independent ARF function, it has been shown that
this mechanism can also follow p53-dependent routes [63].

It has been widely reported that ARF is able to promote the sumoylation of some of its
interactors [64–67]. This modification modulates a variety of phenomena such as protein stability,
transport, modulation of gene expression, ubiquitylation, DNA repair, and centromeric chromatid
cohesion. ARF induces sumoylation of both MDM2 and NPM/B23 by direct interaction with these
proteins and in a p53-independent manner [65,68,69]. In addition, it has been reported that ARF
interacts with the Myc-associated zinc finger protein (Miz1) and, by inducing its sumoylation, facilitates
the assembly of the Myc-Miz1 complex that assists the switch from G1 arrest to apoptosis [70]. It has
been suggested that ARF promotes this process through direct interaction with the Small Ubiquitin
Modifier (SUMO)-conjugating enzyme Ubc9 [65]. Other evidence of ARF involvement in sumoylation
is derived from the observation that it can inhibit the function of a desumoylating protein, SENP3 [71].
Although ARF involvement in the sumoylation process is well documented, the biological meaning
of ARF-mediated sumoylation is mostly still unclear. Upon thermal or oxidative stress, an increase
of SUMO 2 and 3 levels has been reported. Cells over-expressing SUMO 2 and 3 exhibit premature
senescence [72], and an increase of both p53 and pRb sumoylation [73–75]. Given the established role
of ARF in senescence, it would be interesting to analyze ARFs role in sumoylation-induced senescence.

Intriguingly, while ARF mediates p53 stabilization, it has the opposite function with another
member of the p53 family, the transcription factor p63 that plays a fundamental role in the development
of epithelial derivatives [76,77]. ARF interacts with one of the p63 isoforms, namely DNp63α [78],
and increase its sumoylation and its subsequent proteasome-mediated degradation in both tumoral
and immortalized cell lines [79,80]. ∆Np63α has an established role in oncogenesis being expressed in
several cancerous cells [81–83] and acting as dominant negative in respect to p53. ARF’s role in p63
degradation suggests that ARF while stabilizing p53 and eliciting p53-dependent pathways, at the
same time can inhibit p63 oncogenic functions.

As a nucleolar protein ARF plays a role in both ribosomal biogenesis and control of cell mass
growth [84,85]. It inhibits the formation of mature 28S and 18S ribosomal RNA [86], inactivates NPM,
a key player of this pathway [67] and modulates both rRNA transcription [87] and processing [84,85].

5. Mechanisms Governing ARF Degradation

The study of ARF interacting partners has led to the accumulation of a bulk of knowledge
about the mechanisms regulating its turnover within the cell. Both mouse and human ARF are
relatively stable proteins in the nucleolus, with a half-life of about 6 h [88]. This suggested, and was
lately experimentally demonstrated, that ARF nucleolar localization could be a mechanism to
stabilize the protein [89]. Early studies provided evidence that ARF association with MDM2 in
the nucleoplasm decreases its half-life [4,10,42] and that it rapidly decreases when the protein is
forced to the nucleoplasm. In the nucleolus, nucleophosmin plays an important role in the control of
ARF turnover [68,90]. In response to increased levels of NPM, the turnover of p19ARF is retarded,
whereas NPM protein levels downregulation accelerates its degradation [88] and cause p19ARF
exclusion from nucleoli. Both NPM binding and nucleolar localization are required to promote ARF
stabilization [91–94]. Conversely, ARF causes NPM poly-ubiquitination and degradation [90,95,96].

For the vast majority of proteins, conjugation of ubiquitin to internal lysines is the initial event
in their degradation by the ubiquitin-proteasome system (UPS). Although both human and mouse
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ARF proteins accumulate following treatment with proteasome inhibitors, early studies excluded the
possibility that ARF turnover could be regulated by UPS because the human protein is lysine-less
and the murine one has a single lysine residue not required for proteasome degradation [89,97,98].
Interestingly, it was observed that ARF is subjected to N-terminal ubiquitination, a rare mechanism
of ubiquitin conjugation also displayed by MyoD (Myogenic Differentiation 1) [99] and p21 [100].
While ARF degradation is inhibited in cancer cell due to UPS dysfunction, in normal cell lines its
half-life is strongly reduced [101]. Through biochemical purification, an ARF specific E3 ubiquitin
ligase named TRIP12/ULF (Thyroid hormone Receptor Interactor Protein 12/Ubiquitin Ligase For
ARF) promoting its N-terminal-ubiquitylation and degradation was identified. Oncogenic stress such
as c-Myc and NPM overexpression both inhibit ULF-mediated ARF ubiquitylation [102].

ARF can also be degraded through ubiquitin-independent mechanisms. One of these mechanisms
reports that the interaction with TBP-1 (Tat-Binding Protein-1) could cause ARF folding thus making
this protein a poor substrate for proteasome destruction [98,103]. Another mechanism involves the
20S/REG-γ proteasome system [104] that resides in the nucleus of interphase cells and is involved in
the degradation of small unstructured proteins, such as ARF, p21, and p16INK4a. While NPM prevents
ARF degradation retaining it in the nucleolus, TBP-1 protects ARF mainly in the nuclear compartment.

6. ARF Plays a Role During Development and Differentiation

It has been observed that INK4-ARF expression increases with age, mirroring a decline in tissue
regenerative capacity. In stem cells, the entire INK4-ARF locus is kept in an epigenetically silenced
state due to the function of the Polycomb group of proteins [105,106]. It has been proposed that,
as cells lose stemness and acquire differentiated features, the INK4-ARF locus is remodeled in order
to become responsive to stress and mitogenic signals arising during cell differentiation [107,108].
Physiological expression of ARF during development has been described in a precise time frame
during the differentiation of several tissue types, such as the developing eye, spermatogonia, during
epithelial differentiation, and in the yolk sac. One of the first pieces of evidence for ARF involvement
in development came from the observation that ARF knockout mice developed smaller eyes compared
to wild type mice due to defects in the neuroretina and lens, resulting in blindness [109]. A closer
examination revealed that the persistence of the platelet-derived growth factor (PDGF) signaling
in Arf -/- cells of the hyaloid vascular system (HVS) stimulates aberrant proliferation and survival
of vitreal perivascular cells in the eye in a p53 independent manner. In line with this, Pdgfrβ
(Platelet-Derived Growth Factor Receptor β) deletion rescues the Arf -/- eye phenotype and restores
vision. Analysis of mouse models indicated that the role of ARF in hyaloid vascular regression
is p53-independent [110,111]. Further studies showed that ARF induces the expression of several
microRNAs (miR) that repress Pdgfrβ synthesis. In particular, the expression of miR-34 is required for
both Pdgfrβ repression and cell proliferation arrest elicited by p19ARF [112].

Interestingly, Li and colleagues reported that ARF is physiologically expressed in the fetal yolk
sac, a tissue derived from the extra-embryonic endoderm (ExEn) [113]. In in vitro cultured embryoid
bodies, ARF expression regulates the late stages of ExEn differentiation through the induction of
another microRNA, miR-205, that in turn induces a set of genes required for cell migration and
adhesion. Interestingly miR-205 is also regulated by p53 (and by the other p53 family members,
p63 and p73) [113].

A role played by ARF has been reported in male germ cell development in mice [111].
ARF is over-expressed in mitotically dividing spermatogonia lining the basement membrane of
the seminiferous tubules. Undifferentiated spermatogonia evolve into spermatocytes during a
spatio-temporal coordinated process by which cells detach from the basement of the tubules and
through a series of mitotic and meiotic cellular divisions, move towards the lumen. In Arf -null
progenitors, detachment triggers DNA damage and p53-dependent apoptosis (anoikis) thus resulting
in a reduced number of mature sperm and testicular atrophy. These data surprisingly indicate that,
in a physiological process such as differentiation of spermatocytes, ARF can actually prevent instead
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of inducing, p53-dependent apoptosis [114]. The exact mechanism(s) by which ARF contributes to
germ cells genomic integrity during their maturation is still lacking. It has been reported that ARF
levels increase upon treatment with ATM (ataxia-telangiectasia mutated) inhibitors, underlining its
involvement in a defense pathway that protects cells upon DNA damage. Also, ARF involvement in
chromosomal stability and its cross-talk with the machinery of homologous recombination during
meiosis could be part of the mechanism underlining its role in differentiation. The continuing pursuit of
ARF’s functions in development led to the discovery of cross-talk between the DNA damage response
and angiogenesis [115–117]. An inverse correlation has been observed between the expression levels of
the vascular endothelial growth factor (VEGF) and ARF leading to the hypothesis that ARF expression
can inhibit angiogenesis both in physiological and pathological conditions. These aspects and the
therapeutic approaches potentially deriving from these studies have been clearly reviewed in Kostinas
et al., 2014 [116].

As previously mentioned, ARF interacts with and sumoylates p63 in keratinocytes. During
differentiation, the proliferative cells of the basal level of epidermis detach, lose the ability to self-renew
and start to express molecular markers of differentiating skin. In particular, p63 levels decrease
whereas ARF protein levels increase at the onset of keratinocyte differentiation [79]. The increase
of differentiation-dependent protein sumoylation machinery [118] led to a scenario in which ARF
expression is required for p63 sumoylation and thus inactivation. Interestingly, it has been shown that
p63 represses ARF promoter during development, and in line with this, ARF knockout rescues the
severe epithelial phenotype of p63 null mice allowing both cell proliferation and their subsequent
differentiation in keratinocytes [119]. Figure 3 shows a comprehensive picture of ARF involvement in
several biological mechanisms.
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7. ARF has Pro-Oncogenic Functions

ARF is found overexpressed in a significant fraction of human tumors, such as Burkitt’s
lymphoma [120] and the majority of tumors with mutant p53 [43]. In 74 samples of aggressive B-cell
lymphomas, p14ARF is mainly localized in the nucleoplasm and is associated with cancer progression
and unfavorable prognosis. Also, at the transcriptional level, ARF expression is increased in patients
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with haematological malignancies, especially in the early stage of CML (chronic myelogenous
leukemia), suggesting that this over-expression could be associated with CML development [121].
Inactivation of the CDKN2a locus is rare in thyroid follicular adenomas and carcinomas, where p14ARF

protein levels are strongly increased. Remarkably, ARF delocalization to the cytoplasm has been
observed in thyroid aggressive papillary carcinomas, not accompanied by mutations in the ARF
gene [122]. Although for several years ARF was considered to be dysfunctional when over-expressed
in cancer tissues, surprisingly, ARF silencing was shown to limit the progression of Myc-driven
lymphomas in mouse xenograft models [123]. In this study, Humbey and co-authors proposed for the
first time that ARF can promote tumor progression through its ability to induce autophagy [60,124–127].
Autophagy is a lysosome-mediated process of self-digestion occurring during periods of nutrient
deprivation. Target proteins and organelles are enveloped by the autophagosome, a double-membrane
vesicle, that fuses with the lysosome leading to the degradation of its contents. The released amino
acids are thus recycled for the synthesis of essential proteins [124]. ARF silencing in Myc-driven
lymphoma cells impaired autophagy and decreased the ability of these cells to form tumors in vivo.
In this cellular model, autophagy induction is thus a mechanism that helps cancer cells to survive
during periods of metabolic or oxidative stress [123].

Interesting, a dual role in cancer has been proposed for autophagy [128]. The tumor suppressor
function of this pathway has been inferred by the analysis of loss of function mouse models.
Genetically engineered mouse models in which AuTophaGy essential genes (ATGs) were ablated
show increased tissue and DNA damage, chronic inflammation, and chromosomal instability due
to the accumulation of non-functional proteins and organelles and free radicals. This has been
observed both in the liver and in the pancreas, tissues in which chronic inflammation creates a
tumor-promoting environment [129–131]. Furthermore, the increased levels of the autophagosome
cargo protein p62 upon dysfunctional autophagy promotes cancer survival by activation of the nuclear
factor (erythroid-derived-2) like (NRF-2) a master regulator of the antioxidant defense response [132].

On the other hand, several observations showed that, in established tumors, autophagy functions
as a survival pathway [133]. The metabolic survival function of autophagy is essential during
starvation of all cells. However, some cancer cell lines have increased levels of autophagy also
under non-starving conditions. In these cells, aberrant metabolic programmes are present in order
to support hyper-proliferation and survival [134], cause the production of waste products, such as
non-functional or misfolded proteins and DNA damage [135,136] that need to be discarded through
the induction of autophagy. Moreover, activation of the antioxidant defense pathway induced by
high levels of free radicals further promotes chemoresistance. During cancer evolution, the possibility
to recycle cellular constituents is also an advantage for those cells that escape the primary tumor
and disseminate through the body, a process that requires the ability to survive prolonged periods
of starvation. In this scenario, it appears clear that while autophagy can contribute to ARF tumor
suppression functions [137] the same mechanism can be hijacked to promote cancer evolution and
survival [123].

Another evidence of an ARF pro-oncogenic role comes from the analysis of mouse models of
prostate cancer. Genetic ablation of p19Arf in prostate epithelium does not accelerate but rather
partially inhibits the prostate cancer phenotype of Pten-/- mice [138]. Tissue microarrays analysis
performed on human prostate samples showed that p14ARF inactivation is indeed very rare in human
prostate cancer and inversely correlated with disease aggressiveness. The authors observed that the
double knock-out Pten-/-/p19Arf -/- causes a decrease of prostatic intraepithelial neoplasia incidence in
the ventral region of the prostate respect to Pten-/- mice. Interestingly, this effect appears highly cell
type specific as mouse embryo fibroblasts (MEFs) derived from these mice show instead increased
proliferation rate and present features of cellular transformation.

Using a similar approach, the analysis of p19Arf deletion was analyzed in the context of
Pten/Trp53 knockout mice [139]. In this study authors showed that ARF positively regulates prostate
tumors growth by increasing the stability of the transcriptional factor Slug. Slug is a zinc-finger
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protein known to bind and repress the E-cadherin promoter thus mediating the so-called epithelial
to mesenchymal transition (EMT), a cellular switch that provides cancer cells with the ability to
disseminate through the body. In this study authors observed that in the nucleus of PC3 cells,
ARF induces Slug stabilization by increasing its sumoylation. This results in the down-regulation of
E-cadherin and, consequently, in the repression of the cell-cell junctions thus favoring cell migration
and cancer metastasis. Both mathematical and experimental evidence suggested that the negative
effect of Slug on E-cadherin can be counteracted by the expression of NRF2 [140]. In addition to a
role in oxidative stress, it has been shown that NRF2 is required to allow collective cells migration,
a hallmark of hybrid epithelial/mesenchymal phenotype (E/M). The hybrid E/M phenotype, a status
characterized by the simultaneous presence of both epithelial and mesenchymal traits at morphological
and molecular levels, has been suggested to be potentially more aggressive than a complete EMT,
correlating with the acquisition of cancer stem-like traits, enhanced drug resistance and poor prognosis.
Given the oscillation of NRF2 upon autophagy as previously discussed [132], and the regulative
circuit between ARF and E-cadherin, it would be interesting to analyze how the interplay between
these proteins functionally interact with the progression/establishment of the E/M phenotype. In a
recent study, it was demonstrated that ARF is able to induce EMT in prostate cancer through the
upregulation of metallopeptidase 7 (MMP-7), a secreted member of the peptidase family of matrix
metalloproteinase (MMPs) [141,142]. The degradation of the extra cellular matrix (ECM) by matrix
metalloproteinases favors cell detachment and promotes cell migration. Interestingly, the MMP-7
protein, shows ARF-dependent nuclear localization in Pten/Trp53 deficient tumors, a feature of an
aggressive cancer phenotype [143].

Recent findings in bladder cancer also unveiled a novel role of ARF in drug resistance.
The majority of bladder cancers are no–muscle-invasive tumors with favorable survival outcomes.
Although ARF expression is known to be elevated in bladder cancer, as a consequence of p53
loss-of-function, the INK4a/ARF locus has been found to be amplified and associated with poor survival
in several cases of muscle-invasive bladder cancer (MIBC) [144]. An analysis of The Cancer Genome
Atlas [145] showed that, in addition to TP53 mutations, deletion or mutations of the CDKN2A locus
has been found in 42% of cases [146]. Interestingly, a substantial percentage (35%) of MIBCs, displays
mutant TP53 without corresponding alterations of INK4a/ARF locus. In particular, ARF and not p16
appears significantly overexpressed in MIBC, and mainly localized in the nucleolus of patients-derived
bladder cancerous cells [147], a feature that correlates with the tendency to develop chemoresistance.
Using a mouse model in which the ARF coding region was conditionally ablated in the bladder tissue
of Trp53-/-/Pten-/- mice, the authors showed that Arf wild-type tumors were markedly resistant to
treatment with cisplatin compared with the Arf -null counterpart. Similarly, the overexpression of the
human ARF protein in human bladder cancer cells and their use in orthotopic assays showed that it
promotes cancer formation in vivo.

Additional support to ARF pro-proliferative role is provided by the observation that ARF
interacts with the focal adhesion kinase (FAK) [67]. During cytoskeleton remodeling induced by
cell spreading, ARF is recruited to cell periphery at points of focal adhesions, where it co-localizes
and interacts with the active focal adhesion kinase (pFAKY397). Accordingly, ARF silencing
induces cytoskeleton disorganization causing anoikis through a mechanism dependent on the
death-associated protein kinase (DAPK). The DAPK is a pro-apoptotic serine/threonine kinase,
activated following cytoskeleton–matrix disengagement [148]. The presented data suggest that p14ARF
blocks DAPK functions avoiding DAPK-mediated cell death by both p53-dependent and -independent
pathways [67].

Collectively this experimental evidence suggests that ARF has pro-survival functions,
thus implying that it may function in both tumor suppressive and oncogenic pathways in cancers,
depending on the genetic context.
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8. ARF and Autophagy

Given the dual role of autophagy in cancer, the involvement of ARF in autophagy could be
the key to interpret ARF role in cancer as well. Early evidence of ARF role in autophagy led to the
identification of a shorter isoform of the protein translated by an internal methionine residue (Met
45 in mice and Met 48 in humans), which is not conserved in other ARF orthologs. Translation from
this residue produces the so-called smARF (short mitochondrial ARF), which lacks the well-conserved
N-terminus end, displaying most of the known p53-dependent functions of the protein. In response
to viral and cellular oncogenes, smARF is upregulated and localizes to mitochondria, where it is
stabilized by the interaction with the mitochondrial protein p32 [149]. Here, smARF induces the
dissipation of mitochondrial membrane potential not accompanied by cytochrome c release to the
cytoplasm, suggesting that there is no apoptotic cell death. In line with this, overexpression of
smARF in 293T cells causes caspase-independent cell death characterized by the accumulation of
autophagic vacuoles. Interestingly, the knockdown of autophagy essential genes such as Atg5 or
Beclin-1 attenuates cell death in smARF-expressing cells, leading to the hypothesis that autophagy
contributed to the observed process [60,150]. However, the smARF localization to mitochondria has
been related to its ability to induce a selective form of autophagy called mitophagy, a cellular process
that specifically removes damaged or excessive mitochondria [125,137,151,152]. Although mitophagy
shares many features with autophagy, the selectivity of the autophagosome for mitochondrial cargo
is due to a set of proteins that are activated under specific stimuli. Indeed, smARF recruitment
to mitochondria induces membrane depolarization that in turn, provokes the stabilization of the
mitochondrial PINK1 kinase and the PINK1-mediated recruitment of the Parkin ubiquitin ligase
on the outer membrane of the mitochondrion. Parkin, by ubiquitinating several mitochondrial
proteins on the outer membrane, primes the mitochondrion for subsequent degradation through the
autophagosome [151]. Further complexity has been added following the observation that smARF
can have a negative role on stress-induced mitophagy, a process mediated by the JNK2 kinase [153].
Authors observed that JNK2 induces the ubiquitination and the proteasome-mediated degradation
of smARF upon stress. In this condition, basal autophagy (smARF dependent) is impaired and the
protein levels of p62 increase. This protein, recruited to the mitochondrial membrane, mediates the
formation of the autophagosomal vesicles thus promoting the selective degradation of mitochondria.
Interestingly, smARF re-expression in ARF null mice rescues the ocular defects and the reduction of
sperm production, thus suggesting that these developmental functions depend on smARF dependent
functions [149].

It has been now also extensively shown that full-length ARF proteins (both human and mouse)
can promote autophagy in a p53-dependent and independent manner [137]. Mitochondrial localized
full-length ARF physically interacts with BCL-xL, a member of the Bcl2 family, that plays an important
role in autophagy. The autophagy-inducing activity of ARF was shown to involve the displacement
of Beclin-1 from BCL-xL complexes through direct binding of ARF to BCL-xL [124,154–162] thus
promoting the activation of the key mediator of autophagy, the Beclin-1/Vps34 complex [124,154,155].

Analysis of ARF mutants showed that the ARF C-terminal domain, comprising amino acids
100 to 120, is necessary for autophagy induction by both human and murine protein [125]. Natural
melanoma mutations in exon 2 (R98L, L104I and R115G), affecting the coding potential of ARF,
but not of p16INK4a, impair ARF ability to induce autophagy [125]. Interestingly, a domain coded
by exon 2, within the 100–132 aminoacidic stretch, has been shown to promote both FAK activation
and cell survival thus suggesting the speculation that ARF-mediated autophagy could be, at least
in part, the mechanism underlining its role in cell spreading [67]. In support of this hypothesis,
in cells that detach from the substrate, or in cells with low level of activated FAK, autophagy
inhibition induces anoikis [156]. Indeed autophagy, by protecting matrix-detached epithelial cells
from anoikis could promote metastatic processes [157]. In support of the cross-talk between cell
morphology and autophagy-mediated survival, ATG proteins have been shown to co-localize with
FAK at focal adhesions [156]. Moreover, autophagy regulates cell spreading, especially cell protrusions
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extensions [158], and is required for focal adhesion turnover and cell migration [159] further supporting
the view that ARF could promote cell spreading through its ability to induce autophagy. It should
be underlined, that while the expression of the N-terminal ARF domain is impaired in mediating
cell spreading, the C-terminal region, in which the autophagy-promoting domain has been mapped,
completely rescues the morphology defect of ARF silenced HeLa cells [67]. Further experiments will
be necessary to validate this hypothesis and clarify the possible involvement of autophagy in this ARF
function and/or in tumor progression. A summary of ARF dependent functions is provided in Table 1.

Table 1. ARF roles in cell proliferation and molecular mechanisms of the observed function.

Functions Mechanisms

Tumor Suppression

Growth control p53 dependent and independent call cycle arrest and apoptosis.
∆Np63 inhibition [4,5,11–13,31–34,42,43,55,79,80]

Chromosomal stability Stabilization of miotic spindle, prevents aneuploidy [62]
Ribosomal biogenesis Inhibition or rRNA processing and transcription [84–87]

Oxidative stress Cellular protection from dysfunctional mitochondria [61]

DNA damage Activation of ATM/ATR/CHK pathway, p53-dependent pathways of DNA
repair [115,116]

Contest Dependent
Autophagy Beclin-1 activation, dissipation of mitochondrion potential [60,123–127]

Differentiation Inhibits angiogenesis in developing eye, protects from apoptosis in
spermatogonia, allows extraembryonic endoderm migration [79,110–117]

Tumor Promoter
Epithelial to mesechimal transition Slug stabilization [139]

Modulation of tumor
microenvironment Metallopeptidase-1 interaction [141]

Survival of lymphoma, protease
and bladder tumor cells

Promotes prostate cancer in Pten mouse model and autophagy in lymphomas;
promotes chemoresistance in bladder cancer [120–127,138,141,147]

Anoikis protection, increased
proliferation

Inhibition of DAPK mediated cell death; activation focal adhesion
kinase [67,160–162]

9. Conclusions

Mammalian cells sustaining oncogenic insults invoke defensive programs resulting either
in cell growth arrest or apoptosis. In non-pathological conditions, ARF protein level is almost
undetectable within the cell. Upon oncogenic stimuli or developmental cues, its levels increase,
eliciting p53-dependent or independent pathways to restrain cell proliferation. ARF protein interacts
with a cohort of different partners involved in different cellular processes.

Recent experimental evidence, also pursued by the observation of high ARF protein levels
in specific tumors, suggested that this protein might have pro-survival functions. The possibility
that ARF might promote or improve the survival of a subset of tumors has been at least in part
correlated with ARFs ability to induce autophagy. Experimental data suggest that within a tumor
cell, ARF protein can be stabilized by decreased proteasome-mediated degradation [101] or by protein
kinase C (PKC) activation [160]. In this latter case, ARF phosphorylation mediates its accumulation in
the cytoplasm where it cannot efficiently exert its classical role in the control cell proliferation [160,161].
Although this can be a way to escape ARF surveillance in tumorigenesis, it might likewise mean
that phosphorylation can confer pro-survival properties to the protein favoring cancer progression.
In line with this last hypothesis, the over-expression of an ARF mutant mimicking the phosphorylated
status of the protein promotes proliferation in HeLa cells, induces FAK stabilization and allows cell
spreading [162]. Adhesion/spreading interplay has a well-documented role not only in malignancy
but also in physiological processes such as embryogenesis [113]. Interestingly ARF involvement in
cytoskeleton organization relies on an evolutionarily conserved mechanism, as p19ARF is able to
rescue spread morphology defects caused by p14ARF silencing. The ARF exon 2-encoded region
(aa 65–132) which, compared to the exon 1β shows a stronger degree of identity between human and
its mouse homologue, is required for FAK binding, activation and cell spreading. These observations
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add a crucial element in the understanding of the functions of the exon 2 encoded domain, in which
the bulk of ARF mutations in human cancers resides. The data presented thus implies that the cellular
environment, both within and outside the cell, can dictate the function of ARF as a tumor suppressor
or as a pro-metastatic player in cancer. Unravelling the molecular mechanisms underlying ARF duality
in cancer progression will be of great interest for the future design of cancer therapy.
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