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Abstract: The impact of in-plane and perpendicular magnetic fields on the spatial arrangement
of superparamagnetic nanospheres is explored. We utilize nanosphere self-organization methods
like Spin Coating and Drop-Casting in the presence of magnetic fields. In this way, the additional
parameter of the long range magnetic dipolar interactions is introduced to the competing nanosphere–
surface and nanosphere–nanosphere interactions, which control order and agglomeration. We present
a comparative analysis of the self-assembly characteristics with respect to the different methods
and the effect of the applied field in different directions. Under zero field perfect hexagonal arrays
can be obtained by spin coating. Parallel applied fields tend to create directional patterns, while
perpendicular favor 3D-accumulation.
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1. Introduction

Modern magnetic-material applications require homogeneous microstructures con-
sisting of monodisperse magnetic entities. A facile route towards such microstructures is to
exploit other materials as templates of model nanostructures via a “bottom-up”, low-cost
approach. Monodisperse nanosphere single-layers that tend to form 2D-hexagonal close
packed patterns can be utilized either as templates for the deposition of “nanocaps” or as
masks for the formation of triangular-like islands [1–4].

The underlying mechanisms of spontaneous nanosphere organization involve the
formation of small aggregates of nanoparticles into larger structures, under the influence
of capillary particle–particle, particle–substrate, and hydrodynamic forces [2–7]. Recently,
Chandramohan et al. [8] developed a spin-coating method for the successful self-assembly
of NPs with respect to hexagonal packing density and large area surface coverage. Crucial
microscopic parameters are the centrifugal force, gravity, surface tension, and evaporation
rate of the fluid and the substrate’s hydrophilicity. These are controlled by the various
solvent and nanosphere concentrations in the solution, the rotation speeds, and use of
appropriate surfactants. They achieved high, defect-free, area coverage using variable
rotation speed, under constant acceleration, allowing for optimal performance during the
different stages of spin coating. A similar methodology had been proposed previously and
studied both experimentally and theoretically [9].

A simpler approach for balancing between gravitational forces and suspension’s
evaporation rate, is based on drop casting [1,10,11]. By “cleaning” and tilting the substrate
almost vertically, hexagonal packing with satisfactory area coverage can be achieved.
The optimization is based on pinning the NPs to the substrate during fluid movement.
Fluid evaporation can be delayed by drying in ambient conditions. Independently of
the technique (spin coating, drop casting, and dip coating), fast evaporation rate of the
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solution may negatively affect the extended structural coherence and thus the quality of
the monolayers [3,12,13].

The use of magnetic forces during these processes has been less studied. Dipolar
interactions are known [14,15] to lead to the formation of one-dimensional chains and rings
and may not seem promising for formation of regular arrays. However, magnetic forces
can be used to obtain novel and interesting types of 2D and 3D organization [16,17].

Jadav et al. have used magnetic nanofluid to induce bi-dispersed suspension of
non-magnetic particles into colloidal chain, triangle, rectangle, and ring-flower configu-
rations [18]. Abelmann et al. have demonstrated that 3D structures can self-assemble by
taking advantage of dipolar forces [19]. Ahniyaz et al. investigated how the long-range
order of maghemite nanocube superlattices can be controlled using a modulated magnetic
field [20]. All these open the possibilities to prepare tailor-made magnetic metamateri-
als [21,22].

Here, we present the utilization of the above self-organization methods, for the effec-
tive self-assembly of superparamagnetic polystyrene nanospheres, with diameter range of
0.25–1.43 µm. Due to the significant aggregation of magnetite NPs, a polystyrene matrix is
suggested for the NPs to be self-assembled [23,24]. We report on the formation of monolay-
ers with respect to 2D hexagonal packing, monolayer formation, and substrate coverage.
In addition, a comparison of the same organization methods is given with and without
in-plane and perpendicular applied field.

2. Materials and Methods

Aqueous solutions of polystyrene micro/nanospheres of diameters 0.27–1.31 µm,
with incorporated iron oxide superparamagnetic nanospheres (MSNs) were obtained from
MicroParticles GMBH. Iron oxide particles that are commonly employed for biomedical
and similar applications include both magnetite (Fe3O4) and maghemite (γ -Fe2O3). The
magnemite is derived from magnetite by adding vacancies (one-third of an atom out of
the 2 atoms of the Fe+3 sites). These two phases are practically indistinguishable by most
characterization techniques (with the exception of Mossbauer spectroscopy), especially
in such small particle sizes, and in-between phases can exist. The exact crystal phase, is
not crucial for their functionality, as it regards the aims of the present study. It is their
superparamagnetic nature that permits them to be driven by external fields, while at zero
field, they become essentially non-magnetic. Thus they will not agglomerate uncontrollably
but only to the degree that the strength of the external field imposes.

The MSNs were deposited, as 1 × 1 cm2 pieces of thermally oxidized Si wafers. These
were covered by a 500 nm oxide layer, which is functionalized to improve wettability.
The substrates were treated by a “piranha” solution (H2O2 and H2SO4 at a ratio of 1:1) to
increase the surface’s hydrophilicity. After that, the substrates were washed with ultrapure
water and sonicated in an isopropyl alcohol bath for 10 min followed by drying with
N2 to remove the residual acid. This surface treatment was crucial in order to obtain
a homogeneous solution deposition on the substrate’s surface. The hydrophilicity was
quantitatively evaluated by contact angle measurements. On the untreated SiO2 surfaces,
the solution had a contact angle of 46◦, suggesting a mild wettability. After the piranha
treatment, the contact angle was lowered to 23◦. The contact angle could be further lowered
down to 10◦ by utilizing surfactants as Triton X-100 and sodium dodecyl sulfate (SDS).
Triton X-100 was diluted with methanol at a ratio of 1:400 and then mixed with the MSNs
solution. This straightforward procedure resulted in a high boiling point solution due to
the presence of the Triton X-100. SDS, on the other hand, was utilized both before and
after the MSNs solution was deposited on the surface with the drop casting method. The
substrates were left in a 10% aqueous SDS suspension for 24 h. Typical contact angle
measurements are presented in Figure 1.
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The droplet spreads on the surface in a more efficient way when using Triton X-100. 
Therefore, for the spin coating experiments, we suggest mixing of the initial aqueous so-
lution with a surfactant; SDS is better suited for dip coating experiments similar to 
Rybczynski et al. [25] who employed a method of self-assembly based on a liquid-gas 
interface with SDS dipping. 

Two different methods were utilized for the solution application to the substrate’s 
surface and for the MSNs self-assembly: drop-casting and spin-coating. 

Drop casting was performed using either the aqueous nanoparticle suspension as is 
or mixed with methanol and Triton X-100. Piranha treated substrates were placed on top 
of a base with variable inclination, ranging from 10° to 40°. To achieve magnetic organi-
zation, a small electromagnet was used to generate a magnetic field parallel to the sub-
strate and perpendicular to the direction of the inclination. A schematic of the experi-
mental setup geometry is depicted in Figure 2. 

  

Figure 2. Schematics of drop casting in a magnetic field (a) under an applied field of 0.11 T parallel 
to the substrate, which is tilted by an angle of φ to the horizontal plane (b) under a field of perpen-
dicular to the substrate. 

In spin coating experiments, under perpendicular field, the surface-treated substrate 
was rotated on the platform of the spin coater, which was placed in the middle of a coil. 
For in-plane field application, the sample was rotated until the solution expands on the 
surface; then, it was removed from the spin coater and left to settle under the field on 

Figure 1. Contact angle measurements showing the improvement of wetting upon Triton X-100
surfactant addition in the aqueous suspension.

The droplet spreads on the surface in a more efficient way when using Triton X-100.
Therefore, for the spin coating experiments, we suggest mixing of the initial aqueous
solution with a surfactant; SDS is better suited for dip coating experiments similar to
Rybczynski et al. [25] who employed a method of self-assembly based on a liquid-gas
interface with SDS dipping.

Two different methods were utilized for the solution application to the substrate’s
surface and for the MSNs self-assembly: drop-casting and spin-coating.

Drop casting was performed using either the aqueous nanoparticle suspension as is
or mixed with methanol and Triton X-100. Piranha treated substrates were placed on top of
a base with variable inclination, ranging from 10◦ to 40◦. To achieve magnetic organization,
a small electromagnet was used to generate a magnetic field parallel to the substrate and
perpendicular to the direction of the inclination. A schematic of the experimental setup
geometry is depicted in Figure 2.
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Figure 2. Schematics of drop casting in a magnetic field (a) under an applied field of 0.11 T parallel to
the substrate, which is tilted by an angle ofϕ to the horizontal plane (b) under a field of perpendicular
to the substrate.

In spin coating experiments, under perpendicular field, the surface-treated substrate
was rotated on the platform of the spin coater, which was placed in the middle of a coil. For
in-plane field application, the sample was rotated until the solution expands on the surface;
then, it was removed from the spin coater and left to settle under the field on horizontal
platform inside a coil. For the Triton X-100-treated samples, rotation speeds up to 8000
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rpm with a standard acceleration rate of 200 rpm/s were used. The experimental setup is
displayed in Figure 3.
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Figure 3. Spin coating configuration for sample rotation under perpendicular magnetic field. We uti-
lize a current source and a coil, which is placed inside the spin coating with a special 3-dimensional—
printed base, replacing the Spin Coaters’s sample holder.

For the observation of the surface morphologies of the samples at different scales,
we used a Zeiss Axio Imager A1m optical microscope fitted with a Canon 80DDSLR
and a Scanning Electron Microscope (SEM, JEOL Ltd., Tokyo, Japan). The magnetic
properties of the MSNs were studied using a vibrating sample magnetometer (VSM) of
Lakeshore Cryotronics Inc. (Westerville, OH, USA). The morphology in small scale was
studied with an atomic force microscopy (AFM) in tapping mode with a Bruker Multimode
3D Nanoscope (Ted Pella Inc., Redding, CA, USA) using a microfabricated silicon can-
tilever type TAP-300G, with a tip radius of <10 nm and a force constant of approximately
20–75 N m−1.

3. Results and Discussion
3.1. Magnetic Measurements

In Figure 4, the magnetization curves obtained at room temperature with the help
of a VSM are shown. There is no hysteresis, and the curves can be fitted to the Langevin
function. This proves their superparamagnetic nature. Superparamagnetism is important
for their functionality, in the sense that in a moderate field (e.g., 0.1 Tesla), they are already
magnetized. On the other hand, at zero field they become essentially non-magnetic and
would not tend agglomerate uncontrollably. The Langevin function fitting gives a magnetic
moment (µ) ranging from µ = 16,600 µB for the larger polystyrene spheres to 51,100 µB
for the smaller ones. This means that the larger polystyrene particles incorporate smaller
iron oxide nanoparticles. Thus, the drop of saturation magnetization of the composite
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polystyrene/iron oxide spheres at smaller sizes must be assigned to reduced iron oxide
content. The saturation magnetization of magnetite nanoparticles depends on the prepa-
ration conditions [26,27]. Some estimations can be done assuming a typical saturation
magnetization value of 78 Am2/kg and the bulk density which gives MS = 405 kA/m. Then,
the weight percent of the magnetic phase is estimated to 12.5%, 18.2%, and 23.8% for the
270 nm, 536 nm, and 1.31 µm spheres, respectively. For spherical magnetic nanoparticles,

the diameter is given by, D = 3
√

6
π

µ
MS

which yields 13.1, 11.7, and 9 nm respectively.
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Figure 4. Magnetization curves for polystyrene/iron oxide spheres of different diameters, measured
at room temperatures. The red lines are fits to the Langevin function. Ms is the saturation magne-
tization, kBT is the thermal energy taken at T = 290 K, and µ is the total magnetic moment of each
particle.

3.2. Drop-Casting
3.2.1. Self-Assembly under Zero Magnetic Field

To achieve small substrate sizes, the typical approach is drop casting of the aqueous
nanoparticle suspension (without a surfactant addition) on the substrate’s surface which is
placed at an angle to the horizontal plane. The solvent drying rate and wetting behavior
determines the kinetics of this process. The inclination of the substrate surface allows the
optimization of the velocity of the droplet sliding motion and its asymmetric deformation
in combination with the evaporation rate to achieve the largest possible monolayer covered
area. Too high inclination will lead to accumulation of the material at the bottom edge
of the material, while on the other hand, too low inclination results in thick multilayer
MSNs stacks. Monolayer formation is based on the residual material along the trail of the
sliding droplet, and it is limited within an intermediate area (≈3 mm) between the sparsely
covered upper part and thick material accumulated at the lower part (Figure 5). Then,
structural coherence of the hexagonal arrays spans over 20–30 nanospheres and coexists
with uncovered areas (Figure 6).
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Figure 6. Self-assembly patterns of 536 nm diameter iron oxide superparamagnetic nanospheres
(MSNs) under zero field.

3.2.2. Self-Assembly in the Presence of Magnetic Field

The same drop-casting process was also performed under external magnetic field
applied along two different directions: in–plane and perpendicular to the sample’s surface.
The applied field’s strength was 0.11 T unless otherwise noted. Taking advantage of the
superparamagnetic nature of the MSNs, different kinds of organization are achieved as
follows.
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• In-Plane Field

As opposite magnetic poles are created on the opposite ends of each sphere, along the
field direction, the tendency of magnetic nanoparticles to form lines can be explained from
these dipolar interactions or equivalently as a result of magnetic flux closure. This kind of
structures are observed in sparsely covered areas (Figure 7).
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Figure 7. Line formation of 1.31 µm diameter MSNs under in-plane applied field allocated sparsely
on the substrate. The applied field is 0.11 T along the horizontal direction.

This is a common behavior of MSNs when they assemble in a solid–liquid interface [17].
At lower deposition angles, like ϕ = 10◦ (Figure 8), MSNs of 536 nm diameter form large
(in µm) rectangular blocks organized along the applied magnetic field direction. Their
structural coherence spans with lengths of 0.2–0.3 µm. The “cracks” between the blocks are
attributed to the evaporation of the water solvent.
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• Perpendicular Field

The application of a magnetic field perpendicular to the substrate’s surface, results to
the appearance of pyramidal 3D structures. The field was applied simultaneously with
the solution drop casting on the surface. Different values of magnetic field, H1 = 0.06 T,
H2 = 0.1 T, and H3 = 0.5 T were applied. This process results in increased concentration of
the MSNs at the center of the sample. Here, also blocks of particles are formed as shown
in Figure 9, for MSNs with 536 nm diameter but with irregular shapes when compared to
those obtained by in-plane field. Since the field is out of plane, these flakes do not exhibit
strong directionality within the substrate plane and tend to form radial patterns. Using
stronger fields, nanosphere accumulation is enhanced at the center, and some of the blocks
flake-off the substrate due to the strong attraction of the field.
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3.3. Spin Coating

According to the process described by Chandramohan et al. [8], we have prepared
samples of different diameter. The rotation speed extended from 150 to 8000 rpm. The
SC routine is summarized in Table 1. The effectiveness of the process was checked on
non-magnetic PS nanospheres with 170 nm diameter and yielded high-quality hexagonal
arrays, as presented in Figure 10.

Table 1. Spin coating routine summary.

Stage RPM/s Duration (s) Phase Effect

1 150 120 Solution spreads over substrate

2 250 120 Spin-up Coverage improvement

3 800 60 Spin-off Disordered monolayer formation

4 2500 20 MSNs adhesion to substrate

5 5000 20 Self-ordering Hexagonal packing

6 8000 360 Drying Enhanced hexagonal packing
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Figure 10. Surface topography obtained by atomic force microscopy (AFM) microscopy with height
analysis. The Polystyrene nanosphere diameter is in excellent agreement with the nominal.

We have applied this method using different MSNs solution and surfactant ratios.
Prior to the all the experiments, the substrates were cleaned and dried according to the
procedure described in Materials and Methods section. The self-organized spheres formed
a dense 2D-hexagonal grid in all cases.

3.3.1. Spin Coating under Zero Field

For this process, the optimal ratio of MSNs solution ratio to the surfactant solution
(Triton X-100 + methanol) was found to be 4:1. The structural coherence of the hexagonal
lattice is of the order of 10–30 spheres. Random voids among the MSNs configurations
persist but in the form of point defects and not as extended areas as it was evident with
the drop-casting technique (Figure 11). By scaling down to 10 µm, one can more efficiently
observe the formation of these small hexagonal areas. Similar behavior is presented in
Colson et al. [9] regarding the formation of small or large monolayer HCP ordered areas.
In our case, we observed small hexagonal lattices with defects in between them, which
restricts the structural coherence in the order of a small number of spheres. The defects
are mainly dislocations, and they prevent a continuous large-scale formation of close-
packed hexagonal lattice of MSNs. These small hexagonal lattices are attributed to the fast
evaporation of the solvent [28].
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3.3.2. Spin Coating in Magnetic Field

• In–Plane Field

By applying the field in-plane to the sample’s surface, the MSNs are expected to align
along the field’s direction. Following the same routine as before, adjustments were needed
to achieve the MSNs self-assembly. The first stages of the SC are required for the solution
thinning. The SC processes are terminated at stage 3 (Table 1) before the MSNs settle
to their final positions. The deposited solution is left to dry under a magnetic field of
H = 0.11 T. In Figure 12a, MSNs with 536 nm diameter are assembled in arrays of thick
lines, along the direction of the external field.
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Figure 12. MSNs configurations obtained by drying ex-situ under the application of an in-plane
magnetic field following spin-coating deposition of their aqueous solutions: (a) 536 nm diameter and
(b) 1.31 µm diameter.

• Perpendicular Field

The in-situ process of the external field application perpendicular to the sample’s
surface is followed while the SC routine is active. The magnetic field value is H = 0.1 T,
and it is applied before Stage 4 of the SC routines. The resulting configuration is displayed
in Figure 13. The analysis reveals that the MSNs, under the application of magnetic field,
formed areas of multilayers, which appear denser (Figure 13). These, island-like, areas
are separated by uncovered substrate areas. The dark brown areas, depicted in Figure 13,
correspond to a greater number of piled-up layers, while the light brown areas correspond
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to monolayer. To note that a magnetized body placed in a uniform field will rotate to align
its magnetic moment along field, but as the field then exerts two equal and opposite forces
on its two “magnetic poles” there is no net force of translation. In an inhomogeneous
field, on the other hand, it can be shown that a force proportional to the gradient of the
field exists. Superparamagnetic particles, which do not possess a permanent magnetic
moment but are magnetized by the existing field, experience a force proportional to the
gradient of the square of the field. This mechanism can explain the tendency of the MSNs
to accumulate as the already deposited magnetized spheres create a strong field gradient
around them. Thus, the MSNs tend to concentrate on top of the existing islands forming
multilayered structures while leaving uncovered substrate areas.
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3.4. Spin Coating Followed by SDS Post-Treatment

In this case, spin coating of the MSNs solution is followed by immersion of the covered
substrates in a 10 wt.% SDS-aqueous solution at a small angle followed by lift-off from
the SDS-aqueous surface. The samples are left to dry for 3 h in ambient conditions. This
is a modification of the method by Rybczynski et al. using spin-coating instead of drop
casting [25]. A two-stage spin coating has been employed, after the solution is dropped on
the surface. The SC routine proceeds as follows: (a) the sample is rotated at 160 RPM/s for
the solution to expand on the surface and (b) the rotation speed is ramped up to 800 RPM/s
for 120 s, which was found as optimal. Large areas of hexagonal arrays are obtained with
structural coherence spanning of 10–20 MSNs (Figure 14).
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4. Conclusions

We have studied the self-assembly of paramagnetic polystyrene nanospheres arrays
obtained by spin coating and drop casting of their aqueous solutions. It is shown that
using superparamagnetic nanospheres, it is possible to control their self-organization by
magnetic fields and achieve more complex, or even 3D structures, beyond the typical
hexagonal arrays. Self-organization in the mesoscopic scale, where the thermal energy
cannot help the system finding its energy minima, is an interesting problem where subtle
play of several competing kinetic processes defines the outcome. The use of superpara-
magnetic spheres adds the long range magnetic dipolar interactions to the competing
nanoparticle-surface (substrate hydrophobicity-hydrophilicity) and the nearest neighbor
nanoparticle-nanoparticle interactions, which control order and agglomeration. An ad-
vantage of the superparamagnetic particles is that the strength of the interactions can be
tuned by the applied field, and it is practically switched off when the external applied
field is removed. The self-assembly of magnetically functional entities is much less studied
compared to the vast existing literature of their non-magnetic counterparts. Magnetic forces
favor agglomeration, which is usually not desirable in obtaining high-quality monolayers.
However, it opens possibilities to obtain a richer variety of organized structures. The
present work shows that, due to the long range of the magnetic forces, even weak fields
can have a strong impact on self-organization patterns.
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