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Background: This study aims to develop and validate a predictive model

combining deep transfer learning, radiomics, and clinical features for lymph

node metastasis (LNM) in early gastric cancer (EGC).

Materials and methods: This study retrospectively collected 555 patients with

EGC, and randomly divided them into two cohorts with a ratio of 7:3 (training

cohort, n = 388; internal validation cohort, n = 167). A total of 79 patients with

EGC collected from the Second Affiliated Hospital of Soochow University were

used as external validation cohort. Pre-trained deep learning networks were

used to extract deep transfer learning (DTL) features, and radiomics features

were extracted based on hand-crafted features. We employed the Spearman

rank correlation test and least absolute shrinkage and selection operator

regression for feature selection from the combined features of clinical,

radiomics, and DTL features, and then, machine learning classification models

including support vector machine, K-nearest neighbor, random decision

forests (RF), and XGBoost were trained, and their performance by determining

the area under the curve (AUC) were compared.

Results: We constructed eight pre-trained transfer learning networks and

extracted DTL features, respectively. The results showed that 1,048 DTL

features extracted based on the pre-trained Resnet152 network combined

in the predictive model had the best performance in discriminating the

LNM status of EGC, with an AUC of 0.901 (95% CI: 0.847–0.956) and
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0.915 (95% CI: 0.850–0.981) in the internal validation and external validation

cohorts, respectively.

Conclusion: We first utilized comprehensive multidimensional data based on

deep transfer learning, radiomics, and clinical features with a good predictive

ability for discriminating the LNM status in EGC, which could provide favorable

information when choosing therapy options for individuals with EGC.

KEYWORDS

early gastric cancer (EGC), lymph node metastasis, deep learning, radiomics,
convolutional neural networks

Background

Gastric cancer (GC) is one of the most commonly diagnosed
malignant tumors and the third leading cause of cancer-related
deaths in China (1, 2). Early gastric cancer (EGC) is defined as a
lesion of the stomach that invades no more than the submucosa,
regardless of lymph node metastasis (LNM) (3). With the
popularization of endoscopic technology, patients with EGC can
be more easily diagnosed, accounting for approximately 20%
of GC in China (4). The 5-year overall survival rate in EGC
was greater than 90% after standardized D1 lymphadenectomy
treatment. Regional node metastasis is an important prognostic
factor for patients with EGC. However, only between 0 and 20%
of patients who had a radical gastrectomy developed LNM, and
the majority of these individuals had received excessive surgical
treatment (5, 6). According to the Chinese recommendations
for diagnosing and treating gastric cancer and the Japanese
Gastric Cancer Association treatment guidelines, endoscopic
submucosal dissection (ESD) is authorized as a curative therapy
option for patients with EGC with a low risk of LNM (7, 8).
Due to its minimally invasive, function preservation, and better
postoperative quality of life, ESD has become a more acceptable
therapeutic method than surgical procedures in treating EGC
recently (9, 10). As a result, knowing the status of LNM is critical
when choosing therapy options for individuals with EGC.

Recently, many efforts had been explored to identify
clinical or pathological biomarkers to predict the LNM of
gastric cancer. For example, several research studies had
found independent high-risk factors for EGC lymph node
metastases and developed prediction models, such as clinical
features, genetic characteristics, and imaging data (4, 11, 12).

Abbreviations: LNM, lymph node metastasis; EGC, early gastric cancer;
DTL, deep transfer learning features; LASSO, least absolute shrinkage
and selection operator; SVM, support vector machine; KNN, K-nearest
neighbor; RF, random decision forest; CT, computed tomography; CNNs,
convolutional neural networks; ESD, endoscopic submucosal dissection;
ROI, region of interest; ICC, intra-/inter-class correlation coefficient; 3D,
three-dimensional.

For clinical features, high-risk indicators included age, sex,
ulceration, invasion depth, histological types, differentiation,
tumor size, serum indices, and lymphovascular invasion in
several prediction models (11, 13, 14). Daisuke and colleagues
(15) established a reliable diagnostic tool based on a 15-gene
signature to predict LNM in patients with EGC. The HER2
status can also improve accuracy of predicting LNM (12).
However, these aforementioned high-risk factors for predicting
the LNM status in EGC could not effectively reduce excessive
surgical treatment with standard D1 lymph node dissection.
In the meantime, previous research studies almost used mono-
modal data containing limited information to develop a model
to assess the possibility of LNM, making it difficult to improve
its accuracy. Therefore, accurate prediction of the LNM status of
EGC has become a bottleneck stage.

Non-invasive computed tomography (CT) is proposed as
the first-line imaging tool for identifying LNM by the National
Comprehensive Cancer Network, which is frequently utilized
in patients with gastric cancer for differential diagnosis and
preoperative diagnosis, treatment evaluation, and staging, and
this technology can facilitate the detection of malignant lesions
(16, 17). Jingtao et al. (4) demonstrated that the sum of long-
diameter and the sum of short-diameter lymph nodes greater
than 3 mm in CT images were available indicators to diagnose
LNM in EGC. However, the accuracy of CT discriminating the
LNM status is only approximately 60% and even lower in ECG
(13), which is an unsatisfactory clinical level of diagnosis.

Radiomics refers to the conversion of medical images
into high-dimensional quantitative data that can be used to
characterize microscopic aspects of malignant tissues (18).
Deep convolutional neural networks (CNNs) have achieved
significant results in recent years in the field of computer
vision, which serves a similar function in medical imaging (16,
17, 19). In medical imaging, the successful implementation of
the aforementioned methods necessitates a sufficient number
of the training cohort. However, acquiring a large number of
medical images is difficult (20). Due to a pre-trained CNN
known as “transfer learning (TL)” can be used to minimize
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overfitting with a small training size, TL has gradually been
used in various medical image analysis domains in recent
years (21, 22). TL increases model performance in target tasks
by transferring previously learned features from source tasks.
A previous study found that a TL radiomics nomogram based on
gastric whole slide images can assist in distinguishing primary
gastric lymphoma from Borrmann type IV GC (22). In addition,
Linlin et al. (21) developed a convenient model based on deep
learning-based radiomics characteristics to differentiate brain
abscess from cystic glioma. Therefore, it suggests that building
a TL radiomics model may be beneficial in improving the
accuracy of LNM prediction in EGC.

Currently, only a few type of research focused on evaluating
the efficacy of deep learning-based radiomics for LNM
prediction in GC, and research mostly has concentrated on
advanced GC (23, 24), while yet to be reported in EGC.
Therefore, this study aimed to create a predictive model for
discriminating the LNM status in EGC, combining clinical
indicators, radiomics features, and pre-trained CNN-identified
deep learning features.

FIGURE 1

Inclusion and exclusion criteria for patients with EGC for the
training and internal validation cohorts. EGC, early gastric
cancer; CT, computed tomography; ESD, endoscopic
submucosal dissection.

Materials and methods

Patients

The Ethics Committee of the First Affiliated Hospital of
Nanchang University approved this retrospective study and
waived the necessity for informed consent. Between August
2016 and December 2021, we collected patients with EGC who
had a radical gastrectomy at the First Affiliated Hospital of
Nanchang University. Overall, of 1,076 patients with EGC, 555
patients who had radical gastrectomy satisfied the following
criteria (Figure 1). Eligible patients were those who had a radical
gastrectomy with standard D1/D2 lymph node dissection and
had pathologically proven EGC and were treated for the first
time. In total, 79 patients with EGC collected from the Second
Affiliated Hospital of Soochow University were regarded as
the external validation cohort. The exclusion criteria were as
follows: (1) no preoperative CT imaging available, (2) patients
with low CT imaging quality cannot be used to further analyze,
(3) patients with ESD or other therapy before surgery, (4)
patients with insufficient clinical information, and (5) CT
scanned more than 2 weeks before surgery. The patients were
randomly split into two cohorts, with a ratio of 7:3—the training
cohort (n = 388) and the internal validation cohort (n = 167).

Clinical characteristics

The clinical features of the patients with EGC we collected
included age, gender, tumor size, depth of tumor infiltration,
histological grade, Lauren type, ulcer, and lymphovascular
invasion (Supplementary Datasheet 1). Tumor size was
determined as the maximal diameter, and depth was measured
at the deepest point of infiltrated carcinoma cells.

Computed tomography scanning
protocol

128-channel CT (Siemens Healthcare), 256-channel CT
(Siemens Healthcare), 128-channel CT (IQon Spectral CT), and
256-channel CT (Philips Brilliance iCT 256) were used for
contrast-enhanced CT scanning. The scanning parameters were
a tube voltage of 80 to 120◦kVp, a tube current of 120–300◦mAs,
a pitch of 0.6 to 1.25 mm, an image matrix of 512 × 512,
and a reconstruction slice thickness of 1 or 2 mm. All patients
received racanisodamine hydrochloride injection of 20 mg by
intramuscular injection and drank 1,000–2,000 mL of water
before abdomen contrast-enhanced CT. The arterial phase and
portal venous phase were obtained within 25–30 s and 65–70 s,
respectively, following intravenous administration of contrast
media (1.5◦mL/kg, at a rate of 3.0–3.5 ml/s).
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Image preprocessing and tumor
segmentation

In this study, we used ITK-SNAP software (version
3.6.0, USA) to manually segment regions of interest (ROIs).
The tumor lesion was clearly enhanced and more readily
distinguished between the tumor and peripheral normal
tissue during the portal venous phase, and many prior
investigations used this phase to segment tumor lesions (25,
26). The lesion was considered visible and employed for
the following segmentation when the characteristic of the
lesion on the CT images was consistent with the pathological
results. We meticulously outlined neighboring upper and
lower slices of the solid tumor in the three-dimensional
(3D) medical imaging, being cautious not to include the
normal stomach wall or surrounding air or fluid. Then, a
radiologist (YZ, 4 years of experience) segmented all 634
patients with EGC. The intra-/inter-class correlation coefficient
(ICC) was used to evaluate the reproducibility of the radiomics
feature (27). To keep the repetitive and stable radiomics
parameters, we selected 30 patients, and then, the ROIs
(YZ) were redrawn a month later for feature extraction.
The ROIs of these 30 patients were outlined by another
radiologist (FZ, with 12 years of experience) to ensure
interobserver repeatability.

Since the deep transfer learning (DTL) model input was
rectangular images comprising the full ROI lesions, the maximal
sliced photo of the tumor lesion for each patient was chosen
as the model input (23). The CT image was cropped using a
rectangular ROI around the tumor contour. Then, the slices
of the rectangular frame were saved in a “png” format for
subsequent analysis (Figure 2).

Feature extraction

A total of 107 radiomics features were traditionally extracted
based on 3D ROIs, which are divided into three categories:
14 shape features, 18 first-order statistics features, and 75
texture features (Supplementary Datasheet 2). These feature
extractions were performed by using PyRadiomics software
(version 2.1.0).

In this study, we represented a TL learning network
for overcoming the overfitting problems that regular deep
learning suffers from due to insufficient training data. The
parameters of several deep learning networks were trained by
maximal rectangular slice ROIs of EGC, including Resnet152,
Resnet101, Resnet50, Resnet34, Resnet18, Wide_resnet101_2,
Wide_resnet50_2, and Inception v3. Then, convolution neural
networks based on pre-trained TL networks were used to
extract DTL features, which followed the following steps:
the slices of ROIs were fed to the pre-trained network; the
average probability from all slices was used to generate

TL features; and the penultimate FC layer output was
used as TL features (21). Based on these pre-trained
deep learning networks, we extracted 512–2,048 transfer
learning features, respectively (Supplementary Table 6).
Furthermore, our research was implemented in Python 3.10
and run on a system with an Intel Xeon Silver 4214 CPU
and 256 GB memory.

Feature fusion

To improve the accuracy of LNM prediction in EGC, we
fused clinical variables, radiomics features, and DTL features.
The fusion scheme is to combine various features for subsequent
analysis. The groups of feature fusion included clinical variables
combined with radiomics features, clinical variables combined
with DTL features, DTL features combined with radiomics
features, and clinical variables combined with radiomics features
and DTL features. In addition, we also used mono-modal data to
build machine learning classification models.

Feature selection and model
construction

The radiomics parameters’ repeatability and stability were
assessed using intraclass correlation coefficients (ICCs). Only
radiomics features with an ICC ≥ 0.75 were considered highly
stable and retained for subsequent analysis. After feature
fusion, we adopted a three-step feature selection method to
select the best features for discriminating the LNM status
in EGC. First, each feature group separately was used to
standardize combined features by z score normalization in
the training and validation cohorts. Then, we employed the
Spearman rank correlation test to evaluate the linear correlation
between individual features for redundancy elimination (28).
Once two features have a stronger correlation, they will have
a higher absolute value of the correlation coefficient. We
selected one of the features for subsequent analysis when a
Spearman correlation coefficient > 0.9 between each feature.
Finally, the least absolute shrinkage and selection operator
(LASSO) regression was utilized for feature selection with
non-zero coefficients as valuable predictors in each feature
group (29).

After feature selection and fusion, we employed Python
Scikit-learn to develop machine learning classification models
in each feature group. The machine learning classification
models, including support vector machine (SVM), K-nearest
neighbor (KNN), random decision forests (RF), and XGBoost,
were compared for their different performances. Receiver
operating characteristic (ROC) curves and AUC values were
used to assess the discriminative ability of the model.
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FIGURE 2

Workflow of model development. DTL, deep transfer learning; ROI, regions of interest.

Quantitative indicators included accuracy, sensitivity, and
specificity (Figure 3).

Statistical analysis

Chi-square tests or Fisher tests were used to compare
categorical variables, while t-tests or the Mann–Whitney U-test
was used to compare quantitative variables to evaluate the
differences in patient characteristics. We employed MedCalc
software (version 20.100) to calculate differences among
different models using the Delong test. Statistical significance
was defined as a P-value less than 0.05 in a two-sided analysis.
We employed IBM SPSS Statistics (Version 20.0, USA) to assess
the clinical variables. ICCs, Spearman rank correlation test,
z score normalization, and LASSO regression analysis were
performed with Python (version 3.101) and R software (version
3.3.1, Austria2).

Results

Patients characteristics

Table 1 represents the characteristics of all patients. In
this study, the training, internal validation, and external
validation cohorts included 388, 167, and 79 patients with
EGC, respectively. We collected 168 patients with invasion
of the mucosa (T1a) and 220 patients with invasion of the

1 https://www.python.org/

2 https://www.r-project.org/

submucosa (T1b) in the training cohort, while the internal
validation cohort enrolled 70 patients with invasion of the
mucosa and 97 patients with invasion of the submucosa. There
were 23 patients with invasion of the mucosa and 56 with
invasion of the submucosa in the external validation. In these
three cohorts, the rates of LNM were 38.14% (148/388), 29.34%
(49/167), and 21.52% (17/79) in training, internal validation,
and external validation cohorts, respectively. Only the grade of
differentiation of EGC in the three cohorts showed significant
differences (P-value = 0.036). However, the rest of the clinical
characteristics including age, gender, tumor size, depth of tumor
infiltration, Lauren type, ulcer, and lymphovascular invasion
were not significantly different between the training cohort and
two validation cohorts.

Results of the feature extraction and
selection

A total of 107 radiomics features were traditionally extracted
based on three-dimensional ROIs. Only radiomics features with
an ICC ≥ 0.75 were considered highly stable and retained
for subsequent analysis, and then, we selected 101 radiomics
features for the following work, instead of original gldm small
dependence low gray level emphasis, original glrlm short run
low gray level emphasis, original gldm low gray level emphasis,
original glrlm low gray level run emphasis, original glszm small
area low gray level emphasis, and original glszm low gray level
zone emphasis (Supplementary Table 1). The tumor patch
images were fed into the pre-trained CNN, which extracted 512–
2,048 DTL features from each CT image modality. The extracted
DTL features were output from the pre-trained CNN final fully
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FIGURE 3

Radiomics + DTL (Resnet152) + clinical features dimension reduction and performance of the model. (A) LASSO coefficient profiles of the
features. Different color line shows corresponding coefficient of each feature. (B) Tuning parameter (λ) selection in LASSO model. (C) Selected
features weight coefficients. (D) Area under the curve (AUC) of predictive model based on radiomics + DTL (Resnet152) + clinical features in
training and validation cohorts. DTL, deep transfer learning; LASSO, least absolute shrinkage and selection operator.

connected layer, and the pre-trained CNN included Resnet152,
Resnet101, Resnet50, Resnet34, Resnet18, Wide_resnet101_2,
Wide_resnet50_2, and Inception v3.

All groups of feature fusion were analyzed by the Spearman
rank correlation test and LASSO regression, and all features with
non-zero coefficients were selected to construct classification
models. The final selected features of clinical variables combined
radiomics feature group, clinical variables combined DTL
feature group, DTL feature combined radiomics feature group,
and clinical variable combined radiomics features with DTL
feature group are listed in Supplementary Tables 2, 3.

Performance comparison between
various deep transfer learning
networks

To find the best model for the LNM status in EGC,
we compared the performance of pre-trained Resnet152,
Resnet101, Resnet50, Resnet34, Resnet18, Wide_resnet101_2,
Wide_resnet50_2, and Inception v3 (Table 2). Various DTL
features combining clinical variables and radiomics features

were used to construct a diagnostic model. The results showed
that pre-trained Resnet152 was the best performance to
distinguish the LNM status in EGC with AUC 0.901 (95%
CI: 0.847–0.956) and 0.915 (95% CI: 0.850–0.981) in the
internal validation and external validation cohorts, respectively.
In addition, the internal validation cohort had an accuracy
of 96.2%, a sensitivity of 80.0%, and a specificity of 88.1%;
meanwhile, the external validation cohort had an accuracy of
86.1%, a sensitivity of 88.2%, and a specificity of 80.6%. In
the internal and external validation cohort, the AUC score
and accuracy of the Resnet152 model were the best in terms
of performance compared to other models, and the validation
cohort had the most suitable data to evaluate the generalization
ability of the model.

Performance comparison between
various feature fusions

In this study, we compared the modeling effects of the
combined modality, including clinical variables combined
radiomics feature group, clinical variables combined DTL
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TABLE 1 Characteristics of early gastric cancer (EGC) patient included for classification modeling.

Characteristics Training cohort
(n = 388)

Internal validation
cohort (n = 167)

External validation
cohort (n = 79)

P-value

Age, mean ± SD, year 58.62 ± 10.84 57.47 ± 11.74 58.09 ± 12.07 0.535

Gender, No.(%)

Male 237 (61.1) 107 (64.1) 48 (60.8) 0.784

Female 151 (38.9) 60 (35.9) 31 (39.2)

Tumor size, mean ± Std, mm 22.82 ± 13.28 20.88 ± 11.49 20.96 ± 12.09 0.181

Pathological T stage†, No.(%) 0.064

T1a 168 (43.3) 70 (41.9) 23 (29.1)

T1b 220 (56.7) 97 (58.1) 56 (70.9)

Lauren’s classification, No.(%) 0.075

Intestinal type 232 (59.8) 94 (56.3) 46 (58.2)

Diffuse type 67 (17.3) 34 (20.4) 23 (29.1)

Mixed type 89 (22.9) 39 (23.3) 10 (12.7)

Grade of differentiation, No.(%) 0.036

Poor/undifferentiated 197 (50.8) 76 (45.5) 28 (35.4)

Moderate 138 (35.6) 70 (41.9) 43 (54.4)

Well 53 (13.6) 21 (12.6) 8 (10.2)

Vascular invasion, No.(%) 0.608

Negative 336 (86.6) 140 (83.8) 66 (83.5)

Positive 52 (13.4) 27 (16.2) 13 (16.5)

Ulcer, No.(%) 0.300

Negative 136 (35.1) 68 (40.7) 54 (68.4)

Positive 252 (64.9) 99 (59.3) 25 (31.6)

Quantitative variables were in mean ± SD and qualitative variables are in n (%). †According to the eighth edition AJCC Cancer Staging Manual. The bolded P-value showed statistically
significant (P-value < 0.05).

feature group, and DTL features combined radiomics feature
group; meanwhile, three mono-modal features were also used
to construct a model to diagnose the LNM status in EGC,
respectively (Figure 4, Table 3, and Supplementary Figure 1).
The results demonstrated that the predictive model just
based on clinical variables with AUC 0.807 (95% CI: 0.731–
0.910) had better performance than DTL features with 0.687
(95% CI: 0.600–0.773) and radiomics features with 0.631
(95% CI: 0.540–0.724) in the internal validation cohort, as
well as the external validation. Especially, we found that
a predictive model based on DTL or radiomics features
combined with clinical variables can significantly improve
the ability to discriminate the LNM status in EGC with
AUCs of 0.878 (95% CI: 0.819–0.937) and 0.844 (95% CI:
0.780–0.910) in the internal validation cohort, and AUCs
of 0.913 (95% CI: 0.842–0.986) and 0.849 (95% CI: 0.739–
0.959) in the external validation cohort. However, the best
modeling performance of the combined modality feature was
clinical variables combined with radiomics features with DTL
features, and the AUCs were 0.901 (95% CI: 0.847–0.956)
and 0.915 (95% CI: 0.850–0.981) in the internal validation
and external validation cohorts. In addition, we used the
Delong test to compare the different performance between
the various prediction models. Supplementary Table 4 shows

P-values between different models in the two validation cohorts,
respectively.

Performance comparison among
support vector machine, K-nearest
neighbor, random decision forests, and
XGBoost classification

To find a suitable classifier to develop a diagnostic model,
we compared the performance of different machine learning
classifications. In the internal and external validation cohorts,
the results represented that AUCs of SVM classification were
significantly better than those of KNN, RF, and XGBoost
classification in various prediction models. For example, in
clinical variables combining radiomics features with the DTL
feature model, the AUCs of SVM, KNN, RF, and XGBoost
were 0.901 (95% CI: 0.847–0.956), 0.793 (95% CI: 0.712–
0.874), 0.811 (95% CI: 0.742–0.880), and 0.820 (95% CI: 0.742–
0.900) in internal validation (Figure 5 and Supplementary
Figure 2). In addition, the accuracy of SVM classification was
also better in terms of performance than that in KNN, RF, and
XGBoost classification, with accuracy values of 0.962, 0.790,

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.986437
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-986437 September 28, 2022 Time: 4:23 # 8

Zeng et al. 10.3389/fmed.2022.986437

TABLE 2 Difference of various deep transfer learning models.

Models Cohorts AUC (95% CI) Accuracy Sensitivity Specificity

Resnet152 Training 0.909 (0.874–0.943) 0.830 0.872 0.846

Internal validation 0.901 (0.847–0.956) 0.962 0.800 0.881

External validation 0.915 (0.850–0.981) 0.861 0.882 0.806

Resnet101 Training 0.923 (0.889–0.958) 0.835 0.885 0.904

Internal validation 0.887 (0.829–0.945) 0.826 0.735 0.898

External validation 0.899 (0.803–0.996) 0.848 0.882 0.839

Resnet50 Training 0.937 (0.909–0.966) 0.869 0.892 0.892

Internal validation 0.882 (0.825–0.940) 0.850 0.735 0.898

External validation 0.900 (0.821–0.980) 0.823 0.941 0.790

Resnet34 Training 0.916 (0.883–0.949) 0.832 0.872 0.858

Internal validation 0.877 (0.817–0.937) 0.832 0.755 0.864

External validation 0.884 (0.805–0.963) 0.823 0.941 0.694

Resnet18 Training 0.939 (0.911–0.967) 0.838 0.919 0.879

Internal validation 0.831 (0.761–0.901) 0.820 0.592 0.932

External validation 0.862 (0.762–0.963) 0.810 0.824 0.806

Wide_resnet101_2 Training 0.921 (0.889–0.954) 0.835 0.865 0.892

Internal validation 0.859 (0.795–0.922) 0.826 0.755 0.881

External validation 0.846 (0.742–0.951) 0.747 0.882 0.661

Wide_resnet50_2 Training 0.937 (0.909–0.964) 0.840 0.851 0.896

Internal validation 0.868 (0.806–0.929) 0.844 0.714 0.907

External validation 0.888 (0.800–0.976) 0.861 0.706 0.903

Inception v3 Training 0.890 (0.852–0.929) 0.830 0.851 0.846

Internal validation 0.897 (0.844–0.950) 0.826 0.837 0.839

External validation 0.900 (0.825–0.976) 0.823 0.765 0.887

AUC, area under the receiver operating characteristic curve; 95% CI, 95% confidence interval.

0.748, and 0.808 in the internal validation and accuracy of
0.861, 0.823, 0.772, and 0.873 in the external validation cohort
(Supplementary Table 5).

Discussion

Currently, the primary method to cure patients with EGC
was gastrectomy with D1 lymphadenectomy or endoscopic
surgery. With the development of fewer invasion treatments,
ESD and EMR were considered curative treatment methods
for ECG patients without LNM (8). Furthermore, LNM has
been approved as one of the most important prognostic factors,
regardless of EGC and advanced GC (30, 31). Therefore,
assessing the likelihood of LNM is critical to determining
therapy options for patients with EGC. In this study, we
developed and validated clinical variables combining radiomics
features with the DTL features model to discriminate the LNM
status in EGC, which was significantly better than any single
model. Especially, this is the first study to combine DTL features
to predict the LNM status in EGC.

Previous studies had constructed various models to predict
the LNM status in EGC since it was the most important

indicator for therapy options and prognosis. Several studies
showed that clinicopathological risk factors for LNM in EGC
included age, gender, tumor size, depth of invasion, histological
type, ulceration, and lymphovascular invasion (11, 32, 33). In
our results, based on LASSO accordant regression coefficients,
these clinical features were also verified as risk factors, especially
for lymphovascular invasion, depth of invasion, and tumor
size as the three most important indicators. In the three
prediction models, respectively, based on mono-modal data
of clinical variables, radiomics, and DTL features, clinical
variables represented a better ability to discriminate LNM than
the other two single models with AUCs of 0.807 (95% CI:
0.731–0.884) and 0.882 (95% CI: 0.806–0.959) in the internal
and external validation cohorts, respectively. According to the
latest guidelines for endoscopic submucosal dissection and
endoscopic mucosal resection for early gastric cancer (second
edition), absolute indications for ESD or EMR mainly depend
on clinicopathological risk factors (8). The indications of
endoscopic surgery that was approved as a curative treatment
method just based on clinicopathological risk factors were
only suitable for limited patients with EGC, which may
lead to a large number of patients acquiring overtreatment
with D1 lymphadenectomy. Some researchers have also paid
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FIGURE 4

Area under the curve (AUC) of various groups of feature fusion in the training and internal validation cohorts. (A) DTL features (Resnet152); (B)
clinical features; (C) radiomics features; (D) DTL features (Resnet152) + clinical features; (E) clinical + radiomics features; (F) DTL features
(Resnet152) + radiomics features. DTL, deep transfer learning.

TABLE 3 Performance of various combined models.

Models Cohorts AUC (95% CI) Accuracy Sensitivity Specificity

DTL features Training 0.697 (0.642–0.751) 0.660 0.669 0.667

Internal validation 0.687 (0.601–0.773) 0.725 0.857 0.476

External validation 0.600 (0.449–0.750) 0.785 0.710 0.607

Clinical variables Training 0.874 (0.838–0.910) 0.794 0.878 0.717

Internal validation 0.807 (0.731–0.884) 0.796 0.735 0.805

External validation 0.882 (0.806–0.959) 0.785 0.941 0.726

Radiomics features Training 0.823 (0.774–0.872) 0.724 0.770 0.788

Internal validation 0.620 (0.532–0.709) 0.689 0.776 0.530

External validation 0.637 (0.464–0.811) 0.747 0.706 0.629

DTL features + clinical variables Training 0.882 (0.845–0.919) 0.789 0.878 0.742

Internal validation 0.878 (0.819–0.937) 0.814 0.857 0.797

External validation 0.913 (0.842–0.986) 0.886 0.765 0.902

Radiomics features + clinical variables Training 0.952 (0.927–0.977) 0.822 0.900 0.915

Internal validation 0.844 (0.780–0.909) 0.808 0.673 0.873

External validation 0.849 (0.739–0.959) 0.835 0.765 0.839

DTL + radiomics features Training 0.707 (0.655–0.761) 0.660 0.851 0.471

Internal validation 0.673 (0.579–0.766) 0.719 0.694 0.619

External validation 0.581 (0.415–0.746) 0.759 0.706 0.541

DTL + radiomics features + clinical variables Training 0.909 (0.874–0.943) 0.830 0.872 0.846

Internal validation 0.901 (0.847–0.956) 0.962 0.800 0.881

External validation 0.915 (0.850–0.981) 0.861 0.882 0.806

AUC, area under the receiver operating characteristic curve; 95% CI, 95% confidence interval.
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FIGURE 5

Performance of different machine learning classifications based on radiomics + deep transfer learning (Resnet152) + clinical features in the
training and internal validation cohorts. (A) support vector machine (SVM); (B) K-nearest neighbor (KNN); (C) random decision forests; and
(D) XGBoost.

attention to other related predictors with LNM in EGC,
such as hereditary features, visualized features of computed
tomography, and endoscopic ultrasonography (4, 12, 33–35).
On the EGC CT images among 130 patients, the number,
and sum of long diameter and the sum of short diameter of
lymph nodes larger than 3 mm showed a better performance
to discriminate the LNM status with an AUC greater than
0.75 (4). The deep learning radiomics model constructed by
Dong et al. for the prediction of the LNM status in advanced
GC showed good discrimination with AUCs of 0.797 (95% CI:
0.771–0.823) and 0.822 (95% CI: 0.756–0.887) in the primary
cohort and international validation cohort, respectively. Thus,
it is necessary to excavate deeply detailed information on
tumor heterogeneity of CT images to improve the ability to
discriminate the LNM status in EGC.

In recent days, CNN research on various malignancies
is in its early stages, to reduce the stress of medical work
and improve the utilization of medical resources through
artificial intelligence technology (36–38). Several intelligent
systems based on CT images or pathological images have been
tested in GC employing deep learning network technology.
With a sensitivity of near 100% and an average specificity
of 80.6%, Song et al. developed a deep learning model to
improve diagnostic accuracy and consistency of whole slide
images of GC by automatic analysis (39). Two deep learning
predictive models based on radiomics from two multicenter
studies showed a good predictive value for LNM in GC with
median AUCs of 0.876 (95% CI: 0.856–0.893) and 0.797 (95%
CI: 0.771–0.823) in the external validation cohorts, respectively
(23, 40). Due to the aforementioned research mainly focusing
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on advanced GC, it is difficult to apply these predictive
models to EGC. In this study, we developed a model based
on radiomics and DTL features to discriminate the LNM
status in EGC with AUCs of 0.673 (95% CI: 0.580–0.766)
and 0.581 (95% CI: 0.415–0.746) in the internal and external
validation cohorts, respectively. The ability of the model was
relatively lower than that of the aforementioned two types
of research, while clinical features combined with this model
showed significantly good performance to distinguish the LNM
status with AUCs of 0.901 (95% CI: 0.847–0.956) and 0.915 (95%
CI: 0.850–0.981) in the internal and external validation cohorts,
respectively, which may be used to guide therapy options for
individuals with EGC. For the unsatisfactory performance of
radiomics and DTL features, there are the following reasons:
first, the tumor size of EGC was relatively smaller than
that of advanced GC, which limited the utilization of high-
dimensional quantitative data of CT images; second, only the
maximal ROI slice of the tumor was selected for DTL network
analysis, and adding up-and-down- slices may improve the
predictive performance. In addition, we found that the AUC
value of random forest and XGBoost in various models was
highest in the training cohort; however, the results of the
internal validation and external validation cohorts were both
insufficient. We speculated that the model was over-classified
in the training cohort and represented too many branches,
resulting in overfitting of the model.

In this study, the parameters of several deep learning
networks were trained by maximal rectangular slice ROIs
of EGC, including Resnet152, Resnet101, Resnet50, Resnet34,
Resnet18, Wide_resnet101_2, Wide_resnet50_2, and Inception
v3. Previous studies selected different deep learning networks
used to build models with satisfactory performance, such
as VGG-19, DenseNet-201, Resnet18, and Resnet50, so it
is necessary to find a suitable pre-trained deep learning
network for our research (17, 21, 23, 40). Resnet incorporates
residual learning to prevent gradient dispersion and accuracy
reduction in deep networks, resulting in increased network
efficiency, accuracy, and execution speed (21). For example,
Resnet152 is a 152-layer convolutional neural network,
including convolutional layers and fully connected layers. The
Inception module is distinguished by the fact that convolution
cores of varying sizes are convolved on the same feature map,
adding parallel pooling, and the results are aggregated as input
for the next layer, which allows for the acquisition of a greater
abundance of different size features (41). In all models we
constructed, the pre-trained Resnet152 network had the best
performance in discriminating the LNM status in EGC with
AUCs of 0.901 (95% CI: 0.847–0.956) and 0.915 (95% CI:
0.850–0.981) in the internal and external validation cohorts,
respectively. In addition, the pre-trained Inception v3 network
also showed good ability with AUCs of 0.897 (95% CI: 0.844–
0.950) and 0.900 (95% CI: 0.825–0.976) in two validation
cohorts. However, the pre-trained Resnet18 showed relatively

lower performance with AUCs of 0.831 (95% CI: 0.761–
0.901) and 0.862 (95% CI: 0.762–0.963) in the internal and
external validation cohorts, respectively. Thus, it is important
to find a suitable CNN to improve the ability to diagnose in
cancer research.

Artificial intelligence (AI) mainly includes two primary
branches of deep learning and machine learning. It is a
branch of computer science dedicated to creating a machine
that models human cognitive capabilities, including learning
and problem-solving. Single-center observational research was
carried out to assess the effectiveness of CAD in the diagnosis
of EGC utilizing magnifying endoscopy with narrow-band
imaging. CAD system diagnostic performance was equivalent
to the majority of experienced endoscopists compared to 11
professional endoscopists (42). Although the unsatisfactory
performance of radiomics and DTL features model in our
research, AI still has the potential to be valuable tool in cancer
screening, diagnosis, and treatment with the development of the
algorithm and the updating of technology. In addition, larger
prospective trials examining the use of AI throughout the gastric
cancer diagnosis and therapy are required to accurately assess its
effectiveness and utility in clinical practice.

There are some limitations to this retrospective study.
First, when inclusion and exclusion criteria were strict, the
sample bias would have an impact on model training. Because
of low CT imaging quality, 327 patients were excluded from
this study. Second, the radiomics features were only extracted
from CT images of the portal phase, and other phases of CT
images may provide more important features. Third, larger
prospective trials are necessary for evaluating the ability of the
predictive model in clinical practice. Finally, two-dimensional
segmentation may not be representative of the complete tumor,
and some characteristics may be influenced by two-dimensional
versus three-dimensional segmentation. However, in our DTL
analysis, we only employed two-dimensional features from the
maximal ROI slice of the tumor, instead of 3D features.

Conclusion

We first integrated multi-model data based on clinical
variables combining radiomics features with DTL features with
a good predictive ability for discriminating the LNM status in
EGC, which could provide favorable information for choosing
individualized therapy options.
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