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ABSTRACT Here, we describe the complete genome sequence of the T4-like Kleb-
siella pneumoniae myophage Marfa. In its 168,532-bp genome, Marfa has 289 genes,
for which 122 gene functions were predicted. Many similar proteins are shared be-
tween Marfa and phage T4, as well as its closest phage relatives.

Carbapenemase-producing Klebsiella pneumoniae (KPC) is a multidrug-resistant en-
teric bacterium that has emerged as a global health threat (1). KPC is a causative

agent of pneumonia and is one of the most common pathogens in hospital-acquired
infections, with an overall mortality rate in infected patients between 22% and 59% (2,
3). Reliable therapeutic drugs are not available; therefore, bacteriophage-based therapy
is a potential alternative. Here, we describe the novel Klebsiella pneumoniae phage
Marfa.

Bacteriophage Marfa was isolated from chloroform-sterilized pooled swine fecal
samples from Texas and Michigan. Marfa replicates on a pKpQIL plasmid-cured deriv-
ative of K. pneumoniae strain 1776c (4) under aerobic conditions in tryptic soy broth or
agar (Difco) at 37°C, and phage propagation was done using the soft agar overlay
method (5). Genomic DNA was isolated with the Promega Wizard DNA clean-up kit,
according to the protocol from Summer (6) and prepared for sequencing with a TruSeq
Nano low-throughput kit. Sequencing occurred on an Illumina MiSeq instrument, with
250-bp paired-end reads. From 382,820 total reads in the index, sequence reads were
trimmed using FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/) after
quality control with FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc).
Assembly into a single contig at 119-fold coverage was accomplished with SPAdes
v3.5.0 using default parameters (7). The contig was confirmed to be complete by PCR
(forward primer, 5=-CCTTGCTGGTCCGTGATTT-3=; reverse primer, 5=-CTGGTGGGTCGTG
ATAAGATG-3=) using outward-facing primers and by Sanger sequencing of the product.
Protein-coding and tRNA genes were predicted by GLIMMER v3.0, MetaGeneAnnotator
v1.0, and ARAGORN v2.36 (8–10). TransTermHP v2.09 was used to annotate rho-
independent terminators (11). All of the tools used for analysis and annotation are
available on the Center for Phage Technology Galaxy and Web Apollo instances
(https://cpt.tamu.edu/galaxy-public/) (12, 13). Functional annotations used evidence
from InterProScan v5.22-61 and BLAST v2.2.31 versus the NCBI nonredundant, Uni-
ProtKB, Swiss-Prot, and TrEMBL databases, with a cutoff of 0.001 for the E value (14–16).
As needed, TMHMM v2.0 and HHpred with ummiclust30_2018_08 for multiple-
sequence alignment (MSA) generation and PDB_mmCIF70 for modeling in the HHsuite
v3.0 release provided supplementary evidence (17, 18). Marfa was negatively stained
with 2% (wt/vol) uranyl acetate and viewed by transmission electron microscopy at the
Texas A&M Microscopy and Imaging Center (19).

Marfa is a myophage with a 168,532-bp genome, a coding density of 94.8%, and a
G�C content of 41.0%. The G�C content is less than that of K. pneumoniae, which has
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an average G�C content of �50%. Genome analysis revealed 289 protein-coding
genes, for which 122 gene functions were predicted. Marfa is T4-like, based on similarity
to 111 phage T4 proteins, but it also shares 259 similar proteins with Klebsiella
myophage vB_Kpn_F48 (GenBank accession number MG746602). Analysis with pro-
gressiveMauve demonstrates that Marfa shares 94% sequence identity across 93% of its
genome with vB_Kpn_F48 (20). PhageTerm analysis predicts Marfa to have permuted
ends and headful packaging, which are expected of T4-like phages (21, 22). Interest-
ingly, the L-shaped tail fiber gene (NCBI accession number QDB71908) has 37% identity
and 79% coverage to the L-shaped tail fiber protein of phage T5 (NCBI accession
number YP_006961).

Data availability. The genome sequence and associated data for phage Marfa
were deposited under GenBank accession number MN044033, BioProject accession
number PRJNA222858, SRA accession number SRR8869231, and BioSample accession
number SAMN11360393.
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